
CONTENTS

INTRODUCTION

OTHER LASER BASIC PRODUCTS

GLOSSARY OF TERMS

TAPE/DISK MAP

OPERATING INSTRUCTIONS

GETTING STARTED WITH LASER BASIC
Laser BASIC Variables
Screen Operations
Sprite Operations
Sprite W indow Operations
Sprite/Screen Operations
Sprite W indow /Screen Operations
Sprite W indow /Sprite Operations
Sprite Utilities
Laser BASIC 's Dedicated Variables
M OVE Com mands in Detail
BILD
Co llis ion Detection and Pattern Recognition
High Resolution Movement
Background Execution of Laser BASIC Com mands
Sound
Tracking Sprites

LASER BASIC EXTENDED COMMANDS IN DETAIL
Sprite Utilities
Parameter Related Commands
System Sw itches
Group I G ETs and PUTs
Group II G ETs and PUTs
Group III G ETs and PUTs
Group I Scro lls and W raps
Group II Scro lls and W raps
Group III Scro lls and W raps
Group IV Scro lls and W raps
Group I Transformations
Group II Transformations
Group III Transformations
Data Exchanges
Linear M OVE Com mands
Joystick/Keyboard M OVE Commands
Bouncing M OVE Commands
BW ST
Data Scanning Commands
FILL
SPN V
KBFN
SC LS
BILD
D EE K and DOKE
Tracking Sprites
Contro llers
Background Execution
Com piler Related Com mands
Laser BASIC Sound

1

1

2

4

4

5
5
6
9

11
11
15
16
16
20
23
33
35
40
41
42
62

66
66
69
71
72
72
73
74
75
76
77
78
79
79
80
80
82
84
85
85
86
87
87
87
87
88
89
91
92
92
93

LASER BASIC ERRORS 98

COMMAND SUMMARY 100

THE SPRITE GENERATOR PROGRAM 110
Introduction 110
T h e M a in M e n u 110
DesigningSprites 111
Anim atingSprites 114
SavingSprites 115
LoadingSprites 115
M ergingSprites 115
A sample session with the Sprite Generator 115
CreatingaSprite 117
FunctionKeySum m ary 120

APPENDIX A - SPT 1 S P R IT E S 123
APPENDIX B - S P T 2 S P R I T E S 124
APPENDIX C(i) - S P T 3 S P R I T E S 126
APPENDIX C(il) - S P T 4 S P R I T E S 128
APPENDIXC(iii)- S P T 5 S P R I T E S 129

LASER BASIC EXTENSION

by OASIS SOFTWARE

;

COPYRIGHT NOTICE

Copyright © by Oasis Software. No part of this manual may be reproduced on any media
without prior written permission from Oasis Software.

THIS MANUAL

Piracy has reached epidemic proportions and it is with regret that we are forced to re­
produce this manual in a form which cannot be photocopied. Our apologies for any
inconvenience this may cause to our genuine customers. A reward will be paid for infor­
mation leading to the successful prosecution of parties infringing this Copyright Notice.

NOTE

This manual is essential for the use of Laser Extended BASIC. For this reason we would
warn customers to look after it very carefully, as separate manuals will not be issued under
any circumstances whatsoever.

ENQUIRIES

If you have any queries on the use of Laser Extended BASIC, please send them to us in a
letter, ensuring you enclose the Enquiry Card printed on the last page of this manual. A
new card will be returned to you with your reply. Please note that enquiries not accom­
panied by the card will not be answered.

'
V I

I
l· i

Copyright © byOasisSoftware

LASER BASIC EXTENSION
by John Gross

INTRODUCTION
Laser Extended BASIC is an extension to the existing set of BASIC comm ands in the Amstrad's
BASIC ROM. Although Locom otive BASIC is one of the most e legant implementations of the time
honoured language, it’s features had to be designed to make it as flexible as possib le. BASIC has
numerous app lications but the specific area of our interest is graph ics and animation. Laser BASIC
was designed to enhance the ease and in particu lar the speed, with which com plex animated
graph ics cou ld be produced and about 200 com m ands and functions are included to do this. The
extra com m ands are all implemented as ‘BAR ’ comm ands (RSX’s) and so the first character of each is
a vertical bar (shifted @). Where com m ands are referred to in the text the ‘BAR ’ is ommitted
Those users a lready fam iliar with the Lightning series will recogn ise most of the command set,
although for clarity a number of the command names have been changed. Laser BASIC does not
produce stand-a lone programs (you need the extended interpreter to be resident) but a com piler has
a lso been developed which will make your Laser BASIC programs run faster and not require the
extended interpreter to be resident. Th is will mean that you can market your programs commercially.
The chief aim of Laser BASIC is to make the use of graphics, animation and sound as simple and
'unfussy' a s possib le. The command set has been designed so that someone with a modest
know ledge of BASIC and the minimum of patience can see results as qu ick ly as poss ib le (hence the
extensive use of examples). However, it has to be said that if Laser BASIC was merely a couple of
dozen very sim ple animation com m ands then the more adventurous user might well question his
value for money. In fact there are more that 200 com m ands with some fairly advanced features
(tracking sprites and sound handling for instance) and so it is our hope that months from now you will
still find the package challenging but not frustrating.

OTHER AMSTRAD LASER PRODUCTS
Although Laser BASIC is a fully self contained package there are a number of companion products
which compliment its use. For details of availability and prices contact your local dealer or write
directly to us.

The Laser BASIC Compiler
Laser BASIC program s require the extended interpreter to be resident and this lim its the potential
user base for your completed programs. The Laser BASIC Compiler, however, will com pile your
BASIC programs into fast Z80 m achine code that will run on any Z80 Amstrad m icro w ithoutthe need
for Laser BASIC to be resident. M ost ofthe Am strad's BASIC is catered for but integer arithmetic is
used and so none of the floating point functions are supported. It is a good idea to start all your
programs with DEFINT A -Z as a matter of course. Not only will this make sure that you have used
integer arithmetic, but it will a lso make your program run faster and use less memory.

The Laser Graphics Designer
Although Laser BASIC is supplied with the Sprite Generator Program, a much more powerful ICON
driven screen/sprite designer is ava ilab le that produces graph ics in a format compatible with all the
products in the Laser range. Remember that no other designer will produce compatible graphics.

The Laser Music/Sound Composer
Again, Laser BASIC is supp lied with a sound generator program which enab les m usic and sound
effects to be assem bled into sprites. A much more comprehensive package that will ease and speed
up the development of m usic and sound is a lso available. It is the only package which will produce
compatible sound sprites.

The Laser Assembler/Monitor
There really isn 't space to do this product justice. We believe it to be the most powerful
assem bler/m onitor ever produced for a Z80 machine. The assem bler has a number of com piler like
qualities and will generate code for structured programming loops as well as arithmetic and logical
expressions. The monitor has some features which have previously only been obtainable by
expensive hardware analysers and emulators.
Although the assem bler token ises its text for speed and efficiency, source files from a number of
alternative assem blers can be loaded and converted into the Laser assem blers tokenised format.

1

An enorm ousam ounto ftim eand effortw entintodevelop ing and debugging theg raph icsand sound
routines which Laser BASIC and the other Laser packages use. The advanced user who works in
assem bly language may be able to make great savings in effort by using these routines in theirgames
writing. The routines are supplied as souce code, in a format compatible with the Laser Assem bler
and each entry point is carefu lly documented (the workings ofthe code itself is not documented) Any
source code which is not used can of course be deleted before assem bly time and so the final
run-time object code is likely to be a lot smaller than that employed by the compiler.

Mini Laser BASIC
A cut down version of Laser BASIC which supports only the main features of Laser BASIC and leaves
much more memory for sprites and BASIC source is a lso available.

The Graphics/Sound Source Code

GLOSSARY OF TERMS USED IN THIS MANUAL

SPRITES
A sprite is a software contro llab le graph ics character which is stored in memory as a series of data
'bytes’. The b lock of memory which makes up the sprite can be disp layed by 'PUTting ' it into video
memory where it appears as a v isib le image on the screen. References to 'sprites' generally mean the
bytes of data in memory which make up the graph ics character but occasiona lly apply to the visib le
screen image. Laser BASIC a llow s 255 sprites to be defined, each with their own user selectable
d im ensions (up to 255 by 255). The limit on the size and number of sprites ava ilab le to the user is set
by the amount of memory available.

SCREEN WINDOWS
A screen w indow is a section of the screen defined by the four variab les (see Laser BASIC variables)
COL, ROW, HGT and LEN. C O L is in the range 0 to 79, ROW is in the range 0 to 199, HGT is in the
range 1 to 200and LEN is in th e rang e 1 to80 .T heun its fo rC O Land LE N a reb y te s -1 /2 ch a ra c te rs in
4 co lou r mode and 1 /4 ch a rac te rs in 16 co lour mode. The units for ROW and HGT are p ixe ls in both
modes. CO L and ROW specify the column and row position on the screen of the left hand corner of
the w indow, with ROW 0 at the top of the screen and C O L 0 on the far left hand side. HGT and LEN
define the dim ensions of the window.

To see an example of a w indow on the screen type in the following line and hit ENTER.

|C0L,8:|R0W ,8:|LEN,32:|H G T,64:|IN VV

SPRITE WINDOWS
A sprite w indow is a section of a sprite defined by the variab les SPN , COL, ROW, HGT and LEN. SPN
specifies the sprite, CO L and ROW specify the column and row within the sprite and HGT and LEN
define the size of the window.

If the w indow defined by these variab les lies outside the sprite or overlaps its borders then the
command will not execute but no error message will be issued.

SPRITE SPACE

Sprite space is the area of memory containing all previously defined sprites. The top of sprite space is
28671 decimal (6FFF HEX) and the lower end grows downward from this point.

SCREEN OPERATIONS

These are operations which are carried out on a particu lar area of the screen. The area of the screen
to be operated upon is ca lled the screen w indow and has been defined in an earlier section. The
operations themselves inc lude scro lls, inversions, reflections, enlargements etc., and most
com m ands in this category have a suffix 'V' for 'video', eg. MIRV, M G XV and so on. If the w indow
overlaps the edge of the screen then it will be 'clipped ' to lie 'on-screen'.

2

SPRITE OPERATIONS
These cover more or less the same operations as the screen w indow commands but thistim e a sprite
isoperated upon in memory instead o fa sec tio n ofthe screen. Theon lyva riab le used is S P N and the
syntax for these com m ands is the same as those governing screen operations with an ‘S' replacing
the ‘V . The result of these operations can only be seen when the sprite is re-d isp layed to the screen
using a PUT or MOVE, command.

SPRITE WINDOW OPERATIONS
These operations are carried out on a section of a sprite in memory and more or less the same
facilities are ava ilab le as for the former two sets of operations. Th is time the com m ands have the
suffix 'P ' and the section of the sprite to be operated upon is defined by SPN, COL, ROW, HGT and
LEN. The sprite w indow is ‘c lipped ’ to lie 'on-sprite'.

SPRITE/SCREEN OPERATIONS
These are operations between the screen and a sprite. The dim ensions of the sprite are used as the
dim ensions of the screen w indow and C O L and ROW are used to give the co-ord inates of the top left
hand corner ofthe window, thus the operations are defined using the variab les SPN, C O L and ROW.
If the w indow lies partially 'o ff-screen ' then it will be ‘c lipped ’ so that part of the sprite will be ‘PU T ’ or
'GOT'. Com mands in this category are prefixed with ‘PT ‘ or 'GT' eg. GTBL, PTXR, PTND etc.

SPRITE/SPRITE WINDOW OPERATIONS
These are operations between a whole sprite and a w indow within a second sprite. The two sprite
numbers are held in SP1 (the sprite not containing the window) and SP2 (the sprite containing the
window). The dim ensions of the w indow are the d im ensions of the sprite not containing the window
and the position of the w indow in the sprite whose number is held in SP2 and is specified by S C L and
SRW. The w indow will be 'c lipped ' if it overlaps sprite SP2. Com mands in this group are prefixed with
'PM ' o r 'G M '.

SPRITE WINDOW/SCREEN OPERATIONS
These are operations between a screen w indow and a sprite window. A s before, ROW, COL, HGT
and LEN definethe screen w indow, bu tth istim e SC Lan d S R W are used tode finethe position ofthe
w indow within the sprite. Again the w indow will be clipped if it overlaps the sprite or the screen.
Com mands in this group are prefixed with 'GW ' or 'PW'.

DUMMY SPRITE
A dummy sprite is a sprite which does not contain data for display. It may be used, for instance, to
store a m achine code subroutine, an array, a sound program, or may be used as part of a co llis ion
detection routine.

INK NUMBERS
The Amstrad has a palette of 27 co lou rs but in 4 co lour mode only 4 of these are selected for d isplay
and in 16 co lour mode only 16 are selected. The co lour number refers to one of the 27 co lours and the
INK number refers to one of the 4 or 16 INK numbers. Each of the INKs can be assigned one of the 27
co lou rs or indeed all of the INKs cou ld be assigned to the same colour, but this is seldom of any use.
Laser BASIC uses two variab les, IK1 and IK2 which are set to hold an INK number NOT a co lour
number.

PIXELS
The screen on which im ages are disp layed is divided into a grid of 'PIXELs'. A ll characters and
sprites are made up of pixels. In 4 co lour mode the grid is 200 high and 320 w ide so it consis ts of
62,000 individual pixels. Each of these contains a pixel which is d isplayed with the co lour held in one
of the 4 INKs. Each of these 62,000 ce lls can be thought of as holding 0,1,2 or 3. If it contains 0 it will
d isp lay the co lour which was assigned to INK0 and so on. In 16 co lour mode the grid is 200 high but
only 160 w ide so there are only 32,000 individual pixels. These pixels are no longer ‘square ’ but are
tw ice as w ide a s they are high. Each pixel can now contain a number in the range 0 to 15and can
therefore d isp lay one of the 16 co lou rs which were assigned to the 16 INKs. It is important to
understand the difference between an INK and a co lour or the remaining manual may well be very
confusing, so read this definition and the one previous to it again if you are at all uncertain.

3

SOURCE DATA
Several groups of com m ands in Laser BASIC are involved in moving data between sprites and the
screen. The source data refers to the data that is actually being moved.

TARGET DATA
This refers to the data that was orig inally held in the area of memory or screen, into which, the source
data is being moved.

TAPE/DISK MAP
TAPE LOCATION TAPE/DISK

FILENAME
DESCRIPTION

Tape 1 - S ide A "LB ”
“SPT2SPR"

The Laser BASIC extension
The example sprites used in the
example programs

Tape 1 - S ide B "D EM O"
“D EM O ”

“SPT3SPR "
“SPT4SPR"
"SPT5SPR "

The Laser BASIC extension (modified)
The demo program which automatically
loads its sprites when run
The sprites used by the demo program

Tape 2 - S ide A "SPTG EN "
“SPT1SPR "

The sprite generator program
The arcade sprites

Tape 2 - S ide B “SND G EN "
"M U SICSPR "

The sound generator program
The example tunes

OPERATING INSTRUCTIONS

The Laser BASIC Extension
(i) To load type RUN"LB followed by ENTER.

(ii) Laser BASIC will load, d isplay the copyright message and wait for a key to be pressed.

The Demo Program

(i) Type RUN"D EM O - for the tape version
or Type RUN"LB - press any key, and then RUN"DEM O for disk.

The Sprite Generator Program
(i) Laser BASIC must first be loaded using the previous procedure.

(ii) The sprite generator can then be loaded and executed using RU N "SPTG EN followed by
ENTER. Laser BASIC will need to be loaded from Tape 1. All sprites currently in memory are
lost and the default maximum sprite number is 120.

NOTE: Ensure the keyboard is set to upper case before RUNning (if not press C A PS SHIFT)

The Sound Generator
(i) Laser BASIC must first be loaded using the previous procedure.

(ii) The sound generator can then be loaded and executed using RU N"SN D GEN followed by
ENTER. Laser BASIC will need to be loaded from Tape 1.The sound generatorcan be 'broken
out o f and re-run from any position.

NOTE: Ensure the keyboard is set to upper case before RUNning (if not press C A P S SHIFT)

4

GETTING STARTED WITH LASER BASIC
First reset the machine by pressing SH IFT ,CTRLand ESC s im u ltaneously.ToLOAD the Laser BASIC
extension just type RU N"LB and press ENTER. If you are loading from tape you will need to press
PLA Y on the cassette recorder. The program will load and d isp lay the copyright notice. Now press
any keyand the screen will c lea rand "Ready” will appear in thetop left hand corner. Fo rth istu toria l
session we're going to use the sample sprites, so if you are using tape do not rewind. Now type

A S = " S P T 2 S P R " : |G S P R ,3 A $
The sample sprites are now loaded and we’re ready to start. To be safe, stick to the exam ples in the
text for now and don't type any other Laser or Locomotive BASIC commands.

LASER BASIC VARIABLES
Before going any further it is worth briefly mentioning the way that Laser BASIC deals with its own
variables. These are d istinct from the normal variab les and a full list is given in the more detailed
section ‘Laser BASIC ’s dedicated variab les’. S ince we’re going to begin by looking at SCREEN
O PERATIONS we’ll introduce just 5 variab les - COL, ROW, LEN, HGT and SET. Laser BASIC has 16
‘SETs ' of variab les and each SET consis ts of 17 variables. Let’s begin by defining a screen window
using SET 0.

| S E T ,0 : | C 0 L ,2 4 : | R 0 U ,6 4 : | H G T ,6 4 : | L E N ,8
We have selected SET 0 and will continue to work with SET 0 until we change to another SET. Let’s
begin by taking a look at the screen w indow we’ve selected. To do th is type:

|INVV
To begin with the screen w indow was empty but what we’ve done is to ‘invert’ it. Th is means that

pixels set to INK 0 are now set to INK 3
pixels set to INK 1 are now set to INK 2
pixels set to INK 2 are now set to INK 1
pixels set to INK 3 are now set to INK 0

The w indow was orig inally empty (all p ixe ls were set to INK 0) so by executing INVV (invert video)
what we’ve done is to set all p ixels to INK 3 which is red. If we repeat the operation by typing:

| lN V V
The w indow d isappears because all the p ixe ls return to their orig inal INK 0 colour. So lets repeat it
again so that we can see the w indow again - type:

|S C LS :|IN V V
The w indow is now red again. Let's define a second window inside the original w indow - type:

|S E T ,1 : | C 0 L ,2 6 : |R 0 W ,8 0 : |H G T ,3 2 : | L E N ,4
We have now defined a second w indow inside the first and to see it type:

| lN V V
The second w indow can now be seen clearly because all p ixels have been inverted from INK 3 to INK
0 again. Lets now set the p ixe ls in th is second w indow to INK 1. Remember that we are currently
working with SET 1. To set the pixels to INK 1 - type:

| I K 1 ,1 :|STCV
Note that the STCV comm and (set co lour video) uses a new variable IK1 to contain the INK number to
flood the w indow with. Let's do something slightly more interesting now - type:

| S E T ,0 : F 0 R IX = 1 TO 5 0 0 : | lN V V :N E X T 1%
This will invert the w indow defined by SET 0 (which physica lly contains the w indow defined by SET 1)
500 times. Before moving on to something more useful let’s look at one more example of the use of
variable sets. Type the following:

| S C L S : F 0 R I * = 1 TO 5 0 : | S E T , 0 : | I N V V : F 0 R J% = 1 TO 1 0 : |S E T , 1 : | IN V V :N E X T
J X : N E XT 1%

The inner (J% loop) inverted the smaller w indow defined by SET 1 ten times. Th is was contained in the
outer loop (l% loop) which began by inverting the SET 0 w indow (which contains both windows) then
executed the inner loop. Th is use of variable sets not only makes your programs execute much faster
but a lso com pacts your program because only one variab le is assigned (the SET) instead of all 4
(COL,ROW ,LEN and HGT). W e’ll leave Laser BASIC variab les for now but their use should become
apparent as we proceed through further examples.

5

SCREEN OPERATIONS
We've already looked at one screen operation (INW) but in fact there are quite a few operations we
can carry out on the screen w indows so let's have a look at the rest. Let’s first make two simple
observations and mention a few do 's and don'ts.
1. You will notice if you enter a line at the bottom of the screen that it does not scro ll up in the

normal way. Th is is because Laser BAS IC fo rcestheAm strad ’s screen scro ll to bea 'so ftw are
scro ll' and not a 'hardware scro ll’. Th is is achieved by using a text w indow which is the full
width of the screen but only 24 character rows high instead of the full 25. Thus the 25th
characterrow is never used fortext. Do notgetcon fused between theAm strad 'stextw indow s
and the Laser BASIC ’s screen w indows. The text w indow that Laser BASIC works with uses
stream 0 so if you set stream 0 to work with the whole screen then be sure to reset it by typing:

|SCLS
Th is will c lea r the whole screen and set stream 0 to be the current stream with thedim ensions
Laser BASIC uses. If you have allowed the screen to 'hardware scro ll’ by using stream 0 or any
other stream then always execute an SC LS before using any of Laser BASIC 's commands. We
w on’t be doing any hardware scro lling in the sample session so we need not concern
ourse lves for now.

2. Laser BASIC conta ins com m ands which operate in M ODE 1 (4 co lour mode) or M ODE 0 (16
co lour mode) but there is no restriction on the use of M ODE 2 other than that some Laser
BASIC com m ands will not operate properly in this mode (see 'CO M M AN D SU M M A R Y ’). Your
program can change freely between modes but only certain Laser BASIC comm ands should
be used in M O D E 2. The com m ands "M O D E 0" and "M O D E 1" are replaced by their Laser
BASIC equivalents "O N LO and ONHI'' respectively. "M O D E 0" and "M O D E 1" will still function
normally as far as Locom otive BASIC is concerned but Laser BASIC needs the execution of
"ONLO " and “ONHI” before it knows that the mode has been changed.

Let’s move onto the exam ples and begin putting a pre-defined sprite onto the screen, not strictly
speaking a screen operation, but necessary to a llow us to fully appreciate the operations we’re
carrying out. Type:

| S E T ,0 : | S C L S : | C 0 L ,4 0 : | R O W ,8 : | S P N ,6 : | P T B L : | L E N ,2 8 : | H G T ,3 2

We begin by se lecting SET 0 and clearing the screen. We then set the target for the w indow to have
column 40 (half way ac ro ss the screen) and row 8 (one characterfrom the top). We then se lect sprite 6
and place it on the screen with PTBL. Finally, we set a screen w indow around the sprite with the same
d im ensions as the sprite (32 pixels high and 28 bytes wide). Note that 32 pixels high means 4
characters high and in 4 co lour mode 28 bytes w ide means 14 characters wide. Now that we've filled
a screen w indow with some meaningful data we can carry out some operations on it. A lso note that
the operations we carry out on this data will in no way effect sprite 6 which is still stored in memory.
Let’s begin by looking at some scro lling. W e’ll scro ll the w indow by a pixel to the right. In 4 co lour
mode there are 4 p ixe ls per byte (8 per character). W e’ll scro ll with wrap around. Type:

|WVR1
Remember that the w indow is 28 bytes (14 characters) wide and since there are 4 pixels per
character we could scro ll the whole w indow back to its orig inal position by repeating the operation
112 times and s in ce we have already scro lled it once - hit ENTER 3 times to move the text cursor
down and then type:

FOR I% = 1 TO 111 :|WVR1 : N E XT 1%
In fact we cou ld have ach ieved the same result more elegantly without using the relatively slow
FO R -N EXT loop. Certain Laser BASIC commands, of which the scro lls are an example, can be
executed in a m achine code loop. There are two types of m achine code loop, those which
synchron ize to frame-flyback and those which don't. Fram e-flyback to the uninitiated is something
which happens 50 times a second when the 'dot' which produces your TV picture fin ishes scanning
the screen and 'flies back ’ to startthe next scan. By synchroniz ing your operation to frame-flyback,
much smoother movement can usually be obtained. Of course it won't be as fast but 50 times a
second is fast enough for m ostapp lications. T oexecu te the command in a m achine code loop you
need to follow the command by two parameters. These can be any legal BASIC expressions. The first
parameter defines the number of times the command will execute, whilst the second dictates
whether or not the loop will wait for frame-flyback between executions. If the value of the second
expression is 0, execution w ill not be synchronized, but if it has any non-zero value, then it will be.
Let's have a look at an example which scro lls our w indow left, 112 pixels without flyback and then
inverts it and repeats with flyback.

6

FOR I% =0 TO 1 : | W V L 1 ,1 1 2 , I X : | I N V V : N E X T IX
In fac i there are 12 screen scro lls in all. The syntax is as follows:

First character: 'W ' for wrap or ‘S ' for no wrap.
Second character: A lw ays ‘V for video.
Third character: 'R ' for right or ‘L’ for left.
Fourth character: ‘1’ for 1 pixel '4' for 1 byte '8' for 2 bytes

The com m ands are:
S V R 1 , S V L 1 , S V R 4 , S V L 4 , S V R 8 , S V L 8
W V R 1 , W V L 1 , W V R 4 , W V L 4 , W V R 8 , W VL8

Let's have a look at a scro ll without wrap. If we scro ll our w indow with no wrap around, we will of
course lose the screen w indow data. Let’s enlarge the w indow toward the right and scro ll the sprite
without wrap th is time in larger steps of 1 byte (half a character in 4 co lour mode, 1 /4characte r in 16
co lour mode). Type:

| S C L S : | C 0 L ,0 : | L E N ,5 6 : | P T B L : | S V R 4 ,5 6 ,1

Note that repeating SVR4 56 times was enough to scro ll the sprite right out ot the w indow because
each scro ll was by 1 byte (4 pixels). The movement was much faster thistime, and because the sprite
was much larger it seemed to flicker half way down. Th is is because the ‘dot’ arrived halfway through
the scro ll and th isw ill be expla ined more fully later on. Before we can proceed any further we'll need
to PUT the sprite onto the screen again. This time let’s PUT 2 sprites into our w indow since it is now
56 bytes wide. What we'll do is PUT the sprite into the left hand side of the window, scro ll the sprite
right and PUT the sprite again so we will tw ice fill the w indow with two cop ies of the sprite. Type
ENTER 5 times to move the cursor and then type:

FOR I% = 1 TO 2 :|PT BL :|W V R 8 ,1 4 , 1 :N E X T 1%

Note that W VR8 m oves data by 2 bytes so it needs to be repeated 14 times to make 28 bytes (4
characters in 4 co lour mode) of space for the sprite to be PUT in.
A s well as the horizontal scro lling of the previous exam ples there are a lso 2 com m ands for scro lling
vertically. W VVN and SVVN scro ll vertically with and without wrap around respectively. At this point
we introduce a new variable, NPX (number of pixels). If NPX has a positive value then data scro lls
upward and if NPX has a negative value it will scro ll downward. Again these com m ands will execute
only once if there are no fo llow ing parameters or will repeatedly execute if followed by 2 parameters.
Type:

FOR I * = 16 TO - 1 6 S T E P - 1 : | N P X ,I * : | W V V N ,8 ,1 : N EXT 1%
This example will begin by scro lling the screen w indow upward with wrap. The rate of scro lling will
slow and eventually begin downward. The downward scro lling again accelerates and then halts,
leaving the w indow contents as they were before the operation began.

Let's move onto some more unusual screen operations but continue to work with the same window.
Let’s begin by looking at X-expansion. M G XV will magnify the left hand half of the screen window
such that it fills the whole w indow - type:

|HGXV
Notice that the data in the right hand half has been rep laced by the expanded data from the left hand
half and has been lost. We can, of course, repeat the operation as many times as we w ish and the
w indow will continue to expand whatever is in the left hand half so let’s again type:

^ GXV

The orig inal image of the sprite has been magnified by a factor of 2 and now fills the window. Likew ise
we can carry out the same operation in the vertical direction - type:

|MGYV

This time the top half of the w indow has been vertica lly expanded to fill the whole w indow. Again the
data in the lower half is lost and again we cou ld repeat the operation as many times as we wanted.
Now let's c lear all the data in the w indow before looking at some other screen operations - type:

|CLSV
This command c lea rs all the data in the w indow to INK 0. Before going any further let's PUT the sprite
onto the screen again and contract the w indow to be the width of the sprite again - type:

7

| S C L S : | P T B L : | L E N ,2 8
and then press ENTER 5 times.
Th is c lea rs the whole screen, takes the curso r to the top left, which would over-write the sprite so it is
moved down 5 lines.
Let’s look now at the mirroring comm ands - type:

|MIRV
You will see that the w indow has been m irrored in the left to right sense. We can, of course, do the
same thing in the vertical direction, to do this type:

|F IP V
The w indow has now been m irrored in the top to bottom sense. Before moving on let’s widen the
w indow and repeat the operation tw ice - type:

|M IR V : |L E N ,5 6 :|M IR V
Notice that no data is actually lost because all the data in the left of the current w indow went to the
right and v ice-versa. There is in fact a second type of mirroring operation which reflects data from the
left half into the right half but does not reflect data from the right half into the left half. In effect it
produces a symmetric w indow from half of the image. The best way to demonstrate this is by
example, so type:

|SCLS :|PT B L : |L E N ,1 4 :|M 0 R V :|L E N ,2 8 :|M 0 R V
and again, press ENTER 5 times.
After c learing the screen, the sprite is p laced into the left hand quarter of the window. The w indow
length is then se tto 14and M O RV makes a m irrored copy o fthe left half into the right ha lfo fthe 14
byte w ide window. The length is then increased to 28 and the operation is repeated with the displayed
result. In fact we can do the same thing in the vertical direction using FOPV. To see the result - type:

|FOPV
You will see thatthefina l re su lt is sym m etric in thetop tobottom sense. Com bin ing these commands
with the scro ll comm ands can produce some interesting effects. Type in the following:

|S E T ,1 :|C O L , 1 4 :|R 0W ,8 : |L E N , 1 4 :|H G T ,1 6

This sets up a w indow in the top left of the w indow defined by SET 0. Now type:

| N P X ,2 : F 0 R I% = 1 TO 1 0 2 4 : | S E T ,1 :|WVL1 :|W V V N :|S E T ,0 :
^ IR V :|M O R V :| F O P V :| lN V V :N E X T 1%

This produces a ka le idoscope effect which could, of course, be greatly improved upon and th is is le ft
as an exe rc ise for the user at some later stage. For now let’s move onto some more screen
operations. Let’s look a tS PN V which sp in sthe current screen w indow by 90 degrees in a c lo ckw ise
sense. We need to introduce two new variab les here, S C L and SRW, which are generally used to
specify the column and row position of a sprite w indow within a sprite but a lso serve in this one
instance as the colum n and row of the target for the rotation. Let’s rotate the w indow we’ve been
working on and send the result to the right of it - type:

|SCLS :|PT BL
then press ENTER 5 times and type:

|S C L ,7 2 : | S R W ,8 : |S P N V
SPN V is the one comm and which only executes in 4 co lour mode because the oblong nature of 16
co lour mode pixels makes it pointless. It should a lso be noted that the height of the w indow being
spun is rounded down to the nearest multiple of eight pixels.
Th is covers all the screen w indow transformations but there are three other screen operations to
mention here. These are concerned with co louring in areas ofthe window. Let's first look at FILL. This
is a slightly unusual FILL utility and uses a slow but memory efficient algorithm to do it's filling. Again
the best way to demonstrate it's use is by example - type:

|S E T , 0 : |S C L S : |C 0 L , 2 0 : |R 0 U , 1 0 0 : |H G T , 5 0 : |L E N , 4 0 : |I N V V
| C 0 L ,2 2 : | R 0 W ,1 0 4 : | H G T ,4 2 : | L E N ,3 6 : | IN V V
LO C A T E 1 3 , 1 6 : P R IN T " T H E F I L L COMMAND"

8

It should be pointed out here that FILL takes no notice of screen w indows and will fill until either a
screen edge is met or a different co lourfrom that atthe point at which filling began, is encountered. So
ifthe pixel atthe po in tat which filling began were red then only the red area containing that pixel will
be filled. The co lour with which the area is to be filled is held in thevariab le IK1.To FILLthe window
we have defined we could begin at any point but we'll FILL the background to the sprite and start at
the top left o fthe window. Again we're going to introduce a new variable - XCL, which is the horizontal
position, this time measured in p ixe ls and not bytes. For 4 co lour mode, column 32 is made up of
p ixe ls with X-va lues of 128,129,130 and 131. For 16 co lour mode column 32 would be made up of
justtwo p ixe lsw ith X-va lues of 64 and 65. Th is is because whereas each byte represents 4 pixels in 4
co lour mode it represents only 2 pixels in 16 co lour mode. FILL uses ROW as its vertical co-ordinate
and in both modes it is in the rangeOto 199, as it has been throughout. So to FILL the area all we need
to do is type:

|S E T ,1 : | lK 1 , 2 : | X C L , 1 6 5 : | R 0 W ,1 2 5 : | F I L L
For those of you that are interested, the rather unusual way that this FILL executes stems from the
algorithm used - 'plot an ti-c lockw ise if you can'. It is worth mentioning here that FILL makes
extensive use of the m achine stack. A s a general rule, the more com plex the object being filled, the
more space required. If insufficient space exists the execution may halt half way through and d isplay
O U TO F M EM ORY.
We now return to a command that is governed by the w indow defined in the current SET which in this
instance should still be SET 0. What we’ll do now is to change all the pixels in the w indow which have
INK number 0 to have INK number 2 (this will co lour all the areas that FILL d idn ’t get to!). We're
introducing another variable, IK2 which is the co lour to change to, where IK1 is now used as the
co lour to change from. The w indow is already defined so we can set the variab les IK1 and IK2 and
then execute the command which is SETV - Type:

| S E T , 0 : | I K 1 , 0 : | I K 2 , 2 : | S E T V
It is important to note that this does not have the same effect as changing the co lours held in BASIC ’s
palette because, instead of the co lour that an INK will be displayed in, we are actually changing the
INK number of particu lar p ixe ls within the window. Executing this command will often reduce the
number of co lou rs disp layed in the w indow and after its execution a w indow which contained pixels
with all four (or sixteen) co lours can only contain three (or fifteen) distinct colours. The exact
operation of this command will become apparent with use.
Finally the last command in this section is one which we briefly encountered atthe start ofthe chapter
- STCV. Th is will set every pixel in the w indow to have the INKnum ber held in IK1 which we will set to
2 in th is example - type:

| I K 1 ,2 : | S T C V
This conc ludes the introduction to screen operations. You may w ish to experiment with the
comm ands you have encountered so far before moving on to the next section which deals with sprite
operations.

SPRITE OPERATIONS
Am ongst all of the com m ands we have considered so far there have been none which would effect a
sprite in memory. In fact, with two exceptions (FILL and SPNV), all ofthe operations we have seen can
also be carried out on sprites held in memory. Th is time the result of the operation cannot be seen
until the sprite is d isplayed by ‘PUTting ’ it onto the screen. The sprite operations are sim ilar to the
screen operations so we’ll give these commands a briefer treatment than their 'SCREEN ' equivalents.
The syntax for these com m ands differs from the previous group in only one respect. W here the
screen com m ands are suffixed with 'V', the sprite comm ands are suffixed with ’S'. W here the screen
w indow was defined by four variab les - COL, ROW, LEN and HGT, the sprite is defined by only one -
SPN , the number o fthe sprite to be operated on. Bear in mind that these comm ands will alter some of
the sprites in memory so after th is session you will need to re-load them if you think one of the sprites
you w ish to use may have been altered. Re-loading during this section, however, may effect the
execution of some of the exam ples and should be avoided.
You ’re probably getting fed up with sprites 2 and 6 so now let’s use some different sprites. W e’ll begin
by clearing the screen and PUTting a sprite near the m iddle of the top screen row - type:

| S C L S : | S E T ,0 : | C 0 L ,6 0 : | R 0 W ,8 : | S P N ,3 : | P T B L

9

Note that, although we used PTBL to ‘PU T ’ the sprite onto the screen, there are 6 different ways of
'PUTting ’ a sprite onto the screen but these will be dealt with in a later section. For now, we'll run
through the sprite operations in a sim ilar order to that of the previous section - type:

| C 0 L ,6 8 : | IN V S : | P T B L
We have inverted the sprite and PUT it next to the original. Un less we alter the sprite again,
subsequent PU T 's will always produce the inverted sprite - type:

|C O L, 5 6 :|PT BL
The sprite is still inverted but we can easily restore it to its former glory by typing:

|INVS
To prove that it has been altered in memory let’s have another look at it - type:

|PTBL
Now let’s use the sprite scro lls to produce a smooth diagonal scro ll - type:

|N PX ,1 : FOR I% = 1 TO 512:|W SVN :|W SL1 :F O R J% =
A 0 TO 6A S T E P 8 : | C 0 L , J X : | P T B L : N E X T J% :N E X T 1%

Th is exam ple com b ines a vertical and horizontal scro ll to produce a diagonal scro ll and then
repeatedly PU T 's the sprite at 4 adjacent screen positions. A sim ilar effect could have been achieved
by scro lling four adjacent screen w indows but the result would have been jagged movement.

W e can produce a ka le idoscope effect again, this time using a sprite. Type in the follow ing short
program and RUN it:

5 ’ KALEIDOSCOPE
lO !SCLS:!CLLOs!COL,20:!SPN,1:!PTBL
20 !NPX,l:!C0L,40
30 FOR 1=1 TO 25640 !ROM,8 :!PTBL:!MIRS
50 !C0L,44:!PTBL:!FIPS
60 !R0W,24:!PTBL:!MIRS
70 'C0L,40:!PTBL:!FIPS
80 !WSVN:!WSL1
90 NEXT I

Line 10 c lea rs the screen and 'PU TS ’ an original copy of the spider sprite to the left of the
kale idoscope area.

Line 20 NPX is set to +1, i.e upward 1 pixel scro ll and CO L is set to 40.
Line 30 The LOOP count is set to 256. Th is will ensure that, if break is not pressed, the sprite will

finish in its original form, for later use.
Line 40 'PU T s' the first sprite and m irrors it about its vertical centre.
Line 50 P laces the sprite in the next position and m irrors it about its horizontal centre.
Line 60 'PU Ts ' the sprite further down the screen and performs the same operation as line 40.
Line 70 A s line 50 but p laces the sprite in the bottom left hand corner.
Line 80 Scro lls the sprite diagonally with wrap.
Line 90 Loops back to line 30.
Before conclud ing this section it is worth briefly mentioning that sprites can be rotated and FILLed by
'PUTting ' them onto the screen,carrying out the operation and then ‘GETting ’ the transformed image
back into the same or another sprite. Th is is left as an exerc ise for the user. Remember you will need a
border around the sprite before FILLing or the INK may leak over the whole screen!
Let's move on now to the third group of operations which also deal with sprites but are slightly more
flexible, albeit cumbersome to use.

10

SPRITE WINDOW OPERATIONS
The facilities in this group arethe same as those available in the previous group with the exception of
Y-expansion, and vertical mirroring. The syntactic difference between this and the former groups is
that com m ands in this group are suffixed with 'P ' for ‘part of sprite' instead of 'S' for 'sprite' or 'V' for
'v ideo '.Todefine a sprite w indow however requires 5 parameters and this group uses the 5 variables
SPN ,COL,ROW ,LEN and HGT. SPN identifies the sprite, CO L and ROW locate the window and HGT
and LEN give the w indow its dim ensions. The operations generally operate noticeably slower than
their previous equivalents.
S ince the nature of the operationsthem se lves has already been covered, we’ll restrict ourse lves to a
few exam ples which illustrate the use of sprite w indows. Again we’ll start by c learing the screen and
setting up the sprite w indow ready for the operation - type:

| S E T ,0 : | S P N ,3 : | C 0 L ,2 : | R 0 W ,8 : | L E N ,4 : | H G T ,1 6
| S E T ,2 : | S P N ,3 : | C 0 L ,4 0 : | R 0 W ,8

Remember that we are not going to see the result of our handy work until we d isplay the sprite. Type:
FOR I X = 1 TO 5 1 2 : |S E T ,0 : |W P L 1 : |S E T ,1 : | P T B L :N E X T IX

This will scro ll a w indow in the centre of sprite 3 one pixel left. The sprite is repeatedly 'PUT ' so that
the changes can be seen.
The other operations work in exactly the same way so there is no point in over-indulg ing here. Try
some experimentation for yourself and be sure you’re happy before moving on to the next section.

SPRITE/SCREEN OPERATIONS
This very important group of com m ands are used to move data between the screen and memory.
W ithout these com m ands it is not poss ib le to d isp lay sprites and for this reason PTBL has already
been introduced to illustrate the effect of the previous operations.
There are two d irections of movement - from sprite to screen (PUTs) and from screen to sprite (GETs).
In each case the data at the source remains unchanged. Each command has three parameters; SPN,
CO L and ROW. SPN ho lds the number ofthe sprite and CO L and ROW hold the screen co-ordinates.
A s before, C O L is in bytes and ROW is in pixels. The dim ensions ofthe screen w indow being moved,
or moved into, take the irva lue from the sprite d im ensions and ifth is w indow lies partially 'off-screen'
then it will be adjusted to fit 'on-screen ' and only part ofthe data will move. If a w indow lies completely
‘off-screen ’ no action will be taken.

A ll 'PUT ' com m ands (those which move data from a sprite in memory onto the screen) are prefixed
with 'PT'. A ll ‘G ET ’ com m ands (those which move data from the screen into a sprite in memory) are
prefixed with 'GT'. There are actually six types of ‘G ET ’ and ‘PUT ’ which only differ in the way thattheir
source data interacts with their target data. PTBL, for instance, simply rep laces all data at the target
with data from the source and all the orig inal data at the target is lost. PTOR, on the other hand,
performs a log ical O R ' between the source data and the target data and leaves the result in thetarget.
We will now go through all six operations in detail, with examples where appropriate.

Block Moves - ‘BL’
All b lock move com m ands are suffixed with 'BL'. The effect of a b lock move is relatively simple to
explain. Whatever data was in the target is completely rep laced by whatever was in the source. The
target data is lost, and two cop ies of the source data are then in existence. Th is means that if we do a
PTBL to the screen, then all data in the screen w indow that provided the target will be lost, regard less
of the size of the sprite image. If a sprite has d im ensions 16 by 16 but its data only occup ies the central
8 by 8, then when the sprite is b lock put with PTBL the whole 16 by 16 area is written to and in this
case would leave a 4 by 4 border all around the outside of the image. To see this happen - type:

| S C L S : | S P N ,5 3 : | C 0 L ,4 0 : | R 0 W ,8 : | P T B L : | C 0 L ,4 2 : | R 0 W ,1 6 : | S P N ,5 4 :|PT PL
Notice how the bird w ipes out d a ta in a rectangular area around itself and notjust over the area ofthe
bird. Likewise, we can b lock move data from the screen to a sprite using G TBL - type:

|H G T ,2 5 : | L E N ,5 : | IN V V : |G T B L
What we have done is to invert the screen area holding the original sprite data, then 'GOT' it into the
original sprite, replacing the original data with the inverted data. To see this, type:

|SCLS :|PT BL :|IN VS

11

Th is c lears the screen, PU T sth e sprite (which is now inverted) and finally inverts it back again for
later use. Of course, it would have been much eas ierto simply invertthe sprite directly, butthe above
does serve to demonstrate the operation of GTBL.

Logical ORs — O R ’
All moves with log ical OR are suffixed appropriately enough with O R '. The effect of PTOR and GTOR
are not quite so simple to explain, and ifyou are not fam iliar with boolean algebra and binary numbers
then a short maths lesson cou ld be very beneficial in the long run. Ifyou are already conversant with
the former then skip this next section.
All information in the Amstrad (or any other 8 bit m icrocomputer for that matter) is stored as a series of
‘bytes’. A byte contains 8 ‘bits' and each bit can contain a 1 or a 0. A byte of sprite or character data in
the Amstrad represents 4 p ixe ls in 4 co lour mode or 2 p ixe ls in 16 co lour mode. Th is means that a
pixel in 4 co lour mode conta ins 2 bits and a pixel in 16 co lour mode contains 4 bits. Let's summarise
this below; in 4 co lour mode:

Pixel State INK Number
00
01
10
11

and in 16 co lour mode:
Pixel State

0
1
2
3

INK Number

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

TABLE 1

What happens when two binary numbers are ORed together can be seen in th is next example.
Supposing we O R ’ together a pixel with INK 10 and a pixel with INK 12.

1010 INK 10
OR 1100 INK 12
= 1110 INK 14
If a bit is set in the first pixel OR the second pixel, then it is set in the result - so:

1 OR 1 = 1
0 OR 1 = 1
1 O R 0 = 1
0 O R 0 = 0

Now look at the sum above again and see ifyou know why INK 10 OR INK 12 = INK 14. There is not
room to print a whole table here (there are 256 possibilities!) but be sure you can work through the
four exam ples below and get the same results.

IN K 5 0R IN K 8 = IN K 1 3
IN K 7 0R IN K 9 = IN K 1 S
IN K 11 0R IN K 4 = IN K 1 5
IN K 5 0R IN K 13 = IN K 1 3

12

If you're wondering what application all this has to graph ics then let’s look at some exam ples - type:

|SCLS : |S P N ,5 4 : | C 0 L ,4 0 : | R 0 W ,8 : | P T B L : | C 0 L ,4 2 : | R 0 W ,1 6 : | S P N ,5 3 :|PTOR
In fact the only difference between th is example and the previous one is that the second sprite has
been O R ’ed into the first instead of ‘b lock PUT'. Notice th istim e that none ofthe first sprite has been
erased by the blank parts of the second sprite because anything O R ’ed with 0 remains unchanged. In
fact, PTOR and GTO R have fewer app lications than the other five options but one fairly useful
property is that suitable cho ice s of INK numbers allow data to have d isplay priorities. If, for instance, a
sprite with INK co lour 1 overlaps two reg ions with INK numbers 4 and 3 respectively then the sprite
w ill be disp layed in the former region with INK number 5 but will not show up in the region with INK 3,
thus giving the two reg ions perspective.

Logical ANDs - ’ND’
All moves with log ica l AND are suffixed with ‘ND ’. The effect of PTND and GTND is best expla ined by
further reference to table 1. When two p ixe ls are 'AND 'ed together only bits which were set in the
source pixel and target pixel will remain set. What happens if we log ica lly ’A N D ’ a pixel containing
INK 10 with a pixel containing INK 12?

1010 INK 10
AND 1100 INK 12
- 1000 INK 8

If a bit is set in the first pixel AND the second pixel then it is set in the result - so
1 AND 1 = 1
0 AND 1 = 0
1 AND 0 = 0
0 AND 0 = 0

Now look atthe sum above again and see if you can work out why INK 10 AND INK 12 = INK 8. Below
are another four examples, th istim e ofthe logical ‘AN D ’ operation. Be sure you can agree each result
before moving on.

IN K 5 AND IN K 8 = IN K 0
IN K 7 AND IN K 9 = IN K 1
IN K 11 AND IN K 4 = IN K 0
IN K 5 AND IN K 13 = IN K 5

Let's look at another example before d iscu ss ing its application to games writing - type:

| S C L S : | S P N ,5 3 : | C 0 L ,4 0 : | R 0 W ,8 : | P T B L : | C 0 L ,4 2 : | R 0 W ,1 6 : | S P N ,5 4 :|PTND
Now see if you can explain the result by reference to table 1.

The ch iefapp lication that log ical AND ing is putto is co llis ion detection butthe combined use o fAND s
and O R s can a lso produce perspective effects as d iscu ssed in the section on ORs. Co llis ion
detection is a com plicated bus iness and is given a dedicated section later in this manual, butfor now
let's consider a sim ple case. Suppose we were writing a game where the ‘good guys’ were designed
with the even numbered INKs and the ‘bad guys’ were designed with odd colour INKs. If we set up a
dummy sprite and fill it with INK 1, then GTND an area of the screen with it, then the sprite will be
empty if there were no ‘good guys' but will contain data if there were some 'bad guys’. In a later
section we will d iscu ss how to test a sprite to see if it contains data.

Logical XOR - ‘XR’
All moves with log ical XO R are suffixed with 'XR'. XOR stands for exc lus ive-O R and we'll
demonstrate its operation with reference to ta b le l.T o describe ita s simply as possib le, ifad jacent
bits in the two p ixe ls are the same, i.e. both 1 or both 0 then the result is 0. If adjacent bits in the two
pixels are different, i.e. one is 0 and one is 1, then the result is 1.

1010 INK 10
XOR 1100 INK 12
= 0110 INK 6
If bits are the same the result is 0, if they are different it is 1 - so:

1 X O R 1= 0
0 XOR 1 = 1
1 XOR 0 = 1
0 X O R 0 = 0

13

Now lo o ka tthe sum aboveaga in and see ifyou can work ou tw hy IN K 10XO R INK12 = INK6. Below
are another four examples. Be sure you can agree each result before moving on.

IN K 5 XOR IN K 8 = IN K 13
IN K 7 XOR IN K 9 = IN K 14
IN K 11 XOR IN K 4 = IN K 15
IN K 5 XOR IN K 13 = IN K 8

To see the XOR function in operation type:
| S C L S : | S P N ,5 3 : | C 0 L ,4 0 : | R 0 W ,8 : | P T B L : | C 0 L ,4 2 : | R 0 W ,1 6 : | S P N ,5 4 :|PTXR

Although the second sprite has scram bled the first sprite you may feel it is somehow more
recogn isab le than the previous two results. Now we come to the most interesting and indeed useful
property of the XOR - type:

|PTXR
If you have fo llowed the above exam ple correctly you should find that the first sprite has been fully
restored and there is no sign of a second sprite. Th is is because XOR, like inversion, is reversible.
Now type PTXR again, noting the result. Then type:

|SCLS:|PTXR
The sprite should be disp layed as if ‘PU T ’ with a b lock put. T h is is b e ca u se the screen was.clear and
'XOR 'ing with 0 has no effect. Now type:

|PTXR
You should find the sprite has completely disappeared, this second property (a direct result of the
first) m eans that we can use the XO R operations to recogn ise patterns. If we put the sprite we're
testing for into a dummy sprite and use GTXR, then scan the dummy sprite; a zero result im plies an
exact match. Any other pattern and the dummy would have contained some data. So the XO Rs have
several applications, the first property of reversib ility can be used to non-destructively move sprite
im ages ac ro ss screen data (see XM OV, XM VJ, XBNC) and the second property can be used for
pattern recognition and hence co llis ion detection.
Th is conc ludes the section on log ica l data movements but the Amstrad has two other types of PUT
and G ET which we consider in the next section.

Putting In Front - ‘IF’
The facility to 'PUT ' a sprite in front of screen data is usually only associa ted with hardware sprites.
We felt that this facility was so useful that it had to be added to the package. For this operation INK0 is
attributed with a specia l property - transparency. Th is meansthat if we execute a PTIF then the whole
sprite w ill appear exactly as designed but any empty areas (containing INK 0) will a llow the screen
data below to show through. Th is can be very simply demonstrated with our previous two example
sprites - type:

| S C L S : | S P N ,5 3 : |C O L ,4 0 : |R O W ,8 : | P T B L : |C O L ,4 2 : |R O W ,2 8 : | S P N ,5 4 :|P T IF
Th istim e sprite 54 appears, completely unscram bled, with sprite 53 show ing clearly through. In fact,
if you continued to PTIF other sprites on top, the ‘stack ’ would grow ‘out of the screen ' indefinately.
GTIF works in exactly the same way but th is time the screen data takes priority over the sprite data
and of course the result is left in the sprite. W e can likew ise ‘PU T ’ data 'behind' screen data.

Putting Behind - 'BH'
Th is uses a sim ilar idea to that employed by the 'IF' com m ands but on this occasion data from the
source is p laced behind data atthe ta rge tand is only v isib le through transparent(INKO) parts ofthe
target - type:

ISCLS : |S P N ,5 3 : | C 0 L ,4 0 : | R 0 W ,8 : | P T B L : | C 0 L ,3 8 : | S P N ,5 4
|R 0W ,4 :|PT BH

Again repeated use of PTBH will ‘stack images', but this time, 'into the screen ’. GTBH works in the
same way as PTBH but th is time screen data is 'GO T ' behind sprite data and the result is left in the
sprite.
To summarise, we have considered 12 new comm ands and these are:
PTBL, PTOR, PTND, PTXR, PTIF, PTBH, GTBL, GTOR, GTND, GTXR, GTIF, GTBH
In fact each of these 12 com m ands has an optional parameter which we will now d iscuss.

14

Collision Counting with GETs and PUTs
It would be useful to know, when we are moving sprite images around, whether or not the image at the
source will co llide with the image at the target, regard less of the operation to be carried out. Laser
BASIC provides this facility but it is kept as an option because its inc lusion will slow down command
execution somewhat. A co llis ion m eans tha tap ixe l which does not have an INK value ofO(i.e. is not
transparent) co llides with a pixel which likew ise does not have an INK value of 0.
Its implementation is fairly straightforward to use. If you w ish to execute a PUT or aG ET , with co llis ion
detection, then the command is followed by a single parameter which is the address of an integer
BASIC variable (has a suffix o f ’%’ or is contained in a DEFINT statement). If a co llis ion occu rs the
BASIC variable is incremented by one, and if it does not, its orig inal value remains. Let’s demonstrate
the use with a short BASIC program. 'NEW ' any current program then type in:

5 * C O L LIS IO N COUNTING
10 X X = O :Y X = O : !S C L S : !S P N ,2
2 0 FOR 1=1 TO 2 5 6
3 0 ! C 0 L ,R N D t 7 6 : ! R 0 W ,R N D * 1 8 0 : IP T X R ,9 X X
4 0 I F XX<>Y7. THEN !PTXR:Y7.=XX
5 0 NEXT I

Line 10 Declares 2 BASIC integer variables, c lea rs the screen and specifies the sprite we are going
to use.

Line 20 Sets up the main loop.
Line 30 Se lects random ROW and C O L values and then XO Rs the sprite onto the screen; if

anything is underneath then X% is incremented by one.
Line 40 Checks to see if X% was incremented by comparing it to Y%. If they differ then a co llis ion

was detected and the sprite is PTXRed for the second time, therefore c learing itself out. Y%
is then made equal to X% again ready for the next loop.

Line 50 Loops back to line 20.

Print the value of X% to see how many co llis ion s occurred. Note that if X% were greater than 32767
then a negative number would be displayed. In fact, if exactly 65536 co llis ion s occurred then X% will
hold 0. Let's now go on to consider the two other types of 'GETs ' and 'PUTs'.

SPRITE WINDOW/SCREEN OPERATIONS

The 12 com m ands in th is group are analogous to the 12 comm ands previously d iscussed , but
instead of the movement being between a whole sprite and the screen, the movement is between a
sprite w indow and the screen. The w indow is defined by the variab les SPN , SCL, SRW, HGT and LEN
in exactly the same way as it was for the sprite w indow operations in the previous chapter. Collis ion
detection and the 6 types of movement are fully supported. Due to the c lo se sim ilarity between these
and sp rite /screen operations, only one example is given herewith. Enter the following program (NEW
any previously entered programs first) then type RUN.

5 * S P R IT E WINDOW/SCREEN OPERATIONS
10 !S C L S :F O R I7 .= 1 TO 4 : P R IN T "A B C D E F G H IJK LM N ": NEXT 17.
2 0 ! L E N , 5 : ! H G T , 3 2 : ! S P N , 6 : ! R 0 W , 0 : I S R W , 0
3 0 ! C 0 L , 0 : ! S C L , 0 : IPWBL
4 0 ! C 0 L , 5 : ! S C L , 5 : fP W O R
5 0 ! C O L , l O : ! S C L , l O : !PWND
6 0 ! C O L , 1 5 : ! S C L , 1 5 : !PWXR
7 0 ! C 0 L , 2 0 : i S C L , 2 0 : ! P W I F
8 0 ! C 0 L , 2 5 : ! S C L , 2 5 : ! P W B H
9 0 LOCATE 1 , 1 0

Line 10 C lears the screen and prints an area of text the size of the sprite we are using.
Line 20 The height and length of sprite 6 are set up and its row and sprite-row are set to 0.
Line 30 Puts the first sixth of the sprite onto the screen using PTBL.
Lines 40 to 80 Continue to put the remaining five sixths of the sprite using different operations.
Line 90 M oves the text cursor down.

Th is conc ludes the section covering sprite w indow /screen operations and leaves us only to
consider one other type of movement, sprite to sprite w indow movement.

15

SPRITE WINDOW/SPRITE OPERATIONS
Again the same 6 operations are covered by th is third group of G E T sand P U T sa s were covered by
the p rev ioustw o groups. Co llis ion detection is a ls o implemented in exactlythe same way. Thistim e,
however, data is moved between a whole sprite (whose number is held in SP2) and a sprite window
contained in a second sprite w hose number is held in S P 1 . The dim ensions of the data b lock being
moved are those of the whole sprite (sprite SP2) and the sprite w indow is located in sprite SP1 by the
usual sprite w indow variab les S C L and SRW . All com m ands in this group are prefixed with ‘P M ’ or
'G M ' as opposed to ‘PW ' and 'GW ' or 'PT ' and ‘G T ’. Again, only one example is really required
because of the great sim ilarity between this and the previous two groups. 'NEW ' any existing
program, enter the follow ing lines and type RUN.

5 ’ S P R I T E / S P R I TE WINDOW OPERATIONS
10 !SCLS : i S P N , 4 : ! H G T , 1 6 : : L E N , 4 : : C S P R : : S P N , 5 : ! C S P R
2 0 ! S P N , 6 : i C 0 L , 2 6 : I R 0 W , S 4 : ! P T B L : F O R T =1 TO lO O :N E X T T
3 0 FOR L = 1 TO 2
4 0 FOR N = 0 TO 6
5 0 !S R W ,0 : ! S P l , 4 : ! S P 2 , 6 : ! S C L , N * 4 : : G r i B L : ! S R W , 1 6 : i S P l , 5 : ! G M B L
6 0 !S R W ,0 : ! S P l , 5 : !PMBL
7 0 ! S P N , 6 : ! COL, 2 6 : ! ROW, 8 4 : ! P T B L : FOR T = 1 TO lO O :N E X T T
8 0 ! SRW, 1 6 : ! S P 1 , 4 : !P M B L
9 0 ! S P N , 6 : ! C 0 L , 2 6 : ! R 0 W , 8 4 : ! P T B L : F O R T =1 TO lO O :N E X T T
lOO NEXT N
1 1 0 NEXT L

Line 10 C lears the screen and creates sprites 5 and 4.
Line 20 P la ces sprite 6 (the O CEAN logo) on the screen and pauses
Lines 30 and 40 are FO R -N EXT loops.
Line 50 Gets 1 /7 o fthe top ha lfo fsp rite 6 in to sp rite4and 1 /7 ofthebottom halfinto sp rite5us ing

GM BL.
Line 60 Sprite 5 is now put into sprite 6 where sprite 4 's data came from using PMBL.
Line 70 Sprite 6 is reput on the screen.
Line 80 Sprite 4 is put into sprite 6 where sprite 5's data came from using PMBL.
Line 90 Sprite 6 is put on the screen.
Lines 100and 110 loop around.

SPRITE UTILITIES
Before moving onto some of the more exotic features of Laser BASIC we need to look at a group of
com m ands which deal with the creation, deletion, loading, saving and merging of sprites. W e ’ll begin
by briefly outlin ing the way that sprites are stored. Th is is not essentia l information and is provided
more for academ ic interestthan anything else. If you w ish you can skip th is section and move onto
the com m ands themselves.

Sprite Organisation
Sprites are organised in two consecu tive b locks of memory. The lower b lock is a table which
conta ins information about the sprite data itself which is in the high b lock of memory. There are five
pointers associa ted with sprite storage.
Pointer Application
M BOT Po in ts to the first free byte above BASIC. By subtracting the last byte used by sprites it is

possib le to ca lcu late the free space available for creating new sprites or scro lling buffer
(see FREE).

SPST Th is po in ts to the firs tby te of spritedata which isa ctua lly th e firs tby tea fte rthe end oftable
data.

STAB Th is points to the first byte of table data and is actually the lowest memory location used to
store sprites.

SPN D This points to the first free byte after the end of sprite space and generally holds &7000.
SM AX Holds the highest sprite number availab le to the user. Increasing the value using ESPR will

automatically a llocate extra table space.

16

r

Table Data
The first four bytes of table data correspond to sprite 0 and are reserved for system use. The next four
bytes are the sprite 1 information, the next four are the sprite 2 information and so on up to the last four
bytes which hold the information for the last sprite whose number is held in SM AX. Thus the size of
the table is determ ined by SM A X and uses 4x(SMAX+1) bytes. Thus the table size varies from 8 bytes
for just one sprite up to 1024 bytes for 255 sprites. Thus if the user wanted 32 sprites the table would
use 132 bytes and any attemptto create or destroy a sprite with a numbergreater than 32 would result
in an error.
Each sprite entry in the table o ccup ie s 4 bytes. The first two bytes hold the address of the sprite data
in the sprite data block. If a sprite has been deleted, or has not yet been created, then these two bytes
contain zero. The next two bytes are the width and height of the sprite respectively.

Sprite Data
The sprite data itself is organised serially. That means to say that the top pixel line is followed by the
second pixel line and so on to the end of the sprite. When a new sprite is created, the table moves
down in memory and the new sprite is inserted below the last sprite created. When a sprite is deleted,
all the sprites below it move up to reclaim the space, the table is a lso moved upward and the pointers
in the table are adjusted accord ingly.

The Utility Commands Themselves

SSPR,e1,e2
This comm and sets up sprite space. To begin with the table is cleared to zeros and SPS T points to
SPND (no sprite data exists). The command has two parameters, both of which can be any valid
BASIC expression. The first parameter, e1, tells the system how many sprites to reserve table space
for. Th is can have any value between 1 and 255 and can be altered at a later stage. The second
parameter, e2, te llsthe system where to put sprite space. In fact e2 should contain the value of the first
byte above sprite space, which w ill then build downward. When you load Laser BASIC this value is
HEX 7000. Th is puts sprites d irectly under the Laser BASIC code and there is never really any need to
changeth is so S S PR will seldom, ifever, be executed un lessthe u se rw ish e s to c le a ra ll spritesfrom
memory.

DSPR
Th is comm and will delete the sprite w hosenum ber is held in SPN . lfthe sprite does notalready exist
then the error m essage "** SPN DOESN 'T EXIST **" will be displayed. Memory contracts upwards
to recover the deleted bytes. If you w ish to store a non-re locatab le machine code subroutine in a
sprite then it should be contained in one of the first sprites created. If a sprite isde leted then all sprites
created chrono log ica lly after will be relocated. To delete sprite 7 (if it exists) type:

| S P N ,7 :|DSPR

ESPR
This command is provided so that the table size can be altered at any stage. If the table is being
extended (SM AX increased) then the table will grow downward and the sprites held in memory will be
unaffected. If, however, the table is being contracted, (SMAX reduced) then all sprites currently
created with a sprite number greater than the new SM A X will be deleted. Thus ESPR can beused as a
sort of b lock delete. U se this comm and with caution! ESPR uses SPN to hold the new SM A X .Toa lte r
the value of SM A X to becom e 100 type:

| S P N ,1 0 0 : | E S P R
CSPR
Th is comm and creates a sprite in memory. The four bytes of sprite information are entered into the
table and the whole table is then moved down in memory to accommodate the newly created sprite.
At th is stage it conta ins no meaningful data. A 'GET ' command is required to load the sprite with an
image. If the sprite we are trying to create already exists, then ** SPN ALREAD Y EXISTS ** will be
displayed. If an attempt is made to create a sprite with a number greater than the current SM AX then
** S P N T O O HIGH ** will be displayed. C S P R uses three parameters; the number of the sprite being
created, the width of the sprite in bytes and the height of the sprite in pixels. These are held in SPN,
LEN and HGT respectively, so to create sprite 15 with a height of 64 p ixels(8 characters) and a width
of 16 (8 characters in 4 co lour mode, 4 characters in 16 co lour mode) we would type:

17

| S P N ,1 5 : |H G T ,6 4 : | L E N ,1 6 : | C S P R
In this example our new sprite would use HGTxLEN=64x16=1024 bytes.

IMPORTANT NOTE:

Be sure that every time you adjust the top of BASIC with the M EM O R Y command that you tell the
system you have done so. To do this you must use MSET,e1 where e1 is HIMEM+1. If we were
chang ing the top of BASIC to be 20000 decimal, we would type:

MEMORY 2 0 0 0 0 : |M S E T ,2 0 0 0 1
The system has now been informed ofthe changeand the FR EE command can beused to check that
enough room isa ctua lly ava ilab le to create a new sprite and a sim ple test to check if our last example
(creating a 64x16 sprite) would have worked would have been the following:

X% = 0 : | F R E E , 3 X % : I F X %< 6 4 * 1 6 THEN P R I N T " N 0 ROOM"
If an attempt is made to create a sprite which is too large then **OUT OF MEM ORY** will be
disp layed and no action taken.

Buffer Space

The free space between the top of BASIC and the bottom of sprites is a lsoused by other Laser BASIC
com m ands and great care should a lso be exe rc ised to ensure that there is sufficient free space to
execute them. Below are the com m ands which require buffer space together with an indication of
how much they need.

W SVN These are the vertical scro lling commands. Each one will require: NPX
W PVN times the width of the area being scrolled: bytes. So to scro ll a
W VVN sprite 12 bytes wide, in either direction, by 8 pixels will require

96 bytes. To scro ll a screen w indow 40 bytes wide, by 5 pixels, would
require 200 bytes.

We've probably dwelt long enough on memory management so let’s move on to consider the rest of
the sprite utility commands.

RSPR,e1

Th is command will relocate sprite space in its entirety. That m eansto say it will move the table and the
sprite data as well as adjusting all entries in the table and the sprite space pointers. In fact this
comm and will very rarely be used because relocating upward from the default position would
over-write Laser BASIC 's system variab les and relocating downward would reduce the amount of
free space. It does, however, have some advanced app lications which are beyond the scope of this
section. It has only one parameter, e1, which te llsthe system the s ize and direction of the relocation. A
positive value will relocate sprite space to a higher address and a negative value will relocate sprite
space to a lower address. Suppose we w ished to reserve 256 bytes for a machine code subroutine to
be loaded under Laser BASIC at &6EFF, we would use the following:

| R S P R , - 2 5 6

PSPR,@V$

Th iscom m and saves the current sprites onto tape or disk. It uses one parameter only and this is used
to pass the filename. The filename is stored in a BASIC string variab le and so the '@ ' must precede it
or an error will be generated. The filename itself must be typed in upper case, and must not exceed 8
characters in length and of these, the last three characters must be "SPR ". In fact Laser BASIC stores
the sprites in three files. The first will contain the system variab les STAB, SPST, SPN D and SMAX.
The filename will be changed by Laser BASIC so that the “ S P R ” on the end of the filename becom es
"S Y S ”. The second file will con ta in the tab le and th istim e thefilenam e isa ltered sothatthe lastthree
characters become "TAB". Finally, the sprite data itself is saved and this time the filename used isthe
filename orig ina lly passed to the command, i.e. ending with “SPR". If, for instance, we w ished to save
the current sprites to. tape or d isk with filename "TESTSPR", then we would use the following:

A $ = " T E S T S P R " : | P S P R , 3 A $
This would save three files: “TESTSYS", TESTTAB" and “TESTSPR". These are all, in fact, saved as
binary files and do not use any specia l format.

18

GSPR,@V$
Th is command loads the three files saved using the P S PR command. Again it uses only one
parameter, the filename, and the same restrictions apply. You can ’t accidentally load another binary
file (unless it a lso ends in "SPR") because the filename given must end in “SPR " (or “SPR.BAK"). This
restriction may seem an annoyance but if you were able to accidenta lly load another binary file the
consequences would be serious. The three files are loaded and the system pointers set to the values
loaded in (so the system is organised in exactly the same way as it was when the sprites were saved)
which m eansthat sp rites start and fin ish where they did when you saved them. Be careful that you
haveenough room to lo adapa rticu la rsp rite file o r**O U T OF M EM ORY** will bed isp layedandyour
current sprites corrupted. To load the file 'T E S T S P R " use:

A $ = " T E S T S P R " : | G S P R , a A $

MSPR,@V$
This command will M erge a named file of sprites with the sprites already held in memory. The sprite
space currently held in memory will expand downwards to accommodate the merged sprites. The
system variab les are loaded and exam ined first. At this stage the loaded table is compared with the
resident table to ensure that two sprites with the same number will not be created. If a sprite exists in
both the resident and loaded table then execution term inates with an error ** SPRITE ALREADY
EXISTS**.lf an attempt is made to Merge a sprite with a number greater than the resident SM AX then
the system will report an error **SPN TOO HIGH **. O nce it has been estab lished that both tables
contain d istinct sprites they are physica lly Merged and the new sprite data itself is appended to the
end of the old sprite data with the appropriate adjustment of pointers. There are two th ings to be
carefully noted. Firstly, if the combined sprite files exceed the space available, the top of BASIC will be
overwritten and secondly, ifa lo ad in g e rro ro ccu rs between thetab les being merged and the sprites
being loaded then you will have to c lea r sprite space and start all over again, so make sure you have
cop ies of both sprite files safely saved on tape or disk!! If you w ished to Merge a file named
'T E S T S P R ” with the sprites currently in memory then you would type:

A$ = " T E S T S P R " : | M S P R , 3 A $
Incidentally, the Merge facility can be used to force sprites to load to any address you require.
Suppose you w ished to load a file of sprites to HEX 6000 and the maximum sprite number in the file to
be merged is 32 (it is assum ed here that you do not w ish to preserve your resident sprites), then type:

| S S P R , 3 2 , & 6 0 0 0 : A $ = " T E S T S P R " : | M S P R , 3 A $
O ccasiona lly you will not be ab le to merge two sets of sprites because of conflicting a lloca tions of
sprite numbers, the next two com m ands have been provided to circumvent this problem.

RNUM
This command has two parameters which are held in SP1 and SP2. SP1 is set to hold the number of
the sprite to be renumbered and SP2 is set to hold the new number that the sprite will be allocated.
The old sprite is deleted and the new sprite is created. In factthe operation takes p lace entirely within
thetable and sprite data is com plete ly unaffected. Errors will be generated ifSP1 does notexist, or if
sprite SP2 already exists, or if renumbering would cause a sprite to be created with a number greater
than SMAX.

ADNM
This is a particularly useful comm and when used in conjunction with the Merge facility. It a llow s an
offset to be added to the num bers of all the sprites so far created. In fact the offset can be negative so
that previously created sprites can be renumbered in a decreasing sense. SPN is used to hold the
offset. Supposing 12 sprites exist and are numbered 5 to 16. To renumber these sprites so that they
are numbered 20 to 31, type:

| SPN , 15 : | ADNM
SM A X is unaffected by th is com m and as are all the system pointers. Suppose now that we w ish to
return the previously renumbered sprite numbers back to their original values, i.e. reduce them by 15.
We have a problem because we cannot a llocate a negative number to SPN. All we do in fact is to add
the 2 ’s complement of 15 which is 256-15. To do this - type:

|S PN , 2 5 6 - 1 5 :|ADNM

19

The fact that SPN is treated as a 2 's complem ent number in th is case may cause confusion so let's
just consider it a little further. In this instance SPN is assumed to hold a value in the range -128 to
+127. So if w ea ss ig n 128 to SPN it istreated as holding -128. W hata ll this bo ils down to is that the
largest positive increment we can add is 127, and if we want to use a negative increment, we subtract
it from 256 in the aforeseen manner.

ISPR,@V1 ,@V2,@V3,@V4
Th is comm and is used in various app lications to interrogate sprite and system details. Before
execution, S PN is loaded with the number of a sprite to be interrogated. If the sprite does not exist,
SPN will be set to 0 and no meaningful information will be conveyed. If, however, the sprite whose
number is held in SPN is found to exist then the follow ing information will be returned:

The BASIC integer variable V1 will contain STAB
The BASIC integer variable V2 will contain SPST
The BASIC integer variable V3 will contain SPN D
The BASIC integer variable V4 will contain the address of the

actual serial sprite data.
In addition to this, HGT and LEN will be set to hold the dim ensions of the interrogated sprite. Be
carefu l notto forgetthe '@ 's in fron to fthe fou r BASIC in tegervariab les in the parameter list. Ifany of
the four variab les has not been previously declared then an "Improper Argument" error will be
generated.

5 ’ EXAMPLE GF S P R IT E INTERRO G ATIO N
10 I N PU T ; " S P R I TE NUMBER" ; S X : P R IN T
2 0 V17C=0: V 2 X = 0 : V37 .=0 : V 4 X = 0 : H 7 .= 0 :L 7 .= 0
3 0 ! S P N , S7.: ! I S P R , 3 V 17., 3V 27 . , S)V37., 3V47.
4 0 I F V47.=0 THEN P R IN T " S P R IT E " ; S 7 . ; " DOES NOT E X IS T " :G O T O 1 1 0
5 0 P R IN T " S T A B = " ; V l X
6 0 P R IN T "S P S T = " ; V 2 7 .
7 0 PR I NT " SPND = " ; V 3 X
8 0 PR I NT " ADDRESS= " ; V47.
9 0 ! HGTQ, 3H X : P R IN T " H E IG H T = " ;H 7 .
1 0 0 !LE N Q ,S >L7 .:P R IN T"LE N G TH = " ; L X
1 1 0 P R IN T
1 2 0 GOTO lO

FREE,@V1

The other sprite utility com m ands have specia lised app lications which will be dealt with in later
sections, but there is one more command which is of immediate interest in this section - FREE. Th is is
sim ilar to the BASIC equivalent FRE which is a function that returns the amount of free space in the
BASIC area. FR EE returns the amount of free space between the top of BASIC and the bottom of
sprites. W e ’ve already d iscu ssed the operations which utilise this area for w orkspace (see CSPR)
and it is w ise to keep an eye on the value that th is command returns. Note that the value given is only
accurate if the system variab le M BO T has been kept up to date (using MSET) each time the BASIC
M EM O R Y comm and is used. Again, the BASIC variab le used to hold the result must have been
declared prior to the execution of th is command. To find out how much space is free you could use:

|FREE,aX2:PRINT XX
This conc ludes the section covering sprite utilities.
Laser BASIC's Dedicated Variables
You have probably noticed by now that Laser BASIC uses a rather unusual regime for handling its
parameters. It uses 17 different variab les in all and there are 16 different sets of them. The chief
reason for th is approach is to reduce unnecessary expression evaluation, which in general takes up
more p rocesso r time than the command itself. More often than not only a few parameters are altered
between executions and there is little point in re-calculating unnecessarily. Th is method a lso saves
space in the source file and m eansthat the graph ics routines themselves can a c ce ss their data very
rapidly.

20

The full set of variab les and their descrip tions are given in the section “ LASER BASIC EXTENSION"
under the heading “ PA R A M ETER RELATED CO M M AND S". All variable names com prise three
characters and are checked for ‘R A N G E ’ errors on each assignment. Many of the variab les have
multiple app lications and th is m eansthat range check ing is not as tight as it might be. HGT and LEN,
for example, are generally used to specify w indow dimensions, but a lso double up as increments in
the M O VE com m ands and must therefore be allowed to hold negative numbers on occasions.
We have already seen num erous exam ples of variable assignments, we'll now look at how to
interrogate the variab les.Just as there are 17 assignments, there are a lso 17 interrogations and each
one takes the sam e form - the 'BAR ' followed by the three characters of the variable name, suffixed
with 'Q ' (for 'query') and followed by one parameter, which must be the address of a previously
declared BASIC integer variable. To interrogate and print the d im ensions of a screen window, you
could type:

| COLQ, aC% :|ROWQ, 3C% : | LENQ, 3L% :|HGTQ , 3H% : PR I NT C%, R%, L%, H%
Note that if in the above example, any of the variab les C%, R%, L% or H% were undeclared, then an
"Improper Argument” error would be generated.
In addition to assign ing values to variab les and interrogating the irvalues, there are five other related
comm ands which are designed to save space and speed up program execution.

EXXV
Each time a Laser BASIC command is executed it se lects the parameters it requires from one of the
16 variab le sets. The current SET is dictated by the value in the variable; SET. If you are utilising the
Amstrad’s EVERY and AFTER commands, then a problem can arise. When the routine you are
executing under interrupt is entered, the current value in SET is indeterminate. Th is means that it
must be preserved on entering the routine and restored on exit. Th is cou ld typically be achieved with
the following;

1 0 0 0 | S E T Q , 3 X X : R E M P R E S E R V E CU R R E NT SET
1 0 1 0 | S E T , Y %

1 1 0 0 | S E T , X X : R E M R E S T O R E S E T
1 1 1 0 RETURN

This involves three commands, each of which performs an evaluation and search of the variable area
and which is relatively time consum ing. To circumvent this problem, Laser BASIC uses an
'alternative' SET variable. Before proceeding any further, let’s see how this works with an example.
Type in the follow ing short program:

5 ’ EXftMPLE OF EXXV
10 ! S C L S : ! S E T , 0 : ! H G T , 6 4 : ! L E N , 8 : i C 0 L , 4 0 : ! R 0 W , 8
2 0 ! E X X V : ! S E T , 1 : ! H G T ,3 2 : ! L E N , 1 6 : ! C O L ,4 8 : ! R 0 W ,8
3 0 EVERY 2 0 , 0 GOSUB 5 0
4 0 ! I N V V : GOTO 4 0
5 0 ■E X X V : ! IN V V : !E X X V :R E T U R N

Line 10 C lears the screen and sets up a w indow using SET 0.
Line 20 EXXV m akes SET 0 the alternate set. SET 1 is then made the current set and a w indow is

defined using SET 1.
Line 30 The EVERY G O SU B is set up.
Line 40 Th is just repeatedly executes an INVV which will invert the w indow defined in SET 1.
Line 50 Th is is the subroutine that will execute under interrupt. It exchanges the ‘current’ and

'alternate' SET variables, inverts the w indow defined in SET 0, restores the 'current' and
'alternate' SET variab les and RETURNS.

EXXV was provided to be used with EVERY and AFTER but can a lso save time and memory in normal
applications, particularly where two SETs are being repeatedly exchanged.

21

SWPS
Laser BASIC provides 12 different modes of sprite movement and in each case, four frame animation
is provided. The way that this is achieved is to use a sequence of four sprites whose numbers are
held in S P 1 , SP2, SP3 and SP4. Every time a Move is made the numbers are rotated, so SP1 becom es
SP2, SP2 becom es SP3, SP3 becom es SP4 and SP4 becom es S P 1 . Th is m eans that the cyc le is
continuously repeated in the order S P1 , SP2, SP3, SP4, S P1 , S P 2 ... and so on. O ccasiona lly it may be
required to make the sequence run in reverse, i.e. SP4, SP3, SP2, SP1, SP4, SP3 ... and so on. The
SW PS command effectively ach ieves this by simply exchanging SP2 and SP4. The sequence will run
in reverse from this point and can of course be re-reversed at any stage. Incidentally, the 'bounce
m oves’ automatically carry out on SW PS every time a bounce o ccu rs and are described in a later
chapter.

ASTV
This command ass igns the data in a sprite, to the current variable SET. Not only does this save a lot of
space in a BASIC program, but it a llow s parameters to be set up in a fraction of the time required to do
it the 'o ld fashioned' way. It a lso effectively increases the number of variable sets and is therefore
particularly useful in tracking sprite applications. The command uses only two parameters. The
current SET and SPN which is set to hold the number of the sprite containing the variable SET data
and the sprite containing the data must be created with a height of 1 and a width of 20, or a range error
will occur. The data can be entered into the sprite directly by using ISPR to find the address and then
POKE ing data from data statements. It is obviously more effective to use the sprite generator program
to do this, as this will save source code space in the BASIC program. Most assignm ents use 8 or more
bytes, so to assign 6 parameters would take about 50 bytes and quite a lot of processo r time. If the
data were pre-stored in a sprite then only 20 bytes would be used and le ss time taken than would be
required for a single assignment. If, for example, we have stored in sprite 32 the parameters we
require and want to a llocate these to SET 9, then we would use:

| S E T , 9 : | S P N , 3 2 : | A S T V

AVTS
This command carries outthe same operation as the previous ASTV command except that data flows
in the opposite direction, i.e. from the variab le SET to the sprite. Again th iscan be used to extend the
number of variab le SETs and, suitably applied, will com pact and speed up BASIC programs. As
before there are only two parameters, the current set and the destination sprite number. Again, the
sprite must have been created with a height of 1 and a width of 20.

ESAV
Th is is a variation on the previous two comm ands and a llow s the current variable SET to be
exchanged with the data in the specified sprite. The same two parameters are used and again the
sprite must have a height of 1 and a width of 20.
To summarise, it is well worth gaining familiarity with the use of the EXXV, ASTV, AVTS and ESAV
com m ands because their efficient use can not only speed up your program execution but can also
save a great deal of BASIC program space. It may therefore be worth spending some time
experimenting with them before moving on to the next section.

22

MOVE COMMANDS IN DETAIL
Let's move on now to some of the more interesting commands. The com m ands.wh ich we are
introducing in this chapter will probably turn outto feature more prominantly in your games than any
others so far, so it is very important to master them thoroughly.
W e should begin by considering the four ways that Laser BASIC can produce sprite movement, we’ll
begin with the least sophisticated and then work up to the more complex schemes as we go.

Block Over-write

In this scheme, the sprite is moved by simply over-writing itself. Th is means that the sprite does not
move non-destructively and this method cannot be employed if there is any data in the path of the
sprite which shou ldn ’t be destroyed. In situations where a sprite is not constra ined to move non-
destructively, then this type of movement should a lways be used. Not only is this method at least
tw ice as fast as any other (frequently as much as ten times faster!), but it produces very smooth
flicker-free movement anywhere on the screen with no real need to synchronise with frame-flyback.
The most popular com m ercial games use this method extensively as it is often the case that only the
main character (usually joystick controlled) needs to move non-destructively. This method does not
effectively support co llis ion detection, but again, most of the app licationsto which the method is put
do not reauire it.

The only precaution the user must take is to ensure that the sprite has a blank (or appropriately
coloured) border around the perimeter, so that it over-writes itself fully and doesn't leave data behind.
The border must be at least as big as the increments by which the sprite is moving.

Let's look at an example program. 'NEW ' any program in memory and be sure that you have the
sample sprites in memory before typing and running this example.

5 ’ EXAMPLE OF BLOCK OVER-WRITE
10 !SCLS
20 !SPN,8: !COL,40: I ROW,O
30 !HGT,1
40 !LEN,0
5 0 ! S P l , B : ! S P 2 , B : ! S P 3 , 8 : ! S P 4 , 8
6 0 FOR 1=0 TO 183
7 0 ! WMOV
8 0 FOR W=1 TO 5 0 : NEXT W
9 0 NEXT I
Lines 10 and 20 C lear the screen and specify a sprite and its starting position.
L ines 30 and 40 Height is set to +1, therefore the sprite will move down by 1 pixel every time W M OV

is executed and LEN is set to 0, i.e. no horizontal movement.
Line 50 The variab les SP1, SP2, SP3 and SP4 are set up with sprite 8, i.e. no animation.
Line 60 The main loop.
Line 70 The WMOV.
Line 80 S ince W M OV is very fast, a delay loop is set up.
Line 90 Loops back to line 60.

Exclusive-OR
This is the most popular method for non-destructively moving sprites around the screen (where the
m icro in question doesn 't have hardware sprites) and provides a very distinctive ‘feel’ to a game.
Those of you who are fam iliar with the Spectrum will have seen this type of movement in quite a few
games, although you may not have realised what you were actually witnessing. If you are familiar with
the pitfalls move on to the next section. W e’ll illustrate the effect in our next example and slow it down
for you to see it clearly. F irst we’ll move a small sprite around the screen, synchronised to
frame-flyback.

23

5 * EXAMPLE OF EXCLUSIVE-OR
lO !SCLS
2 0 ! S P l , 8 : ! S P 2 , 8 : ! S P 3 , 8 : ! S P 4 , 8 : i S P N , 1
3 0 FOR 1=1 TO lOO
4 0 !C 0 L ,R N D * 7 6 : S R O N ,R N D * f 8 4 : ! P T IF
5 0 NEXT I
6 0 ! C 0 L , - 1 0 : ! ROW,5 0 : ! H 6 T , 1 i ! L E N , 1
7 0 ! X M O V ,5 1 2 ,1

Line 10 C lears the screen.
Line 20 Sets up all the sprite variables.
Lines 30 to 50 puts 100 sprites at random positions on the screen.
Line 60 Sets the starting position we are going to XM OV and sets the height and length which are

set for diagonal movement.
Line 70 XM OV is executed 512 times, with frame-flyback.
The sprite seem s to move 'through' the data, neither behind nor in front. The movement is very
smooth and quite p leasing to the eye. Now let's run the same program butth istim e we'll slow it down
and see what happened as we moved 'through’ the data.

5 ’ EXAMPLE OF EXCLUSIVE-OR (SLOW)
10 Q7.=0
2 0 ! SCLS
3 0 ! S P N , l : F O R 1=1 TO lOO
4 0 ! C 0 L ,R N D * 7 7 : ! R 0 W ,R N D * 1 8 4 : !P T IF :N E X T I
5 0 LOCATE 7 , 1 : P R IN T ” " : LOCATE 8 , l : P R I N T “ "
6 0 ! C 0 L , 0 : I R 0 W , 5 0 : ! S P N , 8 : I PTBL
7 0 ! H G T ,1 : ! L E N , 1
8 0 FOR 1=1 TO 2 6 0
9 0 ! X M 0 V ,1 ,1
lOO FOR W=1 TO 5 0 :N E X T W
110 ■ COLQ, S>QX: iF Q7.=81 THEN ! C 0 L , - 8 : I R 0 W , 5 0
12 0 NEXT I

Line 10 The integer variable Q% is declared.
Line 20 C lears the screen.
Lines 30 and 40 PUTs sprite 1 at 100 random positions.
Line 50 C lears a space for the sprite.
L ines 60 and 70 Set up starting positions and d irections for sprite 8.
Line 80 Starts main loop.
Line 90 Performs 1 XM O V with frame-flyback synchronisation.
Line 100 Sets up a 'sub-loop ' that s low s things down.
Line 110 Checks to see if sprite 8 has reached the edge of the screen and if so puts it on the other

side of the screen.
Line 120 Loops back to 80.
Quite a mess, isn ’t it? Surprisingly, we perceive this quite differently so long as it happens quickly
enough. In fact this method of movement has several draw backs which we'll try and illustrate with a
coup le of examples. F irst of all, let’s run the example again and this time we’ll go flat out instead of
synchronising to frame-flyback.

5 ’ EXAMPLE OF EXCLUSIVE-OR
6 ’ WITHOUT FRAME FLY-BACK
7 ’ SYCHRONI S A T I ON .
10 Q7.=0
2 0 I SCLS
3 0 ! S P N , l : F O R 1=1 TO 1 0 0 : ! C 0 L , R N D * 7 7
4 0 ! R 0 W ,R N D * 1 8 4 : !P T IF :N E X T I
5 0 LOCATE 7 , l : P R I N T " ":LOCATE 8 , l : P R I N T " "
6 0 ! C O L , 0 : ! R 0 W , 5 0 : ! S P N , 8 : ! P T B L
7 0 I H G T , 1 : ! L E N , 1
8 0 FOR 1 = 1 TO 2 6 0
9 0 ! XMOV
lOO !C 0 L Q ,3 Q 7 .: IF Q7.=81 THEN ! C 0 L , - 8 : ! R 0 W , 5 0
l l O NEXT I 24

It flickers bad!y - so w hatw entw rong7The problem with th isand the nexttwo m ethodsw e'rego ingto
in troduce is tha tw e 're caught between thedevil and thedeep blue sea. On theone hand, we have to
w a itfo rthe 'do t' (which producesthe p ictureon the monitororT.V) to beou to fthew ay sothatw e can
move without being caught and on the other hand we have to do everything fast enough for 'smooth
movement' to be perceived. In the last example we didn't wait for the 'dot'. The actual move itself is
carried out in two phases, the first is to XOR out the previous frame, and the second is to XOR in the
new frame. If the dot arrives between these two operations (and there’s a fair chance it will if we run
flat out), then the sprite ‘d isappears ’ before our very eyes. We can demonstrate this effect more
clearly by moving a larger sprite, with frame-flyback synchronisation. Type in and run this example.

5 ’ EXAMPLE OF MOVING LARGE S P R IT E
10 !SCLS
2 0 ! S P N , 1 0 : ! C O L , 4 0 : ! R 0 W , 2 0 0 : ! S P 1 , l O : ! S P 2 , 1 0 : ! S P 3 , l O : I S P 4 , 10
3 0 !PTXR
4 0 ! HG T , —1 : ! L E N , 0
5 0 ! X M 0 V , 5 1 2 , 1
Th istim e you will see that we acheive smooth continuous movement over part of the screen, lose part
of the sprite in others, and completely lose the sprite in others. So what causes this? We can't slow
this one down to show you in slow motion because this effect w ouldn’t happen in slow motion. What
is actually happening is that because we've synchronised to frame-flyback the sprite removal and
rep lacem ent cyc le is synchron ised to the 'dot'. The sprite is being removed as the 'dot’ arrives and it
simply disappears. Th is restriction has prompted some games designers to:
a) Restrict the movement of large sprites to 'safe' areas of the screen.
b) Ensure that sprites which do traverse the whole screen are relatively small.
c) Pause between moves to ensure the 'dot' arrives and animate to d isgu ise jerkiness.
d) U se a more complex (and usually dedicated) scheme.
Of these, option c) is far and away the most useful to us, s ince most app lications require animation
anyway. The follow ing example show s how to produce very acceptab le movement using XOR
(exclusive - OR) movement.
5 ’ EXAMPLE OF ACCEPTABLE MOVEMENT
6 ’ U S IN G E X C L U S IV E —OR .
10 !SCLS
2 0 ! S P N , 1 2 : ! C O L , 7 2 : !ROW, 1 8 2 : ! S P l , 1 2 : ! S P 2 , 1 2 : ! S P 3 , 1 2 : ! S P 4 , 12
3 0 ! PTXR
4 0 ! H 6 T , 0 : ! L E N , - 1
5 0 FOR 1=1 TO 4
6 0 ! X M 0 V , 8 0 , 1
7 0 ! C O L ,7 2 : iPT XR
8 0 ! L E N , - I
9 0 NEXT I

Line 10 C lears the screen.
Line 20 Spec ifies sprite 12 as the sprite we are going to XM OV and sets its starting position. Notice

that SP1, SP2, SP3 and SP4 have the same value so there is no animation.
Line 30 P laces the sprite on the screen using XOR.
Line 40 Sets up the direction of the sprite, moving left slowly.
Line 50 Main loop.
Line 60 XM O Vs the sprite ac ro ss the screen.
Line 70 Resets starting column and 're -PUTs' it.
Line 80 The horizontal velocity of the sprite is assigned to the loop variable I.
Line 90 Loops back to 50.

Ίη-Front' Moving
Although the exc lus ive-O R movement described in the previous section does produce quite
acceptable movement, those of you who have seen hardware sprite based graph ics will appreciate
the advantage oftrue non-destructive movement. Unfortunately the Amstrad does not have hardware
sprites but we can simulate some of the ircharacteristics with the 'ln-Front' and 'Behind' move types.

25

There isn o need tode lve in to thew ork ingso fth is method, suffice itto saythat itu se sa techn iqueak in
to thatused by film m akersw ho wish to superim pose'fly ing saucers' over London. Forth ism ethodto
work, however, we need to use specia lly prepared (MASKed) sprites. The sprites must be created
with tw ice the width of the image that we w ish to display. Those parts of the image which are to be
'transparent' must use INK 0. The image must be wholly contained in the left hand half of the sprite.
O nce you have created a sprite in this form then all you need to do is use the M ASK command to
convert it into a M ASKed sprite. If this sprite is d isp layed using any of the normal PU T s or G ET s then
the data appears disorganised. Don't worry about this because there is a set of com m ands which
deal exc lusive ly with M ASKed sprites. To all intents and purposes a M ASKed sprite is treated as
being ha lfits physical s izeb ythecom m and sw h ichdea l w iththem .Anyattemptto M A S K a sp r ite with
an ‘odd ’ width will result in a "CAN 'T M A S K ” error, so only use 'even' width sprites. The image can, of
course, have an odd width. Masking a previously M ASKed sprite will destroy the data.
Th is type of movement suffers the same timing constra ints as does exc lusive-OR ing but there is one
further restriction on its use, not imposed by exclusive-OR ing. Each time a M ASKed sprite is placed
on the screen, the data that is over-written is simultaneously lifted into the sprite for later
replacement. Th is m eansthat the background mustn’t evolve during the movement and restricts this
mode of movement to stationary screen data. So the sprite being moved 'ln-Front' must not be
over-written byanyotherm ov ing object. In fact this ru leapp lie s to m ovem ent'Beh ind 'asw ell. Below
is an exam ple of 'ln -F ron t’ movement, let the program run to completion since pressing break may
corrupt the sprite. If you w ish to re-RUN the program delete line 40 or you will mask a previously
masked sprite.
5 ’ EXAMPLE OF IN-FRONT MOVING
10 !SCLS
2 0 ! S P N , l : F O R 1=1 TO 2 0 0 : ! C 0 L , R N D * 7 7
3 0 !R 0 W ,R N D * 1 8 4 : !P T IF :N E X T I
4 0 ! S P N ,1 3 : ! MASK
5 0 ! S P l , 1 3 : ! S P 2 , 1 3 : ! S P 3 , 1 3 : ! S P 4 , l 3
6 0 ! COL, 7 2 : ! ROW, 1 0 0 : ! HGT, 0 : . ' L E N , - 1
7 0 ! FSWP
8 0 FOR 1=1 TO 3
9 0 ! F M 0 V ,2 3 6 ,1
lOO NEXT I

Lines 10, 20 and 30 C lears the screen and puts sprite 1 at random positions 200 times.
Line 40 M asks sprite 13.
Line 50 Sets all four frames to the same sprite number, i.e no animation.
Line 60 Sets up starting position and direction.
Line 70 ‘ Front swaps' sprite 13 onto the screen.
Line 80 Loop 3 times.
Line 90 'FM O Vs' the sprite the full height of the screen, with frame-flyback synchronisation.
L ine100 Loopsback .

‘Behind’ Movement
Th is uses the same idea as the ‘In-Front’ move with the only d ifference being that the sprite moves
behind any other data that it moves over. Again the sprite needs to be M ASKed in the manner
prescribed in the previous section and the same constra ints on movement are encountered. You
must be sure that the sprite isn ’t over-written by any other moving sprites whilst it is itself moving.

The M ASK ing structure is in fact altered by 'behind' movement and it is necessary to reconstruct the
orig inal M ASK before a particu lar sprite that has moved 'behind' can subsequently m ove'in-front’. A
command is provided to do this - RM SK. The follow ing example moves a sprite around the screen,
both behind and in-front of screen data and particular note should be paid to re-m asking (using
RMSK) between movement behind and movement in-front of screen data.

5 ’ EXAMPLE OF REMASKING
10 !SCLS
2 0 ! S P N , 2 : FOR 1=1 TO 1 0 0 : ! C 0 L , R N D * 7 7
3 0 !R 0 M ,R N D > 1 8 4 : !P T IF :N E X T I
4 0 !S P N ,1 3
5 0 ! S P l , 1 3 : ! S P 2 , 1 3 : ! S P 3 , 1 3 : ! S P 4 , 13
6 0 !ROW ,1 0 0 : ! H G T , 0 : ! L E N , - 1
7 0 FOR N=1 TO 5

26

r

80 !C0L,72:!FSWP
90 iFMOV,81,l
lO O !C0L,72:!BPUT
110 !BMOV,81,l
120 !RMSK
130 NEXT N

Line 10 C lears the screen.
Lines 20 and 30 Random ly place sprite 2 on the screen.
Line 40 Sets SPN for remasking.
Line 50 Sets SP1, SP2, SP3 and SP4 to 13. No animation.
Line 60 Sets the value to ROW and the direction of movement in HGT and LEN.
Line 70 is the loop.
Line 80 Sets the start CO L value and p laces the sprite on screen using | FSWP.
Line 90 M oves the sprite In-front of data using | FMOV.
L ine100 S e ts th e s ta r tC O L v a lu e a n d p la c e s th e sp r ite o n s c re e n u s in g | BMOV.
Line 110 M oves the sprite behind data using | BMOV.
Line 120 Rem asks the sprite.
L in e130 L o o p s to lin e 7 0 .

Now that we've looked at the various methods of movement available with Laser BASIC, let’s have a
look at some ofthe different move types in more detail and see how they are actually used in practice.
Bear in mind what has been said about the advantages and disadvantages of the various methods
and a lw ays use the sim plest schem e you can. If you look at comm ercial games you may not be
su rprised to find that they are f'equently designed with all this in mind. A typical platform game, for
instance, will use b lock over-Λ rite for almost all of the movement, and the backdrops are carefully
designed to accomm odate this. A sprite which clim bs a ladder needn't use XOR if it's designed with
the ladder as part of its image!

The Linear MOVE Commands
These com m ands support all four methods of movement but we'll begin by looking at W M OV which
uses b lock over-write. The linear move com m ands use 8 g raph ics variab les and 2 or 3 optional
parameters.

WMOV
CO L The column to move from, measured in bytes.
ROW The row to move from, measured in pixels.
LEN The increment by which to move horizontally, measured in bytes.
HGT The increment by which to move vertically, measured in pixels.
SP1 The number of the sprite to be moved, in this case b lock over written.
SP2 The number of the sprite to replace the sprite which is to be moved.
SP3 The number of the sprite which will replace SP2.
SP4 The number of the sprite which will replace SP3.
There are a few points to note:
1. Positive values for LEN will cause movement to the right and negative values will cause

movement to the left.

2. Positive values for HGT will cause movement toward the bottom of the screen and negative
values will cause movement toward the top of the screen.

3. S P1 , SP2, SP3 and SP4 hold the sprite numbers of the four frames of the animation. They can
hold any numbers you w ish and do not need to run sequentially. They could all hold the same
number if the sprite were not required to animate.

4. When W MOV, or any of the other M O VE com m ands forthat matter, is executed, it is assumed
that SP1 has been previously PUT to the screen, in the case of W M OV it is not necessary for
SP1 to be on screen but for the other three comm ands in the group(XMOV, BMOV, FMOV) it is
necessary. The first sprite to be placed on screen by W M OV will be SP2.

5. Because W M O V used b lock over-write, the co llis ion detection option is not meaningful since
a co llis ion will usually be detected with the previous frame that is being over-written.

6. Remember that when a sprite is 'W M OVed' it requires a border around it which is at least as
big as the increments of movement or the sprite will leave a trail behind it.

The first example shows a sprite being 'W M OVed' without a border - note the trail left behind.

27

3 ’ EXAMPLE QF BLOCK O VER -W R ITE MOVE
10 ί S C LS : ! COL, 0 : ! ROW,1 0 0
2 0 iS P N ,1 4 : ! S P l , 1 4 : ! S P 2 ,1 4 : ! S P 3 ,1 4 : ! S P 4 , 1 4 : ί L E N ,1 : :H G T ,0
3 0 iW M 0 V ,2 5 6 , l

In this second example we create a larger sprite and place this smaller one (which we w ish to WMOV)
inside it - the trail is now removed.

5 ’ EXAMPLE OF BLOCK OVER-WRITE MOVE I I
10 ί SCLS
2 0 !C 0 L ,2 : !R 0 W ,8 : !S P N ,1 4 : ! P T B L :!S P N ,1 5 : !D S P R :!H G T ,1 8 : ! L E N ,1 2 : !C 0 L ,0 : IR 0 W ,6 : !S P N ,
1 5 : iC S P R :IG T B L
3 0 !S P N ,1 5 : !S P 1 ,1 5 : !S P 2 ,1 5 : !S P 3 ,1 5 : ΙΞ Ρ 4 ,15
40 ί L E N ,1 : IH G T ,0
5 0 iW M 0 V ,5 1 2 , l

Line 10 C lears the screen.
Line 20 Puts sprite 14 on the screen then creates sprite 15 (slightly larger than 14), then gets the

screen image of sprite 14 into sprite 15.
Line 30 Specifies movement variables.
Line 40 Sets up the direction the sprite will move in.
Line 50 W M OV sprite 15, 512 times with frame-flyback synchronisation.
The W M O V command, like all other M OVE commands, can be executed in a machine code loop, with
or without co llis ion detection and frame-flyback synchronisation. To execute W M O V in a machine
code loop we merely fo llow the command with two parameters. The first is the number of times we
w ish the command to execute and the second te lls the system whether to synchron ise with
fram e-flyback or not. In fact b lock over-write operations do not really need to synchron ise with
frame-flyback because they don't sufferfrom the same flicker prob lem sas other methods. In th is next
example we illustrate movement with and without frame-flyback synchronisation and also illustrate
animation.

5 ’ EXAMPLE QF BLOCK OVER-WRITE
6 ’ MOVEMENT WITH ANIM ATION
10 ! SCLS
2 0 !S P N ,1 7 : !L E N ,0 : ! H G T , l : iS P l , 1 7 : I S P 2 , 1 8 : ! S P 3 , 1 9 : I S P 4 , 2 0 : I C 0 L , 4 0
3 0 !R 0W ,0 :FOR L=1 TO 2 0 0
4 0 I WMOV,1 ,1
5 0 FOR 1=1 TO 6 0 : NEXT I
6 0 NEXT L
7 0 !R 0 W ,0 : FOR L=1 TO 200
8 0 I WMOV
9 0 FOR 1=1 TO 6 0 : NEXT I
100 NEXT L

Line 10 C lear the screen and set up starting positions.
Line 20 Sets up sprite number, direction and order of animation using SP1 , SP2, SP3 and SP4.
Line 30 Sets up first main loop.
Line 40 W M OV with frame-flyback.
Line 50 A small wait loop to stop the sprite animating too fast to see.
Line 60 Loops back to 30.
Line 70 Sets up second main loop.
Line 80 W M OV without frame-flyback.
Line 90 Another small pause loop.
L ine100 L o o p sb a ck to 7 0 .

XM OV

XM O V uses the same 8 g raph icsvariab les as W M O V (so do FM O V and BMOV) and like all the M OVE
comm ands can be followed by up to three parameters. Again there are a few points worth noting.

1. XM O V assum es that sprite SP1 has aleady been XORed onto the screen at the current CO L
and ROW positions. Failure to do this will leave a copy of SP1 at that position.

2. There is in fact no need to XOR SP1 if movement is to begin from an off-screen position.
3. Co llis ion detection can be gainfully used by XMOV.
4. If XM O V is being repeatedly executed with frame-flyback synchronisation, the upper section

of the screen may not permit flicker-free movement for large sprites. In practice, the larger the
sprite, the deeper the 'no-go ' band.

In th is first example we XM O V a sprite from the centre of the screen to the bottom left (and wrap
around) without first PUTting SP1 - note that a copy of SP1 is left behind.

28

5 ’ EXAMPLE OF XMOV
10 !SCLS
2 0 ! C O L ,4 0 : !R D W ,1 0 0
3 0 ! S P l , 2 : ! S P 2 , 2 : f S P 3 , 2 s : S P 4 , 2
4 0 !H G T ,—2 : ! L E N , 1
5 0 ! XMOV,2 1 8 , 1

L ine10 C lea rsthe sc reen .
Line 20 Sets up starting position.
Line 30 Sets up sprite numbers (no animation).
Line 40 Sets up direction.
Line 50 XM OV sprite 2, 218 times with frame-flyback synchronisation.
We now repeat the exam ple but th is time in itia lise the XM O V by using PTXR to PUT sprite SP1
(actually held in SPN) at the centre before moving.

5 ’ EXAMPLE OF XMOV I I
10 !SCLS
20 ! C 0 L , 4 0 : ! R O W , lO O
3 0 !S P N ,2 : !P T X R
4 0 ! S P l , 2 : ! S P 2 , 2 : ! S P 3 , 2 : ! S P 4 , 2
5 0 ! H G T , - 2 : ! L E N , 1
6 0 i X M 0 V , 2 1 8 , l

Before moving on to our next example, it’s worth briefly mentioning the screen ‘w rap-around’
employed by a ll linear move comm ands. The screen is 80 bytes w ide and 200 pixels high but sprites
can be thought of as moving in a space which is 256 bytes (3 and a bit screens) wide and 256 pixels
high.

Ifa sprite’s path c ro sse s an edge of the ‘virtual screen ’, it will wrap around until it eventually arrives on
the real screen and can be seen again. Th is 'wrapping' occu rs in any direction.
If we start a sprite 'XM O V ing ' from a virtual region we do not need to ’launch ’ it with a PTXR. Th is next
example demonstrates this point.

5 ’ EXAMPLE OF XMOV I I I
10 !SCLS
20 ! C O L ,—8 : I ROW, lO O
3 0 i S P l , 2 : f S P 2 , 2 : ! S P 3 , 2 : ! S P 4 , 2
40 !H G T ,0 : ! L E N , 1
5 0 !X M 0 V ,2 1 8 ,1

Let’s turn now to co llis ion detection. In all the exam ples up to this point we have either moved with no
parameters, or with 2 parameters (machine code loops), let’s look now at an example which
demonstrates co llis ion detection.

5 ’ EXAMPLE OF COLLISION DETECTION6 ’ WITHOUT A MACHINE CODE LOOP
10 X7.=0
20 !SCLS
30 !SPN,1 :FOR 1=1 TO 40:!C0L,RND*77:IR0W,RND*184:!PTIF:NEXT I
40 !COL,-B:!ROW,100
50 !SPl,2 :!SP2,2 :!SP3,2:!SP4,2
60 !HGT,0 :!LEN,1
70 FOR 1=1 TO 512
80 IXMOV,3X7.
90 IF X7.>3 THEN SOUND l,40,5:X7.=0
100 NEXT I

29

Line 10
Line 20
Line 30
Line 40
Line 50
Line 60
Line 70
Line 80
Line 90
Line 100

Declares X%, which is to be used in co llis ion detection.
C lears the screen.
P la ces some data on the screen.
M akes the start position of the sprite just to the left of the screen i.e -8.
Sets up sprite numbers.
Sets direction.
Start of main loop.
XMOV, with X% as the co llis ion detection counter.
Checks if X% is different and if so makes a short beep and resets X% back to 0.
Loops back to 70.

Co llis ion detection is provided for by passing the address o fa BASIC variable (hence the all important
'@ ' in front of the variable name) so that the move routine can increment the variable if a detection is
made. XMOV,@X% would move once, and if a co llis ion occurred, increment X%. XMOV,@X%,500,1
would move 500 times (with frame-flyback synchronisation) and increment X% every time a collis ion
w asde te c te d (in th isca seup to 500tim es).ltisvery im portan tnot to fo rge tth e '@ 'in fron to fth eX% or
the system may well crash. The BASIC variable used for co llis ion detection must be an integer
variable, i.e. it must be fo llowed by a '%' or have been declared to be integer in a DEFINT statement. If
the variable being used has not yet been declared then an 'improper argument' error will occur. To
overcome this, just put in a statement such as X%=0, before the execution of the command.
FM O V
FM O V is in fact identical to XM O V in every respect except that movement is in-front of screen data
ratherthan by exc lusive-O R ing . U se ofthe 'in-front' operation does require a few po in tsto be raised.
1. A ll the sprites used by th is type of move (and the FSW P which in itia lises the movement) must

be M ASKed before movement can begin. If any of these sprites has been used in 'behind'
movement then they will need to be re-m asked with the R M SK command. Executing the RM SK
command cannot do any harm so if in doubt remask!

2. FM O V assum es that sprite SP1 has already been p laced on the screen using the FSW P
command (un less movement is beginning from an off-screen position). If SP1 was not in fact
p laced there using FSW P, then sprite SP1 will be irrecoverably corrupted. For th is reason it is
a good idea to keep a copy of all your masked sprites, in other sprites so that you can
re-construct corrupted sprites using the 'PM ' or 'GM ' commands.

3. W hen you have fin ished FM O V ing a sprite it must be removed from the screen by executing a
further FSW P, or must be moved 'off-screen '. Failu re to do th is may a lso result in a sprite being
corrupted.

In the next exam ple we start with four un-m asked sprites that are going to form the fourfram es of an
animated sequence, which are then masked ready for movement. If we accidentally corrupt one of
these M ASKed sprites then we can repeat the procedure. The follow ing short program demonstrates
the full use of the FM O V command.
5 ’ EXAMPLE OF FMOV
10 !SCLS
20 FOR 1=21 TO 24 :
30 FOR 1=1 TO 50 :
40 iSPN,21:iSPl,21:
50 IC0L,40:!R0W,0 :
60 !HGT,1 :!LEN,0
70 FOR 1=1 TO 4B0
80 !FMOV,l,l
90 FOR W=1 TO 50:NEXT W
100 NEXT I
L in e10 C le a rs th e sc re en .
Line 20 M asks sprites 21 to 24.
Line 30 Puts data on the screen to show that you are actually moving in-front.
Line 40 Sets up sprite numbers for animation.
Line 50 Sets up starting position and FSW Ps.
Line 60 Defines direction and the number of p ixels in that direction you are going to move in.
Line 70 Main loop.
Line 80 FM O V once with frame-flyback synchronisation.
Line 90 Sets up a delay loop so you can see the animation.
L in e100 B a ck to 7 0 .

!SPN,I:!MASK:NEXT I
ISPN,1: I COL,RND*80: 1 ROW,RND*200: IPTBL:NEXT I
!SP2,22:!SP3,23:!SP4,24
! FSWP

30

BMOV
The BM O V command is used in exactly the same way as the FM O V command with only a few notable
changes.
1. W hereas FM O V requires the first frame to be initially p laced on the screen with the FSW P

command and then at the end of the move sequence requires the last frame p laced to be
removed with another FSW P, BM OV requires two distinct comm ands to be used. The first
frame is p laced on screen using BPUT and the final frame is removed using BGET. lfthe first
frame is ‘o ff-screen ’ then BPU T is not required and if the final frame is 'off-screen ' then the
BGET is not required.

2. When sprites have been used with BPUT, BM O V or BGET they will need to be re-masked,
using R M SK before they can be utilised by FSW P and FMOV.

Joystick/Keyboard MOVE Commands
These com m ands support all four types of movement, use 9 g raph ics variab les and are executed
with up to 3 optional parameters. They are very sim ilar to the linear move com m ands in most
respects, but their movement is governed by a user se lectable joystick or key row.
These com m ands use the same 8 g raph ics variab les as their p redecessors but with one extra
variable which is necessary to se lect the required joystick or key row. The extra variab leused is KEY
and is assigned values, and interrogated in the normal way. Joystick 0 is selected by setting KEY to
hold a value in the range 72 to 79 and joystick 1 is selected by setting KEY to hold a value in the range
48 to 55. If you do not have joysticks fitted (or if you're not using them) then you can use keys to
manoeuvre your sprite.

Table 2 show s which key com binations correspond to which KEY values. Keys in round brackets
correspond to keys in the num eric key pad (iffitted).UP, DOWN, LEFT and RIGHT correspond to the
cursor keys.

VALUE IN KEY UP KEY DOWN KEY LEFT KEY RIGHT KEY
0 U P R IG H T D O W N (9)
8 LE FT C O P Y C7) (8)

16 C LR [E N T E R]
24 t @ P
32 0 9 0 I
40 8 7 U Y
48 6 5 R T
56 4 3 E w
64 1 2

TABLE 2
E SC Q

The animation cyc le is only advanced if a key is pressed (or the joystick activated). The cyc le is
advanced byone fram e rega rd le sso fthe in crem en tin HGT and LEN ,the num bero fkeysp ressed ,o r
the direction of movement. Below are a series of exam ples which illustrate what can be achieved with
these commands. The first exam ple dem onstrates movement using the joystick and should be
skipped if you do not own a joystick.

5 ’ EXAMPLE OF M 0V IN 6 A S P R IT E USING
6 ’ JOYSTICK 0
10 !SCLS
2 0 ! COL, 4 0 : ί ROW, 1 0 0
3 0 ! S P N ,1 7 : ! S P 1 , 1 7 : ! S P 2 , 1 8 : ! S P 3 , 1 9 : ! S P 4 , 2 0
4 0 !PTXR
5 0 !H G T ,1 : ! L E N , 1
6 0 · ! K E Y ,7 2
7 0 !W M V J ,1 ,1
8 0 FOR 1=1 TO 5 0 :N E X T I
9 0 GOTO 6 0

31

Line 10 C lears the screen.
Line 20 Sets up the CO L and ROW position for sprite 17
Line 30 Sets up SPN and SP1 to SP4 (the 4 sprites in the animation sequence).
Line 40 Exc lu s ive -O R ’s sprite 17 onto the screen.
L in e50 S e ts H G T a n d L E N to 1 .
Line 60 Sets KEY to 72.
Line 70 M oves and an imates the sprites using W M VJ
Line 80 is a delay loop.
Line 90 Loops to line 60.
The next exam ple which is sim ilar to the one above show s how movement and animation can be
contro lled from the keyboard (see table 2).
KEY is setto 40 which means the ‘8' key m oves and animates sprites up, the '7' key moves them down,
the ‘U ’ key moves them left and the T key m oves them right.

5 ’ EXAMPLE OF MOVING A S P R IT E U S IN G
6 ’ THE KEYBOARD
1 0 !S C LS
2 0 !C 0 L , 4 0 : !R 0 U ,1 0 0
3 0 ! S P N , 1 7 i iS P l , 1 7 : ! S P 2 , 1 8 : ! S P 3 , 1 9 : i S P 4 , 2 0
4 0 !P TX R
5 0 !H G T ,1 : ! L E N , 1
6 0 ! KEY > 4 0
7 0 ! WMVJ, 1 , 1
8 0 FOR 1=1 TO 5 0 : NEXT I
9 0 GOTO 6 0

You may have found that using the 'Y' key to move right and the 'LT key to move left a bit difficult to
master as the 'Y' key is on the left of the 'LT key. You can however, reverse all d irections specified in
tab le2bypu tting negative va lues in HGT and LEN .Theexam p lebe low is th e sam ea sth eoneabove
except HGT and LEN are now setto -1 such thatthe 'Y' key now moves left, the 'U' key moves right,the
‘7 ’ key moves up and the '8' key moves down.

5 ’ EXAMPLE OF MOVING A SPRITE USING
6 ’ THE KEYBOARD I I
t O ! 6ΓΊ ς
20 IC 0 L ,4 0 : IR 0 W ,1 0 0
30 !S P N ,1 7 : !S P l ,1 7 : ! S P 2 , 1 8 : ! S P 3 , 1 9 : ! S P 4 , 2 0
40 IPTXR
50 IH G T ,-2 : !L E N ,-1
60 !KEY,40
70 I WMVJ, 1 , 1
80 FOR 1=1 TO 5 0 : NEXT I
90 ΘΟΤΟ 60
The 'Bouncing' MOVE Commands
It may not be immediately apparent why th is particu lar group of M O VEs have been included in Laser
BASIC. A s shall be seen, they have w ide app lication in gam es writing, and platform games in
particular. Again, these com m ands support all the move types associa ted with the previous two
groups and use 9 graph ics variables. In fact they use the same 9 variab les as were employed by the
keyboard/joystick m oves but for th is application KEY is used to hold the number of a specia l sprite
which contains the bounce w indow parameters.

Bounce Windows
A bounce w indow is defined by the four variab les COL, ROW, HGT and LEN. The w indow is set up
and stored in a sprite before the execution of the bounce com m ands themselves. The command
which performs th is operation is BW ST (bounce w indow SET). The w indow thus created has its top
left defined by C O L and ROW, and its d im ensions defined by HGT and LEN. Sprites do not bounce
‘ in s ide ’ this window, what actually happens is that their C O L and ROW values are constra ined to lie
w ithin the ranges C O L to COL+LEN and ROW to ROW+LEN. So HGT and LEN really define the
freedom that the sprite enjoys rather than providing some physica l border.

Another point worth noting is that the co llis ion detection feature of the first two move types is
rep laced by a bounce detection option but is invoked in exactly the same way, i.e. using 1 or 3
follow ing parameters. One final point to note istha t each time a bounce occu rs theframe sequence is
reversed. A sim ultaneous bounce on two perpendicu lar edges will cause two reversa ls and the net
result is that the frame sequence continues unaltered.

32

If the motion beg ins outside the w inaow, tnen the sprite will move linearly until it attempts to pass
through any part of the w indow at which point it is 'captured' and will continue to bounce within the
w indow constraints.

Application to Platform Games
The linear m oves will not animate through the frame sequence un less either HGT or LEN is non-zero.
In other words they have to move to animate. Using the bounce com m ands a sprite can be bounced
up and down by as little as one pixel. If the alternate frames are offset by 1 pixel, then stationary
animation can be ach ieved as in the next example.

5 ’ E XAM PLE OF S T A T IO N A R Y A N IM A T IO N
6 ’ U S IN G NBNG
1 0 !S C L S
20 I S P N ,1 8 s ! NPX, 1 : I SSVN : I SP N,2 0 : ! SSVN
30 !S P N ,15: iD S P R : ! H G T , l : ! L E N , 4 :!CSPR
40 !S P N ,1 5 : ! H G T , 2 : !L E N ,1 : !C 0 L ,3 9 : !R O W ,1 0 0 : !BWST
5 0 ! K E Y , 1 5 : ! C 0 L , 3 9 : ! R O W , 1 0 0 : ! H G T ,1 : ! L E N , 0 : ! S P l , 1 9 : ! S P 2 , 2 0 : ! S P 3 , 1 7 : I S P 4 , 18
6 0 !W B N C ,1 ,1
7 0 FOR 1 = 1 TO 1 0 0 : N E X T I
8 0 GOTO 6 0

Line 10 C lears the screen.
Line 20 S c ro lls sprites 18 and 20 up by 1 pixel (remember if you re-run this program those sprites

will be scro lled again).
Line 30 Creates a bounce data sprite.
Line 40 Sets up the bounce sprite.
Line 50 Sets up the position of the sprite and values of SP1 to SP4.
Line 60 Executes a sing le bounce.
Line 70 Th is is a delay loop.
Line 80 Loops around to line 60.

If we analyse a typical screen from any of the popular platform games then it becom es apparent that a
lot ofthe motion can be produced using vertical or horizontal bouncing. A ta la te rtim e you cou ld run
the Laser BASIC demo. One screen of the demo show s a platform type game in which 7 bounce
w indows have been set up. Sprites w hich inc lude a rotating eyeball, a toilet and a lift are seen to
bounce very smoothly.

Once you have fin ished th is example sess ion you could break into the demo and new the program by
typing “NEW " . Laser BASIC and the sprites w ill still be in memory. So if you type in the follow ing
program all 7 sprites will be set bouncing about the screen.

5 · EXAMPLE OF BOUNCE WINDOWS
10 FOR 1=102 TO 108
20 !SET,I-102
30 ISPN,I:!ASTV
40 NEXT I
50 A*="WBNCAWBNCBWBNCDWENCEWBNCFWBNCG#"
60 !ISET,3A$
7 0 ! I R U N , 4

Line 10 this is a FO R -N EXT loop that will incrementfrom 102 to 108.
Line 20 Sets up the value of 1-102 in the variab le SET
Line 30 U ses ASTV to set up the variab le set 1-102 with values stored in data sprite I.
L ine40 Loop s to1 0 .
Line 50 this is the string that contains the 7 W BNC commands to be run under interrupt.
Line 60 Com piles the string A$ into the background table.
Line 70 Runs the background bounce program at every 4th interrupt.
This conc ludes the chapter on M O VE commands.

nu>
The BILD command is provided to enable the compact storage of screen backdrops. A lthough it was
included with platform gam es in mind, it should prove useful in just about any game format. A s well as
enabling data com press ion it w ill produce a backdrop very qu ick ly indeed. Essentia lly the idea is
very simple, the screen information is stored in a ‘bit matrix' which is held in a sprite. Each bit that is
set co rresponds to a sprite being 'PUT ' and each bit that is not set co rresponds to an empty area with
the d im ensions of the sprite which would have been 'P U T . The command uses only five parameters.

33

C O L is used to specify the co lum n at which build ing is to begin. C O L can hold a negative value and
in fact this feature can be used to move through the ‘map’.

ROW is used to specify the row at which build ing is to begin and ROW can also hold a negative
value.

KEY is used to specify the type of operation that BILD will use to 'PUT ' the data to the screen. Four
types of operation are supported and these are now summarised:

Value in KEY Operation
0 B lock over-write
1 Exclu s ive-O R
2 PU T in front of current data
3 PU T behind current data

SPN ho lds the number of the sprite which conta ins the bit map. Note that there are no constraints
on the d im ension of th is sprite so enorm ous backdrops can be stored which are many
screens high and wide.

SP1 ho lds the number ofthe sprite which will be used to build the backdrop. A '1 ’ in the bit map will
cause this sprite to be 'PU T ' onto the screen (with one of the operations dictated by the value in
KEY) and a '0' w ill cause a gap to be left with the d im ensions of the sprite which would have
been 'PUT'. Note that a gap is left rather than a blank area being created. In fact INVV can be
used, together with a blank sprite to cause blank areas to be cleared.

In ou rfirst example we're going to produce a 'P ' using sprite 31 as our building block. The data sprite
30 uses only 8 bytes to produce an 8x8 matrix. Sprite 31 has width 10 bytes (1 /8th of the screen width)
and a height of 25 pixels (1 /8th of the screen height) - so the full screen will be utilised.

5 ’ EXAMPLE OF B IL D
10 ! S P N , 3 0 : ! H G T ,8 : ! L E N , 1 : ! CSPR
2 0 X7.=0: Y7.=0
3 0 ! IS P R ,0 Y 7 . ,0 Y 7 . ,0 Y 7 . ,0 X 7 .
4 0 FOR I=X7. TO X7.+7:READ A:POKE I , A : N E X T I
5 0 !SCLS
6 0 ! C 0 L , 0 : ! R 0 W , 0 : ! H G T , 2 0 0 : ! L E N , 8 0 : i K E Y , 0 : I S P N , 3 0 : ! S P l , 3 1 : ! B IL D
7 0 GOTO 7 0
8 0 DATA 2 5 2 , 1 0 2 , 1 0 2 , 1 2 4 , 9 6 , 9 6 , 2 4 0 , 0

L in e10 C re a te sa d a ta sp r ite fo rB IL D
Line 20 Initia lises X% and Y%.
Line 30 U ses ISPR to find the address of the data sprite.
Line 40 Reads a data statement at line 80 and pokes the data into the BILD sprite.
Line 50 C lears the screen.
Line 60 Executes BILD which reads the data from the data sprite and puts sprite 31 onto the screen.
Line 70 is a trapped loop.
Line 80 is the data statement (remember once the BILD data sprite has been created lines

10,20,30,40, and 80 would no longer be required).

In our second example we're going to produce a 'P ' again using sprite 30 as our data sprite but this
time we're going to invert sprite 30 and use sprite 32 (an empty sprite) to ensure that the gaps are
c leared of any garbage. We cou ld of course have used S C LS or C LSV before building but we’re not
a lways going to build over the whole screen and we often w ish to leave areas of the screen
unaffected.

5 ’ EXAMPLE OF B IL D I I
lO X7 .=0 :Y 7 .=0
2 0 ! S P N , 3 2 : ! C L S S
3 0 ! SP N, 3 0 : ! ISPR,S>Y7., 3Y7., 0Y7.,3X7.
4 0 FOR I=X7. TO X7.+7:READ A:PO KE I , A : N E X T I
5 0 ! S P N , 3 0 : ! I N V S
6 0 ! C 0 L , 0 : !R O W ,0 : ! H G T , 2 0 0 : ! L E N , 8 0 : ! K E Y , 0 : I S P N , 3 0 : ! S P l , 3 2 : ! B IL D
7 0 ! S P N , 3 0 : ! I N V S
8 0 ! C 0 L , 0 : ! R 0 W , 0 : ! H G T , 2 0 0 : ! L E N , 8 0 : ! K E Y , 0 : ! S P N , 3 0 : ! S P l , 3 1 : ! B I L D
9 0 GOTO 9 0
lOO DATA 2 5 2 , 1 0 2 , 1 0 2 , 1 2 4 , 9 6 , 9 6 , 2 4 0 , 0

34

Line 10 Initia lises the variab les X% and Y%.
Line 20 C lears build ing sprite 32 to INK 0 using CLSS
Line 30 F inds the address of sprite 30.
Line 40 PO K Es the data in the data statement at line 100 into data sprite 30.
Line 50 Inverts the data sprite so all the space around the P will becom e the data that will be read by

BILD.
Line 60 U ses BILD to put all the spaces (sprite 32) on the screen.
Line 70 Inverts the data sprite (resetting the data).
Line 80 U ses BILD to put the P on the screen.
Line 90 is a trapped loop.
Line 100 is the data statement contain ing the data of the P.

In ourth ird exam ple we’re going to produce a 'Q' butth istim e, instead of using a second blank sprite
we're going to utilise sprite 31 by c learing it and then ‘GETting ’ it back again.

5 ’ EXAMPLE OF B IL D I I I
10 X*/.=0: Y7.=0
2 0 ! SPN , 3 0 : ! I S P R , S>Y7., 3 Y X , 3Y7., S>X7.
3 0 FOR I=X7. TO X% +7:READ A :PO K E I , A : N E X T I
4 0 ! C 0 L , 0 : i R 0 M , 0 : i H G T , 2 0 0 : ! L E N , 8 0 : ! K E Y , 0 : ! S P N , 3 0 : ! S P l , 3 1 : i B I L D
5 0 ! S P N , 3 1 : ! CLSS : ! S P N , 3 0 : ! I N V S
6 0 ! C 0 L , 0 : ! R O W , 0 : ! H G T , 2 0 0 : ! L E N , 8 0 : ! K E Y , 0 : ! S P N , 3 0 : ! S P l , 3 1 : ! B I L D
.70 ! S P N , 3 1 : ! C O L , 1 0 : I ROW,2 5 : f H G T , 2 5 : ! L E N , 1 0 : ! G T B L
8 0 GOTO 8 0
9 0 DATA 5 6 , 1 0 8 , 1 9 8 , 1 9 8 , 2 1 8 , 2 0 4 , 1 1 8 , 0

Line 10 Initialises the variab les X% and Y%.
Line 20 F inds the address of sprite 30.
Line 30 PO K Es the data in the data statement at line 90 into data sprite 30.
Line 40 U ses BILD to put the Q on the screen.
Line 50 C lears the brick sprite (sprite 31) to INK 0 using C LSS and inverts the data sprite.
Line 60 U ses BILD to put the spaces around the Q using the cleared brick sprite.
Line 70 G E T s the brick from the screen back into sprite 31.
Line 80 is a trapped loop.
Line 90 is the data statement containing the data of the Q.

Collision Detection and Pattern Recognition
We have already seen how co llis ion detection operates with the G E T s, PU T s and M OVEs. One of the
drawbacks of this method istha t it does slow down execution somewhat. T o in crease the flexibility of
the package we have also included another command which will 'SCAN ' and area of screen or sprite
for pixel data and increment a BASIC integer variab le if any data (pixels not set to INK 0) are
encountered. There are 3 com m ands in the group:
SCNV,@V1 Scans the w indow defined by COL, ROW, HGT and LEN until data is found. Once

data is found, the integer variable V1 is incremented and no further execution
takes place. Note thatV1 must be integer.

SCNS,@V1 S can s the sprite defined by SPN. Again execution term inates once data has
been found and the integer variable V1 is incremented.

SCNP,@V1 Scan s the sprite w indow defined by SPN, ROW, COL, HGT and LEN. Execution
term inates once data has been found and the integer variableV1 is incremented.

These com m ands can be used in their own right but are generally used in conjunction with logical
G E T sand PU T sa n d dummy sprites to detect collision with specific objects etc.
In ourfirst example we set a sprite bouncing in an empty w indow and check the top left of the w indow
to see if the sprite passes through it.

5 ’ EXAMPLE OF SCNV
io :scLS
2 0 !C 0 L , 9 : ! ROW, 4 8 : ! ΗΘΤ, 1 2 0 : ! L E N , 6 6 : ! I N W
3 0 ! C O L ,1 0 : IR 0 W , 5 0 : ! H G T ,1 1 5 : i L E N , 6 4 : I IN V V
4 0 X7.=0
5 0 iS P N ,1 5 : !D S P R : ! H G T ,1 : ! L E N , 4 : !C S P R
6 0 ! C O L ,1 0 : ! R 0 W , 5 0 : I H G T ,1 0 0 : IL E N ,6 0

35

70 :BwsT
ΘΟ ! S E T , 1 0 : :C O L , l O : iR 0 W , 5 0 : iH G T , 1 6 : lL E N ,8
9 0 ! S E T ,2 : ! K E Y , 1 5 : ! S P l , 8 : i S P 2 , 8 : ! S P 3 , 8 : : S P 4 , 8 : ! H G T , 2 : : L E N , 1
1 0 0 !S P N ,8 : ! C 0 L , 3 0 : ! R 0 W , 5 0 : ! P T X R
1 1 0 !S E T ,2 : ! X B N C ,1 ,1
1 2 0 !S E T ,1 0 : IS C N V ,3 X 7 .
1 3 0 I F X7.>6 THEN GOSUB 1 5 0
1 4 0 GOTO 1 1 0
1 5 0 SOUND 1 , 3 0 , 2 5
1 6 0 LO C A TE l l , 2 4 : P R I N T " S p r i t e i s i n t h e c o r n e r " : F O R A =1 TO 1 0 0 0 :N E X T A
1 7 0 LO C A TE 1 1 , 2 4 : P R IN T “
1 8 0 X7.=0
1 9 0 RETURN

Line 10 C lears the screen.
Line 20 Inverts a w indow at least 2 pixels larger than the w indow we are going to use.
Line 30 Defines a sm aller w indow and inverts it, therefore leaving a red border.
Line 40 The co llis ion detection variable X% is defined.
Line 50 Sprite 15 is made into a bounce w indow data sprite.
Line 60 The dim ensions of the w indow are loaded into the appropriate variables.
Line 70 The above data is PUT into sprite 15.
Line 80 The SET is ass igned a number and information. Set 10 will be used to hold the w indow we

are scanning.
Line 90 Set 2 conta ins the information for the bouncing sprite. Notice the key value being assigned

to 15.
Line 100 S ince we are 'XBNC 'ing we first have to PTXR sprite 8.
Line 110 The actual bounce command with frame-flyback synchronisation.
Line 120 The scanning o fthe w indow held in set 10.
Line 130 Tests to see if X% was incremented.
Line 140 Loops back to line 110. Th is program has to be stopped,

using the break key.
Lines 150, 160 and 170 If co llis ion is detected then a short sound is emitted and an appropriate

m essage d isplayed for a short time before being cleared.
Lines 180and 190 X% is reset back to 0 and a return is made back to the main loop.

Pattern Recognition
Occasiona lly , the detection of the presence of data is insufficient and the object needs to be
identified. Not surprising ly th is is a more difficult problem and can be tackled in several ways. If two
identical im ages are XORed together then the result is zero, i.e. all INK 0. In ourfirst example we scan
the whole screen for o ccu rences of upper case letter 'A ' (note that co lour must match as well). When
the letter is found it is converted to lower case. Note the use of a dummy sprite to carry out the
comparison.

5 ’ EXAM PLE OF PATTERN R E C O G N IT IO N
1 0 X7.=0
2 0 I S C LS
3 0 !S P N ,1 2 : FOR 1 = 1 TO 5 0 : !C 0 L ,R N D * 7 0 : IR 0 W ,R N D * 1 7 4 : ! P T IF :N E X T I
4 0 FOR 1=1 TO 2 0 : LO C ATE R N D * 3 8 + l ,R N D * 2 3 + l :P R IN T " A " :N E X T I
5 0 !H G T , 8 : ! L E N , 2
6 0 FOR R = 0 TO 2 0 0 S TE P 8
7 0 FOR C = 0 TO 8 0 S TE P 2
8 0 !C O L ,C : IR O W ,R
9 0 IS P N , 3 3 : ! P T X R : : S P N , 3 4 : ! G T B L : ! S P N , 3 3 : ! P T X R
1 0 0 !S P N ,3 4 : IS C N S ,3 x 7 .
1 1 0 I F X7.=0 THEN GOSUB 1 5 0
1 2 0 X7.=0
1 3 0 N EXT C :N E X T R
1 4 0 END
1 5 0 ! S P N , 3 5 : SOUND l , 4 0 ,1 0 : !P T B L :X 7 .= 0 :R E T U R N

Lines 10 to 50 The detection variable is declared and the screen is cleared. Then data is randomly
pu ta llo ve rthe sc reen ,a sa re the le tte r'A 's .T hen HGT and LEN are se tto theva lues weare
going to use to scan i.e. 1 character.

Lines 55 and 60 The rows are incremented after a whole column has been scanned.
L ines 80 and 90 The CO L and ROW are set up and sprite 33 is then exclusive ly ORed onto the

36

r
Line 100
Line 110
Line 120
Line 130
Line 140
Line 150

charac te rw ea re scann ing,thus ifth e cha rac te r isan ‘A ’ afterXOR ing itonto the screen we
should be left with a blank space, sprite 34 is then filled with this information.
Sprite 34 is scanned. Remember if sprite 34 is empty then the data was an 'A'.
If no data was detected then G O SU B line 150.
X% is reset.
The loop goes back to line 60.
END.
Sprite 35 is a lower case 'a', it is put on the screen and X% is reset and the subroutine
returns.

Bear in mind that we do not necessarily need to compare the whole character because occasiona lly
the object we ’re search ing for conta ins some unique distinguishing feature which we can utilise to
save a full scan. Let's repeat the previous example and use a subsection of the ’A ' character as the
object to be identified. A lso bear in mind that this example is made a lot simpler by the fact that 'A ’ is
always d isplayed on character boundaries.

5 ’ EXAMPLE OF PATTERN R ECO G N ITIO N I I
10 XX=0
2 0 !S P N ,3 4 : !D S P R : !H G T ,3 : ! L E N ,1 : !C S P R
3 0 ! SCLS
4 0 !S P N ,1 2 : FOR 1=1 TO 5 0 : !C 0 L ,R N D * 7 0 : iR 0 W ,R N D * 1 7 4 : !P T IF :N E X T I
5 0 FOR 1=1 TO 2 0 : LOCATE R N D * 3 B + l,R N D * 2 3 + l:P R IN T " A " :N E X T I
6 0 !H G T ,8 : !L E N ,2
7 0 FOR R =0 TO 1 9 2 STEP 8
8 0 FOR C =0 TO 7 8 STEP 2
9 0 IC O L ,C :IR O W ,R
100 ! S P N ,3 3 : ! S C L ,0 : I S R W ,0 : !H G T ,3 : I L E N ,2 : ! P W X R : IS P N , 3 4 : ! G W B L : !S P N ,3 3 : IPWXR
110 :S P N ,3 4 : !S C N S ,3 x 7 .
1 20 IF X7.=0 THEN GOSUB 1 6 0
130 X7.=0
140 NEXT C :N E X T R
150 END
160 !S P N ,3 5 :S 0 U N D l,4 0 ,1 0 : !P T B L :X 7 .= 0 :R E T U R N

L ine10 X% isdec la red .
Line 20 Sprite 34 is deleted and created with height 3 pixels and width 1 byte.
Line 30 The screen is cleared and sprites are random ly pu tove rthe screen, as arethe le tte r'A ’s.
Lines 100and 110 Instead ofgetting the whole character into sp rites33 and 34 only th e top3 pixels

are used, this speeds up the scanning greatly.
The problem is a lso com plicated when the object we’re looking for is ‘in-front o f extraneous data.
When th is is the case we have to mask out all the extraneous data using a log ical ‘AN D ’ with the
object we're testing and then use an XOR to see if the whole object is there. The follow ing example
illustrates this.
5 ’ EXAMPLE QF PATTERN R ECO G N ITIO N I I I
10 ! SCLS
2 0 !S P N ,3 4 : !D S P R : IH G T ,8 : ! L E N ,2 : !C S P R : !C L S S
3 0 FOR N=1 TO 4 0 0 STEP 4 :P L 0 T l,N :D R A W 6 5 0 ,N ,2 :N E X T N
4 0 FOR 1 = 1 TO 2 0 : I R O W ,IN T (R N D *2 4 > * 8 : I C O L ,I N T (R N D < 4 0) t2 : ! Ξ Ρ Ν ,3 3 : ! P T IF : NEXT I
5 0 FOR C =0 TO 7 8 STEP 2
6 0 FOR R =0 TO 1 9 2 STEP 8
7 0 X7.=0
8 0 iC O L ,C :IR O W ,R : ! I N W : ! I N V V
9 0 I S P l , 3 4 : IS P 2 ,3 3 : !S C L ,0 : !S R W ,0 : IG M BL: IS P N ,3 4 : !G TN D : IGMXR: IS C N S ,3X 7.
1 00 I F X7.=0 THEN GOSUB 1 3 0
110 NEXT R :N E X T C
1 20 END
1 3 0 !S P N ,3 5 :S 0 U N D l ,4 O ,1 0 : !P T B L :R E T U R N

L in e10 C le a rs th e sc re en .
Line 20 Creates sprite 34.
Line 30 Draws lines on the screen on which the ‘A ’s will be placed ‘in-front’.
Line 40 Puts 20 ‘A 's random ly on the screen.
Lines 50 and 60 are the FO R -N EXT loops to produce a total scan of the screen.
Line 70 Sets X% to 0.
Line 80 S e tsu p C O La n d RO W and IN VER TS theareao fthescreen being scanned (soyoucan see

what area is being scanned).

37

Line 90 Gets the data at C O L and ROW into memory using G M B L and then this data is G T N D ’ed
and GTXR'ed. Sprite 34 is scanned for data.

Line 100 Checks to see if any data exists, if none, the A has been recognised and the subroutine is
called at line 30.

L ine110 Loopsback .
Line 120 ENDs the program.
Line 130 is a subroutine that produces a BEEP and puts a lower case 'a' to signal that the A has been

recognised.
O ccas iona lly this test will fail because an object contained all the data we were testing for and more.
The next trivial example illustrates this pitfall.

5 ’ EXAMPLE OF SCNS I I
10 !S C LS : ! S P N , 3 4 : !C L S S
2 0 !S P N ,1 2 : FOR 1=1 TO 5 0 : !C O L ,R N D t7 0 : !R O W ,R N D * 1 7 4 : !P T IF :N E X T I
3 0 FOR 1 = 1 TO 1 0 : ! R O W ,IN T (R N D *2 4 > * 8 : ΐ C O L ,IN T (R N D * 4 0) 1 2 : Ϊ S P N ,3 3 : ! P T I F : NEXT I
4 0 FOR N=1 TO 2 0 : LOCATE < R N D S 3 9 > + l,< R N D *2 0 > + l:P R IN T C H R *< 1 4 3 > :N E X T N
5 0 FOR C =0 TO 7 8 STEP 2
6 0 FOR R = 0 TO 1 9 2 STEP 8
7 0 X7.=0
8 0 !C O L ,C :!R O W ,R : ! I N W : ! I N W
9 0 ! S P l , 3 4 : iS P 2 , 3 3 : !S C L ,0 : IS R W ,0 : ! GMBL: !S P N ,3 4 : !G TN D : !GMXR: IS C N S ,3X 7 .
1 0 0 I F X7.=0 THEN GOSUB 1 3 0
1 1 0 NEXT R :N E X T C
1 2 0 END
1 3 0 iS P N ,3 5 :S 0 U N D l ,4 0 ,1 0 : !P T B L :R E T U R N

Line 10
Line 20
Line 30
Line 40

Lines 50
Line 70
Line 80
Line 90
Line 100
Line 110
Line 120
Line 130

C lears the screen.
Puts 50 'car' sprites randomly on the screen.
Puts 10 'A ’s on the screen.
Puts 20 random yellow b locks on the screen. Th is b lock contains all the neccesary data we
are testing for. Hence the scan routine is tricked into putting a lower case ‘a ’,
and 60 are the FO R -N EXT loops that calcu late the ROW and C O L values.
Sets X% to 0.
Sets ROW and CO L and inverts the part of the screen currently being examined.
S can s for an 'A ’.
If an 'A ’, or in this exam ple the yellow block, exists then the subroutine at line 130 is called.
Loops back.
ENDs the program.
is the subroutine that registers that the A has been recognised.

Note that if the object we're testing for is 'behind' data we cannot test for it without using some very
elaborate schem e dedicated to the specific task.
The pattern recognition methods we have considered so far might be referred to as ‘exact’ methods.
Th is m eans to say that if two objects are XORed together with a zero result then they are definitely
identical. W e ’re now going to look at some ’approxim ate’ methods which are relatively qu ick and
sim ple to implement but are indicative rather than conclus ive and should therefore be used with a
certain amount of trepidation. W e'll now introduce three new commands:
SUMV,@V1 Th is command will produce the arithmetic sum of all the data in the screen

w indow defined by the four variabales COL, ROW, LEN and HGT. The result is
left in the BASIC integer variable
V1.

SUMS,@V1 Th is comm and will produce the sum of all the data in the sprite whose number is
held in SPN and leave the result in the BASIC integer variable V1 .

SUMP,@V1 Th is command will produce the sum of all the data in the sprite w indow defined
by SPN , ROW, COL, HGT and LEN. The result is left in the BASIC integer variable
V1.

There are a few points to note concern ing the use of this command.
1. The result is to be stored in a 16 bit variab le so if it exceeds 65536 it w ill begin counting again

from 0. In other words, the result is M OD (65536). Th is means that if the true sum were 65538 it
would leave 2 as the result. For th is reason it is poss ib le for two d istinct objects to be
indescernable.

38

ψ
2. A s well as the 'ambiguity' introduced by 1. a further limitation stems from the fact that

re-ordering the data in the object does not affect the sum. For this reason, two objects may
appear to be totally d issim ilar and produce exactly the same sum. The following trans­
formations can be carried out on an object without affecting the sum of its data:

S c ro lls (with wrap) vertically, sc ro lls (with wrap) left or right by 1 or 2 whole bytes and
vertical mirroring.

It is relatively easy, however, to design d istinct objects with differing sum s and the chance of two
unconnected objects having the same 16 bit sum are remote. More importantly, it is easy to check for
an 'ambiguity' and this should be standard practice.
The follow ing exam ples illustrate the use and some of the pitfalls of these commands:

5 ’ EXAMPLE OF SUMS AND SUMV
to :s c LS
2 0 S X = IN T (R N D * 4)+ 1 7
3 0 fC 0 L , 0 : !R 0 W ,0 : ! S P N , S X : !P T B L
4 0 T Z = 0
5 0 ! H G T ,2 5 s i L E N , 8 : I SUMV, 3T7.
6 0 FOR N = 17 TO 2 0
7 0 ! SP N , N : ! SUMS, 3S7.
8 0 IF S7.=T7. THEN !C 0 L , 1 0 : !P T B L
9 0 NEXT N
lO O LOCATE 1 0 ,1 0

Line 10 C lears the screen.
Line 20 P icks a sprite from 4 at random.
Line 30 Puts that sprite at the top left of the screen.
Line 40 Declares the variable T%.
Line 50 S can s a w indow around the sprite using SU M V and stores the result in T%.
Lines 60 to 90 com pare the sum values of sprites 17 to 20 with the value attained in line 50. If a match

is found that sprite is placed to the right of the original sprite.
L ine100 M o ves th e cu rso rd o w n .

The exam ple below is exactly the same as the one above except the sprite on the screen is FIPVed
before being scanned. SU M V is still able to recognise it as a non-FIPVed sprite image.

5 ’ EXAMPLE OF SUMS AND SUMV I I
10 !SCLS
20 S X = IN T (R N D t4)+ 1 7
30 ! COL, 0 : ! ROW, 0 : ! SPN,S7.: ! PTBL
40 τ κ = ο
5 0 !H G T ,2 5 : !L E N ,8 : ! F IP V : !SUMV,3T7.
60 FOR N=17 TO 20
7 0 !S P N ,N : I SUMS, 3S7.
80 I F S7.=T7. THEN !C O L ,1 0 : !P T B L
9 0 NEXT N
100 LOCATE 1 0 , 1 0

Quite often we require to test whether an object be longsto a set of possib le objects. We can of course
do this by com paring the result in V1 returned by the SU M com m ands with a pre-defined array of
candidates, but s ince th is exerc ise involves executing some relatively slow BASIC and since it is so
often required, we have extended the SUM com m ands to deal with th is problem at machine code
speeds. A s well as speeding up your programs, this approach a lso com pacts it considerably. The
syntax is as follows:

S U M V , e 1 , e 2 , . . . e n , 3 V 1
S U M S , e 1 , e 2 , . . . e n , 3 V 1
S U M P , e 1 , e 2 , . . . e n , 3 V l

The execution of the comm and is very sim ilar to the previously described SUM with one parameter,
but instead of the result being p laced in V1, the list of expressions before @V1 are tested against the
result for a match. If no match is found V1 is assigned zero. If a match is found then the position in the
list of the first expression to match the result is assigned to V1. The following exam ples illustrate the
use of these commands.

39

5 ’ EXAMPLE OF SUMS AND SUMV I I I
10 i SCLS
2 0 S177.=0: !SPN, 1 7 : !SUMS,3S177.
3 0 S 1 8 X = 0 : ! SPN, 18: i SUMS, SS187.
4 0 S197.=0: !5P N , 19 : !SUMS,S>S197.
5 0 S 2 0 X = 0 : ! SPN, 2 0 : ! SUMS, 3S207.
6 0 S X = IN T (R N D t 4) + 1 7
7 0 ! C 0 L ,0 : ! R O W ,0 : ! S P N ,S X : ! P T B L
8 0 T7.=0
9 0 IH G T ,2 5 : ! L E N ,8 : ! SUMV, S 177., S 187., S 197 .,S 2 0 X , 0T7.
100 ! COL, 10: !SPN, 16+T7.: !PTBL
l l O LOCATE 1 0 , 1 0

Line 10 C lears the screen.
Lines 20 to 50 Store the sums of sprite data in appropriate variables.
Line 60 P icks a random sprite out of 4 possib le choices.
Line 70 Puts that sprite on the screen.
Line 80 Declares the variable T%.
Line 90 S can s th e w indow using SU M V and stores in T% which ofthe 4 values has been matched

(T% will return a 0 if no match is found).
Line 100 Pu ts the matched sprite (16 + T%) on the screen.
T h iscon c lu de sth e section on co llis ion detection and pattern recognition. These are fairly advanced
programming techniques and will probably require a fair amount of practice to gain fam iliarisation.
We have given some exam ples of the uses these com m ands can be put to but with some thought it
should be c lear that much more sophisticated schem es can be developed with practice.

High Resolution Movement
There are a number of algorithm s availab le for storing and 'PUTting ' sprites onto the screen. The
fastest methods suffer from the lim itations of 'byte resolution'. Th is means that the sm allest step a
sprite can take in the horizontal direction is 1 byte (4 p ixe ls in 4 co lour mode and 2 pixels in 16 co lour
mode). Th is can be overcom e by designing sprites in 'intermediate' orientations and sequentially
p lacing them in between increm ents of COL. In the follow ing example we set up a copy of sprite 17 in
sprite 18, scro ll it into an intermediate position and then sequentially 'PUT ' it, incrementing C O L every
2 'PUT's.

5 ’ EXAMPLE OF HIRESOLUTION MOVEMENT
10 ISCLS
2 0 ! S P N , 1 7 : ! C 0 L , 0 : ! R 0 W , 0 : ! P T B L
3 0 I S P N , 1 8 : ! D S P R : ! H 6 T , 2 0 : ! L E N , 8 : ! C S P R : I G T B L : I S S R 1
4 0 > SCLS
5 0 FOR 1=0 TO 8 0
6 0 ! C O L , I
7 0 I S P N , 1 7 : !PTBL
8 0 ! C O L , I : ! S P N ,1 8 : !PTBL
9 0 NEXT i

L in e10 T h e sc re e n is c le a re d .
L in e20 S p r ite 1 7 is p u to n th e s c re e n .
Line 30 Sprite 18 becom es a copy of sprite 17 (using GTBL) then sprite 18 is scro lled right by 1

pixel.
Line 40 The screen is c leared again.
L ines 50 to 90 Sprites 17 and 18 are put one after another every loop.
This is all very well but we can ’t use this technique with the 'M O VE ' comm ands because the
X-increm ent has to be a constant. In fact the same result can be achieved by putting Laser BASIC into
h i-reso lu tion mode. The comm and that does this is CLHI (CLLO returns Laser BASIC to normal
resolution mode).

In high resolution mode the screen is treated as being 160 co lum ns wide. The value in C O L isd iv id ed
by two and if there 's a remainder (i.e. C O L ho lds an 'odd' as opposed to an ‘even ’ value) then 1 is
added to the sprite number. So we can move sprite X ac ro ss the screen with 1 /2 byte resolution (2
p ixe ls jn 4 co lour mode, 1 pixel in 16 co lour mode) by making sprite X+1 contain the same image as
sprite X but offset toward the right by 1/2 byte. In fact, there is a command which does this - HRSP.

40

The only variab le used by H RSP is SPN. What HRSP actually does is to create a second sprite with
sprite number one greater than that in SPN (an error is given if this sprite number has already been
allocated), cop ie s the sprite SPN into sprite SPN+1 and then scro lls sprite SPN+1 to the right by 1 /2 a
byte. In the follow ing exam ples we show how to use HRSP, CLHI and CLLO with the MOVE
commands.
5 ’ EXAMPLE OF HRSP
10 !S C LS
2 0 ! C LH I
3 0 !S P N ,1 8 : !D S P R
4 0 ! SPN , 1 7 : ! HRSP
5 0 ! S P N ,1 7 : !S P 1 ,1 7 : ! S P 2 , 1 7 : ! S P 3 , 1 7 : IS P 4 ,1 7 : ! H G T , 0 : ! L E N ,1 : !C 0 L , - 2 0 : IR 0 W ,8 0
6 0 !X M 0 V ,2 3 0 ,1
7 0 GOTO 6 0

Line 10 C lears the screen.
Line 20 Sets the software into HIRES MODE.
L in e30 D e le te s th eo ld sp r ite 1 8 .
Line 40 Executes H RSP on sprite 17.
Line 50 Sets up the parameters for | XMOV.
Line 60 Exc lu s ive-O R 's sprite 17 onto the screen.
Line 70 XM O V 's the sprite.
Line 80 Loops to line 70.
Itis important to note that only the 'GT', 'PT', 'GW ', ‘PW ' and 'M O VE ' comm ands will be affected by the
use of CLHI. Screen w indow s utilised by all other com m ands still treatthe screen as 80 column wide
regardless. The follow ing example illustrates this.
5 ’ EXAMPLE OF C L H I
10 !S C LS
2 0 IC L H I
3 0 ! S E T ,1 : ! S P l , 1 7 : ! S P 2 , 1 7 : ! S P 3 , 1 7 : ! S P 4 , 1 7 : I H G T , 0 : ! L E N , 1
4 0 ! S P N , 1 7 : I C 0 L , - 2 0 : ,'RQW, 1 8 0 : !P TX R
5 0 FOR X=1 TO 1 60
6 0 Ϊ S E T ,1 : ! X M O V ,1 ,1
7 p !S E T ,2 : !C 0 L ,R N D 4 1 6 0 : IR 0 W ,R N D 4 1 3 5 : IH G T ,R N D * 6 0 : IL E N ,R N D * 3 0 : ! IK l ,R N D * 4 : !S T C V
8 0 NEXT X
VO ! CLLO

Line 10 C lears the screen.
Line 20 Sets the hardware into HIRES MODE.
Line 30 Sets up the parameters for | XMOV.
Line 40 Exc lu s ive-O R 's sprite 17 onto the screen.
Line 50 is a loop.
Line 60 XM O Ves the sprite a cc ro ss the screen.
Line 70 Creates a random w indow of a random INK value using STCV.
Line 80 Loops to line 50.

Background Execution of Laser BASIC Commands
One of the most powerful features of Locomotive BASIC is its ability to execute subroutines under
interrupt using the EVERY and AFTER commands. Although these will prove extremely useful in
games w riting theydo sufferfrom one limitation. BAS ICdoes notexecute its subroutine the instan tit
receives the appropriate interrupt, instead it com pletes execution of the current BASIC command.
This in troduces an element ofuncerta inty as to the whereabouts ofthe 'dot' which scans the screen
50 times a second and builds up the picture you see on the monitor. Th is slight random ness can
cause flicke r.To get around this problem, Laser BASIC has its own interrupt mechanism which will
execute the instant the interrupt is received. Th is type of execution is referred to as background
execution because routines running in this way will continue to run whatever e lse the machine is
doing. You can even type in your next program with routines merrily running in background.
Background program s are automatically terminated by GSPR , M SPR and PS PR but M UST be
terminated before access ing tape or d isk from locomotive BASIC. There are 3 comm ands associated
with background execution - ISET, IRUN and lEND.

ISET,@A$
This comm and te lls Laser BASIC which extended com m andsare to be executed in background and
which S E T s of variab les are to be used by each command. The information is passed in a stnn^a nd _
has the follow ing format:

"command,set,command,set....#" 41

In fact there are no spaces or other delimeters within the string and the sets are represented by the
letters Ά ’ to 'P'. A ll characters M UST be typed in upper case. If, for example, we wanted to scro ll a
w indow defined by SET 0 and move a sprite within the parameters in SET 10, we would use the
following:

A$ = "WVR 1 AXM0VK# " :|lSET,3A$
Laser BASIC now knows what will be executed but we still haven’t set the program running - to do this
we use the IRUN command.

IRUN,e1
Th is is sim ilar to locomotive BASIC ’s EVERY command. In this case, however, only one parameter is
required, a BASIC exp ress ions which sets the frequency of execution. The expression can have any
value from 0 to 65535 and sets the number of interrupts which will be allowed in between success ive
executions. A value of 0 means that execution will o ccu r on every interrupt, a value of 1 m eansevery
other interrupt and so on. There are a few points to note.
1. Laser BASIC acknow ledges an interrupt every time frame-flyback o ccu rs (which is every 50th

of a second) so the maximum execution rate is 50 times a second (corresponding to IRUN,0).
2. If you se lect an execution rate of 0 (IRUN,0) and the background routine requires more that a

50th of a second to execute then control will not return from the background routine. Whilst
this is often the desired effect, the only way to exit is to press the ESC key.

3. If you se lect an execution rate of 1 or more then the interval of a 50th of a second or more w il l '
a lw ays be allowed between subsequent executions regard less of the time taken to execute
the background routine.

4. If a Laser BASIC error (displayed within paired asterisks) o ccu rs in either the foreground or the
background program then the background program is terminated. P ress ing the “ ESC " key
during the execution of the background program will a lso cause it to terminate.

IEND
Th is command will terminate execution of a background program. Neither ISET nor IRUN should be
executed while a background program is running.

Background Commands
Not all Laser BASIC com m ands can be executed in background. None of the com m ands which
require fo llow ing parameters can be executed in background and those com m ands which have
optional fo llow ing parameters can only be executed without their optional parameters. The latter
does not normally cause any difficulty and co llis ion detection is implemented by using tracking
sprites which are described in a later section. Com m ands which can be executed under interrupt are
detailed under ‘C LA SS OPTIONS ’.

SOUND
Laser BASIC has only one command concerned with sound effects and music; this command is
PLAY. A s we shall see however, there are an additional 20 ‘instructions’ which are used with the
PLAY comm and and correspond to the fac ilities offered by the m achines operating system. Sound is
dealt with in more or le ss the same way as tracking sprites, ‘tunes' are stored in sprites. There are 20
control codes, and each code may be followed by one or more ‘data’ bytes. W ithout doubt, the best
way to get to g rips with sound is to use the sound generator program which is included in this
package.

The Sound Generator Program
To load and RUN the sound program:
Load Laser BASIC then load "SN D G EN " using:
Tape: Wind the tape to the start of the sound generator and type RU N” (see tape map).
Disk: ln se rtd isk a n d typ e R U N "S N D G E N
A menu will appear on the screen. We will now deal with each option in turn.
Note: Ensure the keyboard is set to upper case before RUNning.

(If not press C A P S SHIFT).

42

Option 1 - ENTER SOUND PROGRAM
To se lect th is option, type 'T 'fo llo w e d by ENTER. You will first be prompted with "E N T ER T A R G E T
SPR ITE” . Th is should be any number in the range 1 to 255 (a range error will occu r otherwise). If the
sp ritea lreadyex iststhen you aregiven theoption to useit. lfyou e lectto useit(byh itting "Y")then you
can begin program entry. If you e lect not to use it (by hitting "N") then you are returned to the “ ENTER
TAR G ET SPRITE" prompt. If the sprite didn't exist then you are given the option "CR EA TE IT (Y/N)". If
you hit "N " then you are returned to the “ENTER TAR G ET SPRITE" prompt. If, however, you hit “Y",
then you are asked to enter the sprite d im ensions HGT and LEN. Be generous - if you create a sprite
that is much larger than your needsthen you can a lw ays 'crunch ' it at some later stage. If its too small
then you are stuck! If you try to create a sprite that requires more memory than is availab le then
"INSUFFICIENT M EM O R Y " will appear and you are invited to re-enter HGT and LEN. The amount of
memory ava ilab le for the program will then be HGTxLEN -4. The ‘c runch ing ’ p rocess itself requires
memory so don ’t be 'over-generous'!
Once the target sprite is set up you are ready to begin program entry. You will be prompted with
“ENTER INSTRUCTION”. To enter an instruction, type it in and then hit ENTER. There now fo llows a
list of legal instruction and details of their requirements. Before going into the instructions
themselves, it is worth mentioning that the m nem onics for each instruction are a little long winded
and once you are fam iliar with them you may w ish to truncate them. The m nem onics are listed in the
data statements in lines 1000 to 1040 of the sound generator program. Don’t change the order of the
instructions, but feel free to edit them and make a custom ised copy. The LIST tune command will a lso
recognise the new instruction names. Let's now look at the instructions themselves.

SOUND”

Almost all sound programs will contain the ‘SO U N D ’ or ‘W AIT-SOUND ’ instruction. It is normally
entered as the first instruction of the program, so that the ‘C A LL ’ instructions can be used (to save
program space). If the first instruction is not a ‘SO U N D ’ or 'W AIT-SOUND ' and any of the ‘C A L L ’
instructionsare executed then " IL LE G A LT R A C K E R C O D E" will be generated at run-time. In factthe
'SOUND ' comm and is not often used (see 'WAIT-SOUND') because if itfa ils to add a ‘SO U N D ’ tothe
queuethen execution con tinuesatthe next instruction. I fa ’tune’ is being entered then this is seldom
desirab le because the note will be lost. The ‘SO U N D ’ and ‘WAIT-SO UND ' com m ands will issue the
following prompts:
"CH AN N EL STATU S"
“CH AN N EL A (Y/N)"

“CH AN N EL B (Y/N)"

"CH AN N EL C (Y/N)"

"REND EZVO U S WITH A"

“REN D EZVO U S WITH B"

"REN D EZVO U S WITH C"

is first displayed, followed by:
If you w ish the sound to be issued to channel A, type "Y",
e lse type “N".

If you w ish the sound to be issued to channel B as well as, or
instead of, channel A, type "Y", e lse type “N".
If you w ish the sound to be issued to channel C as well as, or
instead of, channe ls A and/o r B, type “Y", e lse type "N".
If you w ish the sound to rendezvous with a sound on
channel A, type "Y", e lse type "N ”.

If you w ish the sound to rendezvous with a sound on
channel B, type “Y", e lse type “N”.
If you w ish the sound to rendezvous with a sound on
channel C, type “Y", e lse type "N ”.

“HOLD (Y/N)”

FLUSH (Y/N)"

"ENTER AM PLITUDE
EN VELO PE N U M B ER ”

If you w ish the sound to wait at the head ofthe queue until it
is specifica lly released, type “Y ”, e lse type "N".
If you w ish the sound to flush out all the other sounds in the
queue before it type “Y", e lse type "N".
You should enter a number in the range 0 to 15 which
will se lect the amplitude envelope to be used by the sound.
T yp ing0w ill cau se thevo lum eto rem ainconstantth rough-
outthe sound, lfyou se lectan envelope number in the range
1 to 15 then you will need to set it up using "A M P -E N V "
before executing the sound (or set it up from BASIC
remembering that “ RUN" will destroy it).

43

Th is is a number in the range 1 to 15 and se lects the
tone envelope which should be used. Again the envelope
will need to be set up before execution using “TO NE-EN V"
(or set up from BASIC and avoiding "RU N ”).
Th is is a number in the range 0 to 4095 and sets the 'PITCH '
of the note (which may be altered by the tone envelope). A
high value cau ses a low note and a low value causes a high
note. The tone periods which correspond to actual 'notes’
are g iven in the BASIC m anual a ccom pany ing your
machine.
Th is is a number in the range 0 to 31. A value of zero is
generally used for 'tunes' and corresponds to
‘no-no ise ’.
Th is is a number in the range 0 to 15 and co rrespondsto the
volume that the note will start to play at (this may be altered
by the amplitude envelope). Generally, when an amplitude
envelope is employed this will be zero.
Th is is any number in the range -32768 to 32767. If a
positive value is entered then it is taken as the absolute
duration ofthenote in 100 th so fa second , w hereanegative
value is entered it is taken to be the number of the times that
the amplitude envelope should be repeated.

“WAIT-SOUND”

Th is instruction is identical to "SO U ND " in every respect, exceptthat if the queue is found to be full
then the program counter is left pointing to the current instruction (which cou ldn ’t be executed
because the queue was full) and control returns from the PLAY command. The parameters are
entered in the manner previously described for “SOUND". "W AIT-SOUND" is almost a lways used
where 'tunes' are concerned.

“ RESET”
Th is instruction has no parameters, so it issues no prompts. The effect of 'RESET ' is to c lear all sound
queues and term inate any sounds currently being executed. It is normally the first instruction to be
executed by most tunes.

“ RELEASE”
This a llow s individually 'held' sounds to be RELEASEd. There are three prompts:
“CH A N N EL A (Y/N)" If you w ish to re lease the sound held in channel A type “Y",

e lse type “N".

"C H A N N EL B (Y/N)" If you w ish to re lease the sound held in channe l B, as well
as, or instead of, channel A, type "Y", e lse type “N".

“CH A N N EL C (Y/N)" If you w ish to re lease the sound held in channel C, a s well
as, or instead of, channel A and/o r channel B, type “Y", e lse
type “N".

“ ENTER TONE
EN VELO PE NU M BER"

“ENTER TONE PERIOD"

“ENTER NOISE PERIOD"

"ENTER INITIAL VO LU M E"

“ENTER DURATION"

“ HOLD”
Hold has no parameters and so there are no prompts. The effect is to halt all sounds immediately
without flushing the queues, so that they can be re-started by 'CONTINUE'.

“ CONTINUE”
Again, th is instruction has no parameters and issue s no prompts. Its effect is to re-start all sounds
which were frozen by 'HOLD'.

“AMP-ENV”
Th is instruction has a variab le number of parameters (dependant upon the number of sections in the
envelope) and envelopes can be hardware or software (see your BASIC manual for full details). The
follow ing prompts are issued:

44

“ENTER AM PLITUDE

"N UM BER OF SECTIONS"

“SO FTW ARE EN VELO PE

"ENTER ST EP COUNT"

“ENTER ST EP SIZE"

"ENTER PAU SE TIME”

Th is should be a number in the range 1 to 15 and se lects
EN V ELO PE N U M B ER "theenve lope which is to bedefined.
Th is should be a number in the range 1 to 5 and se lects the
number of section which will need to be entered. Each
section will be prompted as follows:
Typing "Y " will cause the next three prompts, typing (Y/N)"
“N” will cause the two prompts after these, instead.
Th is is a number in the range 1 to 127 (see your BASIC
manual).
Th is is a number in the range 127 to -128 (see your BASIC
manual).
Th is is a number in the range 0 to 255 (see your BASIC
manual).

or if a hardware envelope was selected:

"ENTER EN VELO PE SH APE" Th is is a number in the range 8 to 15 and se lects one of the
eight poss ib le hardware envelopes (see your BASIC
manual).

"ENTER EN V ELO PE PERIOD" Th is is a number in the range 0 to 65535 (see your BASIC
manual).

"TONE-ENV”
This instruction is sim ilar to “A M P -EN V " in that it has a variable number of parameters (dependant on
the number of sections in the envelope) and the follow ing prompts are issued:
“ ENTER TONE

EN VELO PE NU M BER"
“N UM BER OF SECTIONS"

"ENTER ST EP CO UNT"

"ENTER ST EP SIZE"

"ENTER PA U SE TIME"

Th is shou ld be a number in the range 1 to 15 and se lects
the envelope to be defined.
Th is should be a number in the range -5 to 5 (but not 0) and
se lects the number of sections which w ill need to be
entered. A negative value indicates a repeating envelope.
Each section will be prompted as follows:
Th is is a number in the range 0 to 239 (see your BASIC
manual).
Th is is a num ber in the range 127 to -128 (see your BASIC
manual).

Th is is a number in the range 0 to 255 (see your BASIC
manual).

“RE-RUN”
This will cause control to jump to the first instructions in the program (usually a 'SO UN D ' or
'WAIT-SOUND'). Th is instruction is seldom used in ‘tunes’ because the first few instructions are
usually only executed once but a sound effect will normally end with a 'STO P ' followed by a
'RE -R U N ’. 'RE -R U N ' has no parameters.

“JUMP”

This instruction is more flex ib le than 'R E -R U N ' because control can be transferred to any part of the
program. Only one prompt is issued:
“ENTER PC VALU E" The number is in the range 1 to 65535. In order to calcu late

the PC value it is often necessary to enter a dummy value
such as 1, then when the whole program has been entered,
'LIST' (option 5) and note the PC value. The true value can
then be entered using 'DO KE VALUE ' (option 15) or
O V ER W R ITE AT PC ' (option 2). Tunes are normally
terminated by a jump to the first 'CA LL ' in the program, ready
to re-play the 'tune'.

45

RE-LIM”
The 'PLA Y ' comm and itse lf is m ostoften executed underinterrupt(see ISET, IRUN, lEND). Quiteoften
there are a number of other com m ands executing under interrupt and if these are graphics
com m ands they will probably be required to be invoked much more frequently than the ‘P LA Y ’
command. In order to save p rocesso r time the 'PLA Y ' comm and has a limit w hich a llow s it to execute
on se lected interrupts. Ifthe limit is 0 it will execu teon every invocation, if it is 1 then itw ill executeon
everyother invocation, if it is 2 th e n itw illexecu teon every third invocation and soon .'R E -LIM ' allows
you to change th is lim it from within the program and a lso to reset the programs own internal counter.
Ifyou se t'count' to equal 'lim it'then the program will execu teon thevery nextinvocation, otherw ise it
w ill wait until 'count' equa ls 'lim it’ and then execute. After any execution 'count' is automatically
re-set to 0. Th is instruction therefore, has two parameters, entered with one prompt:
"ENTER COUNT,LIMIT" Both numbers should be within the range 0 to 255 and

should be typed with a comma between them before
pressing ENTER.

“ CALL-CHANNEL”
Th is instruction enab les the user to change the channe l status in the 'SOUND ' or 'W AIT-SOUND'
data b lock at the start of the program without executing the 'SOUND ' or ‘W AIT-SOUND '. It is normally
used to change the rendezvous requirements before adding a particular sound to the queue. In order
to make a tune which uses more than one channel, and hence more than one program (hence more
than one sprite!) to start all three channe ls simultaneously, it is common to set the first sound in each
program to rendezvous with the other two. A s soon as this first note is executed however, the three
harm onies seldom continue to rendezvous and so after the first ‘C A LL-TO N E -PER IO D ’ or 'CA LL -
TO NE-D URATIO N ’ the rendezvous’ are normally re-set so that all three channe ls can play
independently. Th is technique will be apparent in the exam ple tunes, supplied with this package.
Th is instruction has only one data byte but each bit is indiv idually sign ificant so there are 8 prompts,
one for each bit. These prompts are d iscu ssed in detail under the previously described “SOUND"
instruction but are listed below for summary.

CH AN N EL A (Y/N)
CH A N N EL B (Y/N)
CH AN N EL C (Y/N)
REN D EZVO U S WITH A (Y/N)
REN D EZVO U S WITH B (Y/N)
REN D EZVO U S WITH C (Y/N)
HOLD (Y/N)
FLUSH (Y/N)

"CALL-AMP-ENV”
Th is instruction enab les the user to change the amplitude envelope number in the SO U N D ’ or
'W AIT -SO UN D ’ data b lock at the start of the program without executing the 'SO U N D ’ or 'WAIT-
SOUND ' instruction itself. Only one prompt is issued, this is for the envelope number - see
'SOUND 7'W AIT -SO UND '.

"CALL-TONE-ENV”
Th is instruction is identical to 'C A LL -A M P -EN V ' except that the tone envelope number is altered -see
'SOUND 7'W AIT -SO UND '.

“ CALL-TONE-PERIOD”
Th is instruction enab les the user to change the tone period (which contro ls the pitch) in the 'SOUND '
or 'W AIT-SOUND ' data b lock at the start of the program. This instruction will then execute the
'SOUND ' or ‘W AIT-SOUND '. Ifthefirst instruction isa ctua lly ‘W AIT-SOUND ’ as opposed to 'SOUND',
and if the queue is full, then the program counter rem ains pointing at the 'CALL-TO N E-PER IO D
instruction and control returns from the 'P LA Y ' command. In practice, this and 'CALL-TO N E -
DURATION' are the instructions usually used to add sounds to the queue and ‘SO U N D ’ and
'W AIT-SOUND ' are rarely executed directly. Only one parameter is prompted for and th is is the
"TO NE-PERIO D " which is a number in the range 0 to 4095.

“CALL-NOISE-PERIOD”

This instruction enab les the user to change the noise period in the 'SOUND ' or 'W AIT-SOUND ' data
b lock at the start of the program without executing the 'SO U N D ’ or 'W AIT-SOUND ' instruction itself.
Only one prompt is issued - see 'SOUND ' or 'WAIT-SOUND'.

“ CALL-INITIAL-AMP”

This instruction enab les the user to change the initial amplitude in the 'SOUND ' or 'W AIT-SOUND'
data b lock at the start of the program without executing the ‘SO U N D ’ or 'W AIT-SO UND ' instruction
jtself. Only one prompt is issued and th is is for the initial amplitude - see 'SO U N D ’ or 'WAIT-SOUND'.

“CALL-DURATION”

This instruction enab les the user to change the duration in the 'SOUND ' or 'WAIT-SOUND ' data block
atthe start of the program without executing the ‘SO U N D ’ or 'W AIT-SOUND ' instruction itself. Only
one prompt is issued and this is for the duration - see 'SOUND ' or 'W AIT-SOUND ’.

“CALL-TONE-DURATION”

This instruction enab les the user to change both the tone period and the duration in one instruction,
thus saving 1 byte(and sometime) when bo tho fthesequantitiesvarys im u ltaneous ly, which isoften
the case. A s in ‘C A LL -T O N E -PE R IO D ’, the new values are substituted into the data b lock and then
the 'SOUND ' or ‘W AIT -SO UND ’ instruction is executed. In the latter case, a full queue will cause the
'P LAY ’ command to be exited with the program counter still pointing atthe 'CALL-TO NE-DURATION '
instruction. There are two prompts, the first is for the duration and the second is for the tone period
-see 'SOUND ' or 'W AIT-SOUND'.

“STOP”

This will cause program execution to cease and the 'PLA Y ' comm and to be exited with the program
counter pointing at the next instruction after the ‘S T O P ’. There are no parameters.

“DONE”

This does not generate any code in the sound program but instead simply term inates program entry
and returns to the menu.

“EXIT”

This is the same as 'DO NE ' except that a byte is placed in the program which tells the'LIST ' command
that the end of the program has been reached. Program execution should never reach th is point in
the program or the system will term inate with ''**ILLEGAL T R A C KER CODE**"

General Notes:

a) If the sprite you have created to contain the tune is full, then the “ END OF S P A C E " m essage
will be issued, do not attempt to enter any more data. The data will have been added.

b) If the data you are trying to put into the sprite w ill not fit, then the "NO RO O M " m essage will be
issued. If th is is the case then the data has not been added.

c) If you incorrectly ENTER any of the instructions then the "ILLEGAL INSTRUCTION" message
will be issued. A ll you need to do isre -en te rthe instruction correctly as no data will have been
written to the sprite.

d> Sim ilarly, if you accidentally enter a parameter which is out of range, the "OUT OF RANGE"
error m essage will be issued and you will be prompted to re-enter the data.

e) If you are running othe rtasks under interrupt, you mayfind that yourtune or sound effect runs
more slowly. Only experimentation will estab lish the adjustment required to the duration but
the pitches (set by the tone periods) will be unaffected.

Option 2 - OVERWRITE AT PC
From time to time you may find, when you 'LIST' your program, that you have incorrectly entered the
program or m issed out an instruction (see Option 4 - INSERT AT PC). If th is is so, you can overwrite
your m istake with this option. Remember to exit this option with a Ό Ο Ν Ε ’ and not an 'EXIT, which will
leave a marker in the m iddle of your program (unless you ’re overwriting the last instruction). This
facility can a lso be used to add instructions to the end of a previously entered program. Th is option
will issue the follow ing prompts:
"EN TER TAR G ET SPR ITE” Th is is a number in the range 1 to 255 and must be a

previously defined sprite. If the sprite does not exist the "NO
SU CH SPRITE" m essage will be displayed and control will
return to the menu. Ifthe sprite did ex istthen the following
prompt will continue:

Y
CaJ
Care should be taken to ensure that listing begins at a legal instruction, or the output may be
meaningless. If an instruction with an illegal code is encountered then "ILLEGAL INSTRUCTION” is
printed and listing con tinuesatthe nextbyte. Listing can be halted and recommenced using “ESC " in
the same way as normal BASIC listings. L istings are issued in the follow ing format:

Column 1
This is the abso lute address (in HEX) of the current instruction. Th is will only change ifthe sprites are
deleted, re located or merged, but bear in mind that it can change and a lw ays check if you ’re unsure.

Column 2
This is the actual byte that is contained in the current address (in decimal).

Column 3
"ENTER PC V ALU E" This should be a value between 1 and 65535, but if it is

higher than the sprite size a llow s then a "NO R O O M ’
m essage will be generated as soon as any attempt is made
to enter an instruction.

Ifthe PC value is within range then instructions are entered in exactly the same way as they were with
O p t io n 1 .S e e 'E X IT and ‘D O N E ’. In orderto estab lish the PC va lu ea tapa rt icu la r partofthe program
see Option 5 - LIST.

Option 3 - DELETE AT PC
Th is option enab les the user to delete a chunk of program and move the remaining program back
over the recovered memory, thus contracting the whole program by the amount removed. Th is option
will issue three prompts:
"EN TER TARGET SPR ITE” The prompt should be responded to in the same way as the

same prompt in the previously described Option 2 -
OVERW RITE AT PC.

“ ENTER PC V ALU E" Again this prompt should be responded to in the same way
as the previously described Option 2 - OVERW RITE AT PC.

Th is is the program counter value (in decimal) and it is th is number that is used by most options to
indicate position in the program.

Column 4
Th is con ta ins e ither the current instruction, or the current data which be longs to the current
instruction.

Option 6 - SAVE TUNES
Th isop tion is provided to enable the user to save the current sprites to tape o rd isk . Only one prompt
is issued:
''E N T E R F ILE N A M E T O The filename should be 8 characters or le ss in length,
SAVE U ND ER" and of these, the last three must be "SPR " to indicate a

sprite file.
Option 7 - LOAD TUNES

This option is provided to enable the user to load a previously saved file of sprites from tape or disk. If
an error o ccu rs during this option (or any other for that matter), simply type “RU N”. Only one prompt is
issued:

"HOW M ANY BYTES" This should be a number in the range 1 to 65535 and is the
number of bytes to be deleted from (and including) the
selected PC value.

“ ENTER FILE TO LOAD-
NOTE:

Again the filename must conform to sprite file format.

Th is option may take several se conds to execute and again the relevant PC value is obtained by
using Option 5 - LIST.

To load the demo tunes (which are saved directly after the sound generator program on the tape
version) use the filename "M USICSPR".

Option 4 - INSERT AT PC
Th is option enab les the user to make space for a chunk of program and moves the rest ofthe program
(including the instructions at the selected PC) upward in memory to make room .Take care to ensure
that sufficient memory is ava ilab le or the end of your program may be lost. Th is option issues the
sam e three prompts as Option 3 - D ELETE AT PC, and they should be responded to in the same
manner. The space allocated is initially filled with zeros.

Option 5 - LIST TUNE
Th is option enab les the user to ‘LIST’ a previously entered sound program to the screen or printer. An
example listing is given at the end of this section. Th is option issues four prompts:
"PRINTER (Y/N)" Typing "Y ” will send output to the printer only, typing "N"

will send output to the screen only.
“ENTER TAR G ET SPRITE" The number of the sprite containing the program to be listed

(see Option 2).
"ENTER PC V ALU E" The PC value at which to start listing (see Option 2).
"N U M BER OF BYTES" The length of code to list. If this is longer than the sprite itself

then listing will automatically terminate at the end of the
sprite. Listing will a lso terminate if a marker (see 'DONE') is
encountered.

Option 8 - MERGE TUNES
This option is provided to enable the user to merge previously saved file of sprites from tape or disk.
Again there is only one prompt which asks for the file to merge.

Option 9 - PLAY TUNES
Th isop tion enab les the user to hear h is handiwork. S ince there are 3 channels, there are up to three
programs which may run together. Often, the rendezvous requirements mean that all three tunes
must be played together. Th is option will play the tunes under interrupt. There are a number of
prompts:

“HOW M ANY TUNES"

“ENTER SPRITE N U M BER "

“ENTER PC TO START AT"

"ENTER LIMIT"

Th is is a number in the range 1 to 3 and specifies how many
tunes are played together, in the case of all 3 example
programs, the tune is held in three sprites, one for each
channel. None of these will play independantly because of
the rendezvous requirements. For each of the sprites there
are 3 prompts:
Th is is a number in the range 1 to 255 and is the number of
the sprite holding the program we wish to play.
Th is is the program counter value at which execution
should start for the particular sprite.
T h is con tro ls the frequency with w h ich execution is
attempted as previously described.

4948

Incidentally, the lines of BASIC which setthe tune running may be useful in your own program and are
at 2960 to 2990.

Playing the Examples
There are 3 exam ple tunes w hich are recorded on the tape directly after the sound generator
program or saved on disK under the filename "M USICSPR". Use option 7 to load the example tunes.
Tune 1 Th is is the m usic which accom pan ies the “C H A SE " screen in the Laser BASIC demo. It

plays on all three channe ls and the data is stored in sprites 90,91 and 92. A ll three are
initialised with a “ PC to start at" of 11 and a “ Limit" of 1.

Tune 2 Th is is the m usic which accom pan ies the "platform game screen" in the Laser BASIC
demo. It also plays on all three channe ls but uses sprites 60,61 and 62. Again all three are
initialised with a “ PC to start at" of 11 and a “ Limit” of 5 or less.

Tune 3 Th is is the m usic which accom pan ies the "hunchback" screen in the Laser BASIC demo.
Aga in all three channe ls are used and th istim e sprites 93,94 and 95 contain the data. As
with tunes 1 and 2 the "P C to start at" is 11 and the "Lim it" 5 or less.

Option 10 - STOP TUNE
This simply stops the tune or sound effect from running under interrupt and returnsto the main menu.
No prompts are issued. Tunes can also be halted by pressing "ESC".

Option 11 - ALTER SPRITE MAX
The sound generator program does not alter the maximum sprite number when it is 'RUN ' and all
sprites currently in memory are preserved. If, however, you w ish to reset the maximum sprite number
then option 11 will do this. Only one prompt is issued which asks f6r the new sprite max. Remember
that any currently existing sprites with numbers greater than the new sprite max will be lost.

Option 12 - CRUNCH TUNE
Th is can be a very useful facility but should be used with caution because of its irreversible nature. As
was previously mentioned, it is advisable to work with sprites that are a lot larger than the anticipated
requirement because m istakes can easily be made when estimating the exact requirement. The only
way to transfer data out of a sprite that has been created too small is to break out of the program and
do it by hand, i.e. find the starting address using ISPR, create a new sprite and then transfer using
P E E K s and PO K Es - not recommended. The sound generator program leaves ample memory for
sprites and there should seldom be a shortage of sprite space un less you are merging a file of
graph ics sprites. Remember thatthe crunching operation itself w ill create a new sprite ofthe required
size, before deleting the old one, and so sufficient memory must be available to allow this. There must
a lso be at least one sprite number which has not been used. If insufficient memory is availab le for the
transferthen “INSUFFICIENT RO O M " is reported, ifa ll sprite numbers have been allocated then “NO
FREE SPR IT E ” is reported. If the first free sprite number found is greater than the sprite max then the
transfer cannot be completed. The operation issues a number of prompts:
"ENTER TARGET SPRITE" Th is is a number in the range 1 to 255 and is the number of

the sprite to be 'crunched'.
"ENTER PC VALU E" Th is is th eva lu eo fth ep rog ram coun tera tthe las tby teused

by the sound program. Be careful - the last instruction may
be 2 or more bytes long and if you are unsure, add a couple
of bytes for safety. In each of the example programs the last
instruction is a 'JU M P ' (3 byte instruction) so we want the
program counter value (column 3 of the listing) at the
'JU M P ' instruction itself, + 2. Th is will point a tthe last byte.

If the 'crunch ' was su ccessfu l then the new height and width are displayed. Pressing any key will
return to the menu. Th is option can take a fair time to execute.

50

Option 13 - CLEAR ALL TUNES
Th is option a llow s the user to c lear all existing sprites from memory and re-set the maximum sprite
number. There are two prompts:
"CLEAR SPR ITES (Y/N)" Th is is provided just in case you have se lected option 13

(unlucky for some!) by mistake. If that is the case then just
type "N " to return to the menu. To continue with the clearing
type "Y " and you will be prompted with:

“ENTER NEW S M A X ” You should now enter the new maximum sprite number
which should be a number in the range 1 to 255.

Option 14 - POKE BYTE
This option should be used with great caution and is really an alternative to Option 2 - OVERW RITE
AT PC. The 'LIST' option can be used to find the absolute address (column 1) you w ish to POKE. Be
sure that this address has not changed since you last checked it. There are two prompts:
“ENTER AD D R ESS TO PO KE" Th is will be a number in the range 1 to 7000 HEX. Remember

that the address given in column 1 of the listing is a HEX
address and therefore requires an ampersand (“&") to be
put in front of it, if it is to be entered as a HEX number.

“ENTER BYTE" Th is is the value you w ish to PO KE into the address. It is
a lw ays a good idea to list the program again after carrying
out th is option to be sure you have not made an error. The
byte must be in the range 0 to 255.

Option 15 - DOKE VALUE
This odd sounding option is the 16 bit equivalent of ‘PO KE BYTE'. There are two prompts:
“ENTER AD D R ESS TO D O KE” Again this is the address to modify. The least significant

byte will go into th is location and the most significant byte
will go into the next location.

"ENTER V ALU E" Th is is the 16 bit value which will be DOKEd at the address
given.This can be in the range -32768 to 65535.

Option 16 - DELETE TUNE
This option simply a llow s you to delete an individual sprite and has only two prompts:
"SPRITE TO D ELETE" Th is should be the number of the sprite to be deleted and

should be in the range 1 to 255 (or the maximum sprite
number).

"D ELETE (Y/N)" Th is is provided so that you can abort if you’ve typed in the
wrong sprite number. To abortju st hit “N”, to proceed and
delete type "Y".

Using Sound in your Programs
Once you have created your tunes/sound effects using the sound generator program it is relatively
simple to incorporate them in your BASIC program. In fact there is only one command related to the
use of sound, but it has two different operations depending on the number of parameters supplied.

PLAY,e1,e2
If the 'P LA Y ' comm and has 2 parameters then its action is as follows. The sprite whose number is
held in the variab le KEY has its program counter set to e1, its count set to zero and its limit set to e2.
No instructions within the sound program are executed.

PLAY
lfthe "P LA Y ” comm and has no parameters then its action is as follows. The program within the sprite
whose number is held in KEY is executed from its current program counter.

51

Ί

Example
Suppose we have a tune which is contained within 3 sprites numbered 50,51 and 58. Suppose each
one is to be executed with a starting PC of 11 (i.e. there is a 'SOUND ' or 'W AIT-SOUND ' instruction at
the beginning ofthe program) and a limit of 5. In orderto setthem running under interrupt using SETs
1, 2 and 4 we would use:
10
20
30
40

SET, 1 :KEY,50:
SET,2 :KEY,51:
SET,4: KEY,58:
ISET,3A$:|IRUN

PLAY,11,5:A$="PLAYB"
PLAY,11,5:A$=A$+"PLAYC"
PLAY,11,5:A$=A$+"PLAYE#
/5

II

General Notes on the Use of Sound
1. The 'RUN ' comm and cau ses a 'RESET ' of the sound chip, so if you are playing a tune under

interrupt then RUNning a program will have unpredictable results.
2. If you are playing a tune then the first instruction should almost invariably be ‘WAIT-SOUND '
3. If you are playing a tune that uses more than one channel, then it is usually best to write the

separate parts of the tune in separate sprites (this avoids continual CALL-CHANNELs).
4. If you are writing a tune in more than one sprite then the first instruction to be executed in the

first sprite (as opposed to the first instruction of the program) should be a 'RESET'. Th is is
normally followed by all the envelope defin itions and then a 'C A LL -CH A N N EL ' (in each sprite)
to ensure that the tunes start together.

5. W here 3 sprites are involved the first note in channel A should rendezvous with B and C, the
first note in chanel B should rendezvous with A and C and the first note in channel C should
rendezvous with A and B. After the execution of the first 'SO UN D ’ or 'W AIT-SOUND ' the
rendezvous requirements normally change.

6. If a tune does not start sim ultaneously on all 3 channe ls then a dummy envelope with zero
volume is normally used to cause the delay whilst still rendezvousing all 3 at the start.

7. W here a tune is to be played repeatedly the last instruction is normally a 'JU M P ' back to the
'C A LL -C H A N N E L ' that sets up the rendezvous with the other harmonies. There is no need to
re-execute the 'RESET ' or envelope definitions.

A typical 3-channel tune may have the follow ing format:

Sprite 1
PC Inst ruct i on
I WAIT-SOUND
II RESET
12 AMP-ENV
30 TONE-ENV
38 CALL-CHANNEL (set up rendezvous wi th B and C)
40 CALL-TONE-DURATION (pLay first note)
45 CALL-CHANNEL (remove rendezvous requirements)
47 CALL-TONE-DURATION (the rest of the tune)

N JUMP ('J UMP' bac k t o ' CALL-CHANNEL 1 at 38)
This would be set up with a PLAY,11,LIMIT

Sprites 2 and 3
These would take the same form as sprite 1 except that they must not contain a 'RESET'. Again they
would be set up to execute from a PC of 11.

If a dummy amplitude envelope of zero volume is to be used to control delayed starts then it would be
inserted before the 'C A LL -C H A N N E L ' (shown at a P C of 38 in sprite 1) and would normally be defined
in sprite 1. In fact there is no reason why all envelope definitions cou ldn ’t be set up in sprite 1.

52

THE PLATFORM GAM E MUSIC

ψ V j - = ^ P * P |
• s

μΓ η • «, —
ikf_ff____b̂# _#i. _̂ _LJ---- ^_J--------0------0--------- ♦ ------

i U f - - m

< v J l r Γ f e Γ Γ - f - =

Λ ϋ ι

^ ---------- ^ — Ξ|

J F - · η

~~| Π Γ Γ Γ , Η Ξ
l-; j * U U j _ J 1-

Λ ^ ί T b* #
g^Ei f I f _ . j - , ^ i =

g

^ # —t_ ̂^^_ p g a p-
J u ^ r '

m — m Μ ■ ^

v j ^ = L ^
__________ ^ ^ ψ- ^ - ______ ^^^ Γ ί>Γ Γ Γ · ρ — : — —

THE HUNCHBACK MUSIC

THE PLATFORM GAME

CHANNEL A

6C55 1 1
6C57 1 3
6C58 0 4
6C59 126 5
6C5B 0 7
6C5C 15 8
6C5D 23 9
6C5F 2 11
6C60 6 12
6C61 1 13
6C62 5 14
6C63 1 15
6C64 0 16
6C65 1 17
6C66 1 18
6C67 0 19
6C68 10 20
6C69 1 21
6C6A 241 22
6C6B 1 23
6C6C 12 24
6C6D 1 25
6C6E 1 26
6C6F 12 27
6C70 255 28
6 C 7 1 1 29
6C72 6 30
6C73 2 31
6C74 5 32
6C75 1 33
6C76 15 34
6C77 1 35
6C78 1 36
6C79 0 37
6C7A 10 38
6C7B 1 39
6C7C 241 40
6C7D 1 41
6C7E 15 42
6C7F 1 43
6C80 1 44
6C81 15 45
6C82 255 46
6C83 1 47
6C84 11 48

6C86 14 50
6C87 126 51
6C89 14 53
6C8A 126 54
6C8C 14 56
6C8D 83 57
6C8F 11 59

6C91 14 61
6C92 83 62
6C94 14 64
6C95 204 65

WAIT-SOUND 6C97 14 67 CALL-TONE-PERIOD
ISSUE ON A 6C98 204 68 TONE PERIOD
AMPLITUDE ENVELOPE= 1 6C9A 14 70 CALL-TONE-PERIOD
TONE ENVELOPE 0 6C9B 83 71 TONE PERIOD
TONE PERIOD 638 6C9D 14 73 CALL-T O N E -PER IOD
NOISE PERIOD 0 6C9E 83 74 TONE PERIOD
IN IT IA L VOLUME 15 6CA0 11 76 CALL-CHANNEL
DURATION 23 ISSUE ON A
RESET RENDEZVOUS WITH B
AMP-ENV RENDEZVOUS WITH C
AMPLITUDE ENVELOPE= 1 6CA2 14 78 C A LL-T O N E -PER IOD
NO OF SECTIONS 5 6CA3 126 79 TONE PERIOD
STEP COUNT 1 6CA5 14 81 CALL-T O N E -PER IOD
STEP S IZ E 0 6CA6 126 82 TONE PERIOD
PAUSE TIME 1 6CA8 14 84 C A LL-T O N E -PER IOD
STEP COUNT 1 6CA9 83 85 TONE PERIOD
STEP S IZ E 0 6CAB 14 87 CALL-TO NE-PERIO D
PAUSE TIME 10 6CAC 83 88 TONE PERIOD
STEP COUNT 1 6CAE 11 90 CALL-CHANNEL
STEP S IZ E 241 ISSUE ON A
PAUSE TIME 1 6CB0 14 92 C A LL-T O N E -PER IOD
STEP COUNT 12 6CB1 204 93 TONE PERIOD
STEP S IZ E 1 6CB3 11 95 CALL-CHANNEL
PAUSE TIME 1 ISSUE ON A
STEP COUNT 12 RENDEZVOUS WITH B
STEP S IZ E 255 RENDEZVOUS WITH C
PAUSE TIME 1 6CB5 14 97 CALL-TONE-PERIOD
AMP-ENV 6CB6 204 98 TONE PERIOD
AMPLITUDE ENVELOPE= 2 6CB8 11 100 CALL-CHANNEL
NO OF SECTIONS 5 ISSUE ON A
STEP COUNT 1 6CBA 14 102 CALL-TONE-PERIOD
STEP S IZE 15 6CBB 83 103 TONE PERIOD
PAUSE TIME 1 6CBD 11 105 CALL-CHANNEL
STEP COUNT 1 ISSUE ON A
STEP S IZ E 0 RENDEZVOUS WITH B
PAUSE TIME 10 RENDEZVOUS WITH C
STEP COUNT 1 6CBF 14 107 CALL-TO NE-PERIO D
STEP S IZ E 241 6CC0 83 108 TONE PERIOD
PAUSE TIME 1 6CC2 14 110 CALL-TONE-PERIOD
STEP COUNT 15 6CC3 126 111 TONE PERIOD
STEP S IZ E 1 6CC5 14 1 13 CALL-TO NE-PERIO D
PAUSE TIME 1 6CC6 126 1 14 TONE PERIOD
STEP COUNT 15 6CC8 14 116 C A LL-T O N E -PER IOD
STEP S IZ E 255 6CC9 83 1 17 TONE PERIOD
PAUSE TIME 1 6CCB 11 1 19 CALL-CHANNEL
CALL-CHANNEL ISSUE ON A
ISSUE ON A 6CCD 14 121 CALL-TONE-PERIOD
RENDEZVOUS WITH A 6CCE 83 122 TONE PERIOD
RENDEZVOUS WITH B 6CD0 14 124 CALL-T O N E -PER IOD
RENDEZVOUS WITH C 6CD1 204 125 TONE PERIOD
CALL-TO NE-PERIO D 6CD3 14 127 CALL-TONE-PERIOD
TONE PERIOD 638 6CD4 204 128 TONE PERIOD
CALL-TO NE-PERIO D 6CD6 14 130 CALL-TONE-PERIOD
TONE PERIOD 638 6CD7 83 131 TONE PERIOD
CALL-T O N E -PER IOD 6CD9 14 133 CALL-TONE-PERIOD
TONE PERIOD 851 6CDA 83 134 TONE PERIOD
CALL-CHANNEL 6CDC 11 136 CALL-CHANNEL
ISSUE ON A ISSUE ON A
CALL-TO NE-PERIO D RENDEZVOUS WITH B
TONE PERIOD 851 RENDEZVOUS WITH C
CALL-TO NE-PERIO D 6CDE 14 138 C A LL-T O N E -PER IOD
TONE PERIOD 716 6CDF 188 139 TONE PERIOD

851

851

638

638

851

851

= 716

= 716

= 851

= 851

= 638

= 638

= 851

= 851

= 716

= 716

= 851

= 851

716

= 956

54

6CE1 14 141 CALL-TONE—P E R IOD 6D34 11 224 CALL-CHANNEL
6CE2 188 142 TONE PERIOD = 956 ISSUE ON A
6CE4 14 144 CALL-TONE—P E R IOD RENDEZVOUS WITH B
6CE5 126 145 TONE PERIOD = 638 RENDEZVOUS WITH C
6CE7 11 147 CALL-CHANNEL 6D36 14 226 C A LL-T O N E -PER IOD

ISSUE ON A 6D37 83 227 TONE PERIOD 851
6CE9 14 149 CALL-TONE—P E R IOD 6D39 14 229 CALL-TONE-PERIOD
6CEA 126 150 TONE PERIOD = 638 6D3A 83 230 TONE PERIOD 851
6CEC 14 152 C ALL-TO N E-PER I OD 6D3C 14 232 CALL-TONE-PERIOD
6CED 24 153 TONE PERIOD = 536 6D3D 56 233 TONE PERIOD 568
6CEF 14 155 CALL-T O N E -PER IOD 6D3F 11 235 CALL-CHANNEL
6CF0 24 156 TONE PERIOD = 536 ISSUE ON A
6CF2 14 158 CALL-TONE-PERIOD 6D41 14 237 CA LL-T O N E -PER IOD
6CF3 126 159 TONE PERIOD = 638 6D42 56 238 TONE PERIOD 568
6CF5 14 161 CALL-T O N E -PER IOD 6D44 14 240 C A LL-T O N E -PER IOD
6CF6 126 162 TONE PERIOD = 638 6D45 222 241 TONE PERIOD 478
6CF8 11 164 CALL-CHANNEL 6D47 14 243 CALL-TO NE-PERIO D

ISSUE ON A 6D48 222 244 TONE PERIOD 478
RENDEZVOUS WITH B 6D4A 14 246 CALL-TO NE-PERIO D
RENDEZVOUS WITH C 6D4B 56 247 TONE PERIOD 568

6CFA 14 166 CALL-TONE-PERIOD 6D4D 14 249 CALL-TO NE-PERIO D
6CFB 188 167 TONE PERIOD = 956 6D4E 56 250 TONE PERIOD 568
6CFD 14 169 CA LL-T O N E -PER IOD 6D50 11 252 CALL-CHANNEL
6CFE 188 170 TONE PERIOD = 956 ISSUE ON A
6D00 14 172 CALL-TONE-PERIOD RENDEZVOUS WITH B
6D01 126 173 TONE PERIOD = 638 RENDEZVOUS WITH C
6D03 14 175 CA LL-TO N E -PER IOD 6D52 14 254 CALL-TONE-PERIOD
6D04 126 176 TONE PERIOD = 638 6D53 188 255 TONE PERIOD 956
6D06 11 178 CALL-CHANNEL 6D55 14 257 CALL-T O N E -PER IOD

ISSUE ON A 6D56 188 258 TONE PERIOD 956
6D08 14 180 CALL-TONE-PERIOD 6D58 14 260 CALL-TONE-PERIOD
6D09 24 181 TONE PERIOD = 536 6D59 126 261 TONE PERIOD 638
6D0B 11 183 CALL-CHANNEL 6D5B 14 263 CALL-TONE-PERIOD

ISSUE ON A 6D5C 126 264 TONE PERIOD 638
RENDEZVOUS WITH B 6D5E 11 266 CALL-CHANNEL
RENDEZVOUS WITH C ISSUE ON A

6D0D 14 185 CALL-T O N E -PER IOD 6D60 14 268 CALL-TO NE-PERIO D
6D0E 24 186 TONE PERIOD = 536 6D61 24 269 TONE PERIOD 536
6D10 11 188 CALL-CHANNEL 6D63 11 271 CALL-CHANNEL

ISSUE ON A ISSUE ON A
6D12 14 190 CALL-T O N E -PER IOD RENDEZVOUS WITH B
6013 126 191 TONE PERIOD = 638 RENDEZVOUS WITH C
6D15 11 193 CALL-CHANNEL 6D65 14 273 CALL-TONE-PERIOD

ISSUE ON A 6D66 24 274 TONE PERIOD 536
RENDEZVOUS WITH B 6D68 11 276 CALL-CHANNEL
RENDEZVOUS WITH C ISSUE ON A

6D17 14 195 CALL-T O N E -PER IOD 6D6A 14 278 CALL-TONE-PERIOD
6D18 126 196 TONE PERIOD = 638 6D6B 126 279 TONE PERIOD 638
6 D lA 14 198 CALL-T O N E -PER IOD 6D6D 11 281 CALL-CHANNEL
6 D lB 126 199 TONE PERIOD = 638 ISSUE ON A
6D lD 14 201 C A LL-T O N E -PER IOD RENDEZVOUS WITH B
6 D lE 126 202 TONE PERIOD = 638 RENDEZVOUS WITH C
6D20 14 204 CALL-TONE-PERIOD 6D6F 14 283 CALL-T O N E -PER IOD
6021 83 205 TONE PERIOD = 851 6D70 126 284 TONE PERIOD 638
6D23 11 207 CALL-CHANNEL 6D72 14 286 C A LL-T O N E -PER IOD

ISSUE ON A 6D73 126 287 TONE PERIOD 638
6D25 14 209 CALL-T O N E -PER IOD 6D75 14 289 CA LL-T O N E -PER IOD
6D26 83 210 TONE PERIOD = 851 6D76 126 290 TONE PERIOD 638
6028 14 212 CALL-T O N E -PER IOD 6D78 14 292 C A LL-T O N E -PER IOD
6D29 204 213 TONE PERIOD = 716 6D79 83 293 TONE PERIOD 851
6D2B 14 215 C A LL-T O N E -PER IOD 6D7B 11 295 CALL-CHANNEL
6D2C 204 216 TONE PERIOD = 716 ISSUE ON A
6D2E 14 218 CALL-TONE-PERIOD 6D7D 14 297 CALL-TONE-PERIOD
6D2F 83 219 TONE PERIOD = 851 6D7E 83 298 TONE PERIOD 851
6D31 14 221 CA LL-T O N E -PER IOD 6D80 14 300 CALL-TONE-PERIOD
6D32 83 222 TONE PERIOD = 851 6D81 204 301 TONE PERIOD 716

55

6D83 14 303 CALL—TONE—P E R IOD 6E72 253 47 TONE PERIOD = 253
6D84 204 304 TONE PERIOD = 716 6E74 14 49 CALL-TONE-PERIOD
6D86 14 306 CALL-TO NE-PERIO D 6E75 213 50 TONE PERIOD = 213
6DB7 83 307 TONE PERIOD = 851 6E77 14 52 CALL-TO NE-PERIO D
6D89 14 309 C A LL-TO N E-PER I OD 6E78 213 53 TONE PERIOD = 213
6D8A 83 310 TONE PERIOD = 851 6E7A 14 55 C A LL-T O N E -PER IOD
6D8C 14 312 C A LL-T O N E -PER IOD 6E7B 190 56 TONE PERIOD = 190
6D8D 126 313 TONE PERIOD = 638 6E7D 14 58 C A LL-T O N E -PER IOD
6D8F 14 315 C A LL-T O N E -PER IOD 6E7E 213 59 TONE PERIOD = 213
6D90 126 316 TONE PERIOD = 638 6E80 14 61 CALL-TO NE-PERIO D
6D92 14 318 CALL-TO NE-PERIO D 6E81 213 62 TONE PERIOD = 213
6D93 83 319 TONE PERIOD = 851 6E83 14 64 C A LL-T O N E -PER IOD
6D95 14 321 C A LL-T O N E -PER IOD 6E84 159 65 TONE PERIOD = 159
6D96 83 322 TONE PERIOD = 851 6E86 14 67 CALL-TO NE-PERIO D
6D98 14 324 CALL-TO NE-PERIO D 6E87 213 68 TONE PERIOD = 213
6D99 204 325 TONE PERIOD = 716 6E89 14 70 CALL-TO NE-PERIO D
6D9B 14 327 C A LL-T O N E -PER IOD 6E8A 159 71 TONE PERIOD = 159
6D9C 204 328 TONE PERIOD = 716 6E8C 14 73 CALL-TO NE-PERIO D
6D9E 14 330 C A LL-T O N E -PER IOD 6E8D 213 74 TONE PERIOD = 213
6D9F 83 331 TONE PERIOD = 851 6E8F 14 76 C A LL-T O N E -PE R IOD
6DA1 14 333 C A LL-T O N E -PER IOD 6E90 28 77 TONE PERIOD = 284
6DA2 83 334 TONE PERIOD = 851 6E92 14 79 C A LL-T O N E -PE R IOD
6DA4 9 336 JUMP 6E93 28 80 TONE PERIOD = 284
6DA5 48 337 PC ADDRESS = 48 6E95 14 82 CALL-TO NE-PERIO D

6E96 253 83 TONE PERIOD = 253
6E98 14 85 CALL-TO NE-PERIO D

CHANNEL B 6E99 190 86 TONE PERIOD = 190
6E9B 14 88 CALL-TONE-PERIOD
6E9C 190 89 TONE PERIOD = 190

6E44 1 1 WAIT-SOUND 6E9E 14 91 CALL-TO NE-PERIO D
ISSUE ON B 6E9F 169 92 TONE PERIOD = 169
RENDEZVOUS WITH A 6EA1 14 94 CALL-TO NE-PERIO D
RENDEZVOUS WITH C 6EA2 213 95 TONE PERIOD = 213

6E46 2 3 AMPLITUDE ENVELOPE= 2 6EA4 14 97 CALL-TONE-PERIOD
6E47 0 4 TONE ENVELOPE = 0 6EA5 213 98 TONE PERIOD = 213
6E48 213 5 TONE PERIOD = 213 6EA7 14 100 CALL-TO NE-PERIO D
6E4A 0 7 NOISE PERIOD = 0 6EA8 159 101 TONE PERIOD = 159
6E4B 0 8 IN IT IA L VOLUME = 0 6EAA 14 103 C A LL-T O N E -PE R IOD
6E4C 23 9 DURATION = 23 6EAB 213 104 TONE PERIOD ■ 213
6E4E 11 11 CALL-CHANNEL 6EAD 14 106 CALL-TO NE-PERIO D

ISSUE ON B 6EAE 159 107 TONE PERIOD = 159
RENDEZVOUS WITH A 6EB0 14 109 C A LL-T O N E -PE R IOD
RENDEZVOUS WITH C 6EB1 213 110 TONE PERIOD = 213

6E50 14 13 C A LL-T O N E -PER IOD 6EB3 14 112 C A LL-T O N E -PE R IOD
6E51 28 14 TONE PERIOD = 284 6EB4 28 113 TONE PERIOD = 284
6E53 14 16 C A LL-T O N E -PER IOD 6EB6 14 115 C A LL-T O N E -PER IOD
6E54 28 17 TONE PERIOD m 284 6EB7 28 116 TONE PERIOD = 284
6E56 14 19 CALL-T O N E -PER IOD 6EB9 14 118 C A LL-T O N E -PER IOD
6E57 253 20 TONE PERIOD = 253 6EBA 253 119 TONE PERIOD = 253
6E59 14 22 C A LL-T O N E -PER IOD 6EBC 9 121 JUMP
6E5A 28 23 TONE PERIOD = 284 6EBD 11 122 PC ADDRESS = 11
6E5C 14 25 C A LL-T O N E -PER IOD
6E5D 28 26 TONE PERIOD ■ 284
6E5F 14 28 C A LL-T O N E -PE R IOD CHANNEL C
6E60 213 29 TONE PERIOD = 213
6E62 14 31 C A LL-T O N E -PE R IOD
6E63 28 32 TONE PERIOD = 284 6DAC 1 1 WAIT-SOUND
6E65 14 34 C A LL-T O N E -PER IOD ISSUE ON C
6E66 213 35 TONE PERIOD = 213 RENDEZVOUS WITH A
6E68 14 37 C A LL-T O N E -PE R IOD RENDEZVOUS WITH B
6E69 213 38 TONE PERIOD = 213 6DAE 2 3 AMPLITUDE ENVELOPE= 2
6E6B 14 40 C A LL-T O N E -PE R IOD 6DAF 0 4 TONE ENVELOPE = 0
6E6C 28 41 TONE PERIOD = 284 6DB0 134 5 TONE PERIOD = 134
6E6E 14 43 C A LL-T O N E -PER IOD 6DB2 0 7 NOISE PERIOD = 0
6E6F 28 44 TONE PERIOD = 284 6DB3 0 8 IN IT IA L VOLUME = 0
6E71 14 46 CALL-TO N E-R ER IOD 6DB4 23 9 DURATION - 23

56

11

14
179
14
179
15
1
14
159
15
0
14
179
14
179
14
213
14
179
14
213
14
213
14
179
14
179
15
1
14
159
15
0
14
134
14
134
15
1
14
119
15
0
14
134
14
134
14
159
14
134
14
159
14
213
14
179
14
179
15
1
14
159

11 CALL-CHANNEL
ISSUE ON C
RENDEZVOUS WITH A
RENDEZVOUS WITH B

13 CALL-TO NE-PERIO D
14 TONE PERIOD
16 CALL-TO NE-PERIO D
17 TONE PERIOD
19 CALL-N O ISE -PER IO D
20 NOISE PERIOD
21 CALL-TO NE-PERIO D
22 TONE PERIOD
24 C ALL—NC. S E -P E R I OD
25 NOISE PERIOD
26 CALL-TO NE-PERIO D
27 TONE PERIOD
29 CALL-TO NE-PERIO D
30 TONE PERIOD
32 CALL-TONE-PERIOD
33 TONE PERIOD
35 CALL-TO NE-PERIO D
36 TONE PERIOD
38 CALL-TO NE-PERIO D
39 TONE PERIOD
41 CALL-TONE-PERIOD
42 TONE PERIOD
44 CALL-TO NE-PERIO D
45 TONE PERIOD
47 CALL-TONE-PERIOD
48 TONE PERIOD
50 CALL-N O ISE-PER IO D
51 NOISE PERIOD
52 CALL-TO NE-PERIO D
53 TONE PERIOD
55 CALL-N O ISE -PER IO D
56 NOISE PERIOD
57 CALL-TO NE-PERIO D
58 TONE PERIOD
60 CALL-TO NE-PERIO D
61 TONE PERIOD
63 CALL-N O ISE -PER IO D
64 NOISE PERIOD
65 CALL-TONE-PERIOD
66 TONE PERIOD
68 CALL-N O ISE -PER IO D
69 NOISE PERIOD
70 CALL-TONE-PERIOD
71 TONE PERIOD
73 CALL-TONE-PERIOD
74 TONE PERIOD
76 CALL-TONE-PERIOD
77 TONE PERIOD
79 CALL-TO NE-PERIO D
80 TONE PERIOD
82 CALL-TONE-PERIOD
83 TONE PERIOD
85 CALL-TO NE-PERIO D
86 TONE PERIOD
88 CALL-TO NE-PERIO D
89 TONE PERIOD
91 CALL-TO NE-PERIO D
92 TONE PERIOD
94 CALL-N O ISE -PER IO D
95 NOISE PERIOD
96 CALL-TO NE-PERIO D
07 TONE PERIOD

6E0E 15
6E0F 0
6E10 14
6 E 1 1 119
6E13 14

s 179 6E14 119
6E16 15

= 179 6E17 1
6E18 14

= 1 6E19 213
6 E lB 15

= 159 6 E lC 0
6 E lD 14

s 0 6 E lE 134
6E20 14

m 179 6E21 134
6E23 14

m 179 6E24 159
6E26 14

= 213 6E27 134
6E29 14

= 179 6E2A 159
6E2C 14

m 213 6E2D 213
6E2F 14

= 213 6E30 179
6E32 14

m 179 6E33 179
6E35 15

= 179 6E36 1
6E37 14

m 1 6E38 159
6E3A 15

m 159 6E3B 0
6E3C 9

= 0 6E3D 11

= 134

= 134

= 1

= 119

= 0

= 134

= 134

= 159

= 134

= 159

= 213

= 179

» 179

= 1
s 159

99 CALL-N O ISE-PER IO D
100 NOISE PERIOD
101 CALL-TO NE-PERIO D
102 TONE PERIOD
104 CALL-TO NE-PERIO D
105 TONE PERIOD
107 CALL-N O ISE-PER IO D
108 NOISE PERIOD
109 CALL-TO NE-PERIO D
110 TONE PERIOD
112 C A LL -N O IS E -P E R IOD
113 NOISE PERIOD
114 C A LL-TO N E-PER I OD
115 TONE PERIOD
117 C A LL-T O N E -PER IOD
118 TONE PERIOD
120 CALL-TO NE-PERIO D
121 TONE PERIOD
123 CALL-TO NE-PERIO D
124 TONE PERIOD
126 CALL-TO NE-PERIO D
127 TONE PERIOD
129 CALL-TO NE-PERIO D
130 TONE PERIOD
132 CALL-TO NE-PERIO D
133 TONE PERIOD
135 CALL-TO NE-PERIO D
136 TONE PERIOD
138 CALL-N O ISE-PER IO D
139 NOISE PERIOD
140 CALL-TO NE-PERIO D
141 TONE PERIOD
143 CALL-N O ISE-PER IO D
144 NOISE PERIOD
145 JUMP
146 PC ADDRESS

57

T H E H U N C H B A C K ' SC R EEN

CHANNEL A

68DF 1 1 WAIT-SOUND 691F 2 65 PAUSE TIME 2
ISSUE ON A 6920 6 66 AMP-ENV

6BE1 1 3 AMPLITUDE ENVELOPE= 1 6921 3 67 AMPLITUDE ENVELOPE= 3
68E2 1 4 TONE ENVELOPE = 1 6922 2 68 NO OF SECTIONS 2
68E3 90 5 TONE PERIOD = 602 HARDWARE ENVELOPE
68E5 0 7 NOISE PERIOD = 0 6923 138 69 ENVELOPE SHAPE 138
68E6 0 8 IN IT IA L VOLUME = 0 6924 142 70 ENVELOPE PERIOD 1422
68E7 20 9 DURATION = 20 6926 1 72 STEP COUNT 1
68E9 2 11 RESET 6927 0 73 STEP S IZ E 0
68EA 6 12 AMP-ENV 6928 20 74 PAUSE TIME 20
68EB 1 13 AMPLITUDE ENVELOPE= 1 6929 11 75 CALL-CHANNEL
68EC 5 14 NO OF SECTIONS = 5 ISSUE ON A
68ED 2 15 STEP COUNT = 2 RENDEZVOUS WITH B
68EE 5 16 STEP S IZ E = 5 RENDEZVOUS WITH C
68EF 1 17 PAUSE TIME = 1 692B 18 77 CALL-TONE-DURATI ON
6BF0 1 18 STEP COUNT = 1 692C 100 78 DURATION 100
68F1 5 19 STEP S IZ E = 5 692E 56 80 TONE PERIOD 568
68F2 1 20 PAUSE TIME = 1 6930 11 82 CALL-CHANNEL
68F3 1 21 STEP COUNT = 1 ISSUE ON A
68F4 0 22 STEP S IZE = 0 6932 18 84 CALL-TO NE-DURATION
68F5 5 23 PAUSE TIME = 5 6933 20 85 DURATION 20
68F6 10 24 STEP COUNT = 10 6935 56 87 TONE PERIOD 568
68F7 255 25 STEP S IZ E = 255 6937 18 89 CALL-TO NE-DURATION
68F8 1 26 PAUSE TIME = 1 6938 100 90 DURATION 100
68F9 5 27 STEP COUNT = 5 693A 188 92 TONE PERIOD 956
68FA 255 28 STEP S IZ E = 255 693C 18 94 CALL-TO N E-DURATION
68FB 10 29 PAUSE TIME = 10 693D 20 95 DURATION 20
68FC 6 30 AMP-ENV 693F 188 97 TONE PERIOD 956
68FD 2 31 AMPLITUDE ENVELOPE= 2 6941 18 99 CALL-TO NE-DURATION
68FE 5 32 NO OF SECTIONS = 5 6942 100 100 DURATION 100
68FF 2 33 STEP COUNT = 2 6944 83 102 TONE PERIOD 851
6900 5 34 STEP S IZ E = 5 6946 18 104 CALL-TO NE-DURATION
6901 1 35 PAUSE TIME = 1 6947 20 105 DURATION 20
6902 1 36 STEP COUNT = 1 6949 83 107 TONE PERIOD 851
6903 5 37 STEP S IZ E = 5 694B 18 109 CALL-TONE-DURATION
6904 1 38 PAUSE TIME = 1 694C 60 110 DURATION 60
6905 1 39 STEP COUNT = 1 694E 123 112 TONE PERIOD 379
6906 0 40 STEP S IZ E = 0 6950 18 114 CALL-TO NE-DURATION
6907 5 41 PAUSE TIME = 5 6951 20 115 DURATION 20
6908 4 42 STEP COUNT = 4 6953 246 117 TONE PERIOD 758
6909 255 43 STEP S IZ E = 255 6955 14 119 CALL-TO NE-PERIO D
690A 1 44 PAUSE TIME = 1 6956 164 120 TONE PERIOD 676
690B 3 45 STEP COUNT = 3 6958 14 122 C ALL—TO N E-PER IOD
690C 254 46 STEP S IZ E = 254 6959 90 123 TONE PERIOD 602
690D 5 47 PAUSE TIME = 5 695B 18 125 CALL-TO NE-DURATION
690E 6 48 AMP-ENV 695C 100 126 DURATION 100
690F 4 49 AMPLITUDE ENVELOPE= 4 695E 56 128 TONE PERIOD 568
6910 1 50 NO OF SECTIONS = 1 6960 18 130 CALL-TO NE-DURATION
6911 1 51 STEP COUNT = 1 6961 20 131 DURATION 20
6912 0 52 STEP S IZ E = 0 6963 56 133 TONE PERIOD 568
6913 100 53 PAUSE TIME = 100 6965 18 135 CALL-TO NE-DURATION
6914 7 54 TONE-ENV 6966 100 136 DURATI ON 100
6915 255 55 TONE ENVELOPE = 255 6968 188 138 TONE PERIOD 956
6916 3 56 NO OF SECTIONS = 3 696A 18 140 CALL-TO NE-DURATION
6917 2 57 STEP COUNT = 2 696B 20 141 DURATION 20
6918 2 58 STEP S IZ E = 2 696D 188 143 TONE PERIOD 956
6919 2 59 PAUSE TIME = 2 696F 18 145 CALL-TO NE-DURATION
691A 4 60 STEP COUNT = 4 6970 100 146 DURATION 100691B 254 61 STEP S IZ E = 254 6972 83 148 TONE PERIOD 851691C 2 62 PAUSE TIME = 2 6974 18 150 CALL-TO NE-DURATION
691D 2 63 STEP COUNT = 2 6975 20 151 DURATION 20691E 2 64 STEP S IZ E = 2 6977 83 153 TONE PERIOD 851

58

155
156
158
159
161
162
164
165
167
168
170
171
173
174
176
178
179
181
183
184
186
188
189
191
193
194
196
198
199
201
203
204
206
208
209
211
213
214
216
218
219
221
222
224
226
227
229
231
232
234
236
237
239
241
242
244
246
247
249
251
252
254
256
257
259
261
262
264
266
267

CHANNEL BCALL-TONE-PERI0D
TONE PERIOD = 379
C A LL-TO N E-PER I OD
TONE PERIOD = 758 67F2
C A LL-T O N E -PER IOD
TONE PERIOD = 716 67F4
CALL-TO NE-PERIO D 67F5
TONE PERIOD = 676 67F6
CALL-TO NE-PERIO D 67F8
TONE PERIOD = 638 67F9
CALL-TO NE-PERIO D 67FA
TONE PERIOD = 602 67FC
CALL-TONE-DURATION
DURATION = 100
TONE PERIOD = 568
CALL-TONE-DURATION 67FE
DURATION = 20 67FF
TONE PERIOD = 568 6800
CALL-TONE-DURATION 6801
DURATION = 100 6803
TONE PERIOD = 956 6805
CALL-TO NE-DURATION
DURATION = 20 6807
TONE PERIOD = 956 6808
CALL-TONE-DURATION 6809
DURATION = 100 680A
TONE PERIOD = 851 680C
CALL-TONE-DURATION 680E
DURATION = 20 680F
TONE PERIOD = 851 6811
CALL-TONE-DURATION 6813
DURATION = 100 6814
TONE PERIOD = 379 6816
CALL-TONE-DURATION 6818
DURATION = 20 6819
TONE PERIOD = 379 681B
CALL-TONE-DURATION 681D
DURATION = 60 681E
TONE PERIOD = 568 6820
CALL-TO NE-PERIO D 6822
TONE PERIOD = 638 6823
CALL-TONE-DURATION 6825
DURATION = 40 6827
TONE PERIOD = 379 6828
CALL-TONE-DURATION 682A
DURATION = 20 682C
TONE PERIOD = 851 682D
CALL-TONE-DURATION 682F
DURATION = 40 6831
TONE PERIOD = 956 6832
CALL-TONE-DURATION 6834
DURATION = 20 6836
TONE PERIOD = 568 6837
CALL-TONE-DURATION 6839
DURATION = 40 683B
TONE PERIOD = 851 683C
CALL-TONE-DURATION 683E
DURATION = 20 6840
TONE PERIOD = 379 6841
CALL-TONE-DURATION 6843
DURATION = 40
TONE PERIOD = 956
CALL-TO NE-DURATION
DURATION = 60
TONE PERIOD = 568
CALL-TO NE-DURATION
DURATION = 80
TONE PERIOD = 379
JUMP
PC ADDRESS = 75

1 1 WAIT-SOUND
ISSUE ON B

2 3 AMPLITUDE ENVELOPE= 2
1 4 TONE ENVELOPE 1
142 5 TONE PERIOD 142
0 7 NOISE PERIOD 0
0 8 IN IT IA L VOLUME 0
60 9 DURATION 60
11 11 CALL-CHANNEL

ISSUE ON B
RENDEZVOUS WITH A
RENDEZVOUS WITH C

12 13 CALL-AM P-ENV
4 14 AMPLITUDE ENVELOPE= 4
18 15 CALL-TO NE-DURATION
40 16 DURATION 40
119 18 TONE PERIOD 119
11 20 CALL-CHANNEL

ISSUE ON B
12 22 CALL-AM P-ENV
2 23 AMPLITUDE ENVELOPE= 2
18 24 CALL-TO NE-DURATION
20 25 DURATION 20
119 27 TONE PERIOD 119
18 29 CALL-TONE-DURA Γ I ON
60 30 DURATION 60
142 32 TONE PERIOD 142
18 34 CALL-TO NE-DURATION
40 35 DURATION 40
159 37 TONE PERIOD 159
18 39 CALL-TO NE-DURATION
20 40 DURATI ON 20
190 42 TONE PERIOD 190
18 44 CALL-TO NE-DURATION
40 45 DURATION 40
213 47 TONE PERIOD 213
18 49 CALL-TO NE-DURATION
20 50 DURATION 20
239 52 TONE PERIOD 239
18 54 CALL-TO NE-DURATION
60 55 DURATION 60
213 57 TONE PERIOD 213
18 59 CALL-TO NE-DURATION
40 60 DURATION 40
213 62 TONE PERIOD 213
18 64 CALL-TO NE-DURATION
20 65 DURATION 20
239 67 TONE PERIOD 239
18 69 CALL-TO NE-DURATION
40 70 DURATION 40
213 72 TONE PERIOD 213
18 74 CALL-TO NE-DURATION
120 75 DURATION 120
190 77 TONE PERIOD 190
18 79 CALL-TO NE-DURATION
20 80 DURATION 20
119 82 TONE PERIOD 119

59

6845 18 84 CALL—TONE—DURATION 68B2 213 193 TONE PERIOD 213
6846 60 85 DURATION 60 68B4 18 195 CALL-TO NE-DURATION
6848 142 87 TONE PERIOD 142 68B5 40 196 DURATION 40
684A 18 89 C ALL—TONE—DURATION 68B7 239 198 TONE PERIOD 239
684B 40 90 DURATION 40 68B9 18 200 CALL-TO N E-DURATION
684D 159 92 TONE PERIOD 159 68BA 20 201 DURATION 20
684F 18 94 C ALL—TONE—DURATION 68BC 28 203 TONE PERIOD 284
6850 20 95 DURATION 20 68BE 18 205 CALL-TO NE-DURATION
6852 190 97 TONE PERIOD 190 68BF 40 206 DURATION 40
6854 18 99 CALL-TONE-DURATI ON 68C1 213 208 TONE PERIOD 213
6855 40 100 DURATION 40 6BC3 18 210 CALL-TO NE-DURATION
6857 213 102 TONE PERIOD 213 68C4 20 211 DURATION 20
6859 18 104 CALL-TO NE-DURATION 68C6 190 213 TONE PERIOD 190
685A 20 105 DURATION 20 68C8 18 215 CALL-TO NE-DURATION
685C 239 107 TONE PERIOD 239 6BC9 40 216 DURATION 40
685E 18 109 CALL-TO NE-DURATION 68CB 237 218 TONE PERIOD 237
685F 40 110 DURATION 40 68CD 18 220 CALL-TO NE-DURATION
6861 213 112 TONE PERIOD 213 68CE 60 221 DURATION 60
6863 18 114 CALL-TO NE-DURATION 68D0 28 223 TONE PERIOD 284
6864 20 115 DURATION 20 68D2 18 225 CALL-TO NE-DURATION
6866 239 117 TONE PERIOD 239 68D3 80 226 DURATION 80
6868 18 119 CALL-TO NE-DURATION 68D5 150 228 TONE PERIOD 150
6869 40 120 DURATION 40 68D7 9 230 JUMP
686B 213 122 TONE PERIOD 213 68D8 11 231 PC ADDRESS 11
686D 18 124 CALL-TO NE-DURATION
686E 180 125 DURATION 180
6870 190 127 TONE PERIOD 190 CHANNEL C
6872 18 129 CALL-TO NE-DURATION
6873 20 130 DURATION 20
6875 80 132 TONE PERIOD 80 6F0F 1 1 WAIT-SOUND
6877 18 134 CALL-TO NE-DURATION ISSUE ON C
6878 60 135 DURATION 60 6 F 1 1 3 3 AMPLITUDE ENVELOPE= 3
687A 95 137 TONE PERIOD 95 6F12 3 4 TONE ENVELOPE * 3
687C 18 139 CALL-TO NE-DURATION 6F13 71 5 TONE PERIOD 71
687D 40 140 DURATION 40 6F15 0 7 NOISE PERIOD 0
687F 106 142 TONE PERIOD 106 6F16 0 8 IN IT IA L VOLUME 0
6881 18 144 CALL-TO NE-DURATION 6F17 60 9 DURATION 60
6882 20 145 DURATION 20 6F19 12 11 CALL-AM P-ENV
6884 127 147 TONE PERIOD 127 6 F lA 4 12 AMPLITUDE ENVELOPE= 4
6886 18 149 CALL-TO NE-DURATION 6 F lB 11 13 CALL-CHANNEL
6887 40 150 DURATION 40 ISSUE ON C
6889 142 152 TONE PERIOD 142 RENDEZVOUS WITH A
688B 18 154 CALL-TO NE-DURATION RENDEZVOUS WITH B
688C 20 155 DURATION 20 6 F lD 18 15 CALL-TO NE-DURATION
688E 159 157 TONE PERIOD 159 6 F lE 40 16 DURATION 40
6890 18 159 CALL-TO NE-DURATION 6F20 119 18 TONE PERIOD 119
6891 60 160 DURATION 60 6F22 12 20 CALL-AM P-ENV
6893 142 162 TONE PERIOD 142 6F23 3 21 AMPLITUDE ENVELOPE= 3
6895 14 164 C A LL-TO N E-PER I OD 6F24 11 22 CALL-CHANNEL
6896 142 165 TONE PERIOD 142 ISSUE ON C
6898 18 167 CALL-TO NE-DURATION 6F26 18 24 CALL-TO N E-DURATI ON
6899 40 168 DURATION 40 6F27 20 25 DURATION 20
689B 142 170 TONE PERIOD 142 6F29 60 27 TONE PERIOD 60
689D 18 172 CALL-TO NE-DURATION 6F2B 18 29 CALL-TO NE-DURATION
689E 80 173 DURATION 80 6F2C 60 30 DURATION 6068A0 127 175 TONE PERIOD 127 6F2E 71 32 TONE PERIOD 71
68A2 18 177 CALL-TO NE-DURATION 6F30 18 34 CALL-TO NE-DURATION
68A3 60 178 DURATION 60 6F31 40 35 DURATION 40
68A5 142 180 TONE PERIOD 142 6F33 80 37 TONE PERIOD 80
68A7 14 182 C A LL-T O N E -PE R IOD 6F35 18 39 CALL-TO NE-DURATION
68A8 159 183 TONE PERIOD 159 6F36 20 40 DURATION 20
68AA 18 185 CALL-TO NE-DURATION 6F38 95 42 TONE PERIOD 95
68AB 40 186 DURATION 40 6F3A 18 44 CALL-TO NE-DURATION
68AD 190 188 TONE PERIOD 190 6F3B 40 45 DURATION 40
68AF 18 190 CALL-TO NE-DURATION 6F3D 106 47 TONE PERIOD 10668B0 20 191 DURATION 20 6F3F 18 49 CALL-TO NE-DURAT!ON

60

6F40 20 50 DURATION 20 6FAE 60 160 DURATION 60
6F42 119 52 TONE PERIOD 119 6FBO 106 162 TONE PERIOD 106
6F44 18 54 CALL-TONE-DURATI ON 6FB2 18 164 CALL-TO N E-DURATION
6F45 60 55 DURATION 60 6FB3 40 165 DURATION 40
6F47 106 57 TONE PERIOD 106 6FB5 106 167 TONE PERIOD 106
6F49 18 59 CALL-TO NE-DURATION 6FB7 18 169 CALL-TO N E-DURATION
6F4A 40 60 DURATION 40 6FB8 20 170 DURATION 20
6F4C 106 62 TONE PERIOD 106 6FBA 119 172 TONE PERIOD 119
6F4E 18 64 CALL-TO NE-DURATION 6FBC 18 174 CALL-TO N E-DURATION
6F4F 20 65 DURATION 20 6FBD 40 175 DURATION 40
6F51 119 67 TONE PERIOD 119 6FBF 106 177 TONE PERIOD 106
6F53 18 69 C A L L -TONE-DURATI ON 6FC1 18 179 CALL-TO N E-DURATION
6F54 40 70 DURATION 40 6FC2 80 180 DURATION 80
6F56 106 72 TONE PERIOD 106 6FC4 95 182 TONE PERIOD 95
6F58 13 74 CALL-TO NE-DURATION 6FC6 18 184 CALL-TO N E-DURATION
6F59 120 75 DURATION 120 6FC7 60 185 DURATION 60
6F5B 95 77 TONE PERIOD 95 6FC9 71 187 TONE PERIOD 71
6F5D 18 79 CALL-TONE-DURATION 6FCB 14 189 CALL-TO NE-PERIO D
6F5E 20 80 DURATION 20 6FCC 80 190 TONE PERIOD 80
6F60 60 82 TONE PERIOD 60 6FCE 18 192 CALL-TO NE-DURATION
6F62 18 84 CALL-TONE-DURATION 6FCF 40 193 DURATION 40
6F63 60 85 DURATION 60 6FD1 95 195 TONE PERIOD 95
6F65 71 87 TONE PERIOD 71 6FD3 18 197 CALL-TO NE-DURATION
6F67 18 89 CALL-TO NE-DURATION 6FD4 20 198 DURATION 20
6F68 40 90 DURATION 40 6FD6 106 200 TONE PERIOD 106
6F6A 80 92 TONE PERIOD 80 6FD8 18 202 CALL-TO NE-DURATION
6F6C 18 94 CALL-TO N E-DURATION 6FD9 40 203 DURATION 40
6F6D 20 95 DURATION 20 6FDB 119 205 TONE PERIOD 119
6F6F 95 97 TONE PERIOD 95 6FDD 18 207 CALL-TO NE-DURATION
6F71 18 99 CALL-TO NE-DURATION 6FDE 20 208 DURATION 20
6F72 40 100 DURATION 40 6FE0 142 210 TONE PERIOD 142
6F74 106 102 TONE PERIOD 106 6FE2 18 212 CALL-TO NE-DURATION
6F76 18 104 CALL-TO NE-DURATION 6FE3 40 213 DURATION 40
6F77 20 105 DURATION 20 6FE5 106 215 TONE PERIOD 106
6F'/9 119 107 TONE PERIOD 119 6FE7 18 217 CALL-TO NE-DURATION
6F7B 18 109 CALL-TO NE-DURATION 6FE8 20 218 DURATION 20
6F7C 40 110 DURATION 40 6FEA 95 220 TONE PERIOD 95
6F7E 106 112 TONE PERIOD 106 6FEC 18 222 CALL-TO NE-DURATION
6F80 18 114 CALL-TO NE-DURATION 6FED 40 223 DURATION 40
6F81 20 115 DURATION 20 6FEF 119 225 TONE PERIOD 119
6F83 119 117 TONE PERIOD 119 6 F F 1 18 227 CALL-TO NE-DURATION
6F85 18 119 CALL-TO N E-DURATION 6FF2 60 228 DURATI ON 60
6F86 40 120 DURATION 40 6FF4 142 230 TONE PERIOD 142
6F88 106 122 TONE PERIOD 106 ^FF6 18 232 CALL-TO NE-DURATION
6F8A 18 124 CALL-TO NE-DURATION 6FF7 80 233 DURATION 80
6F8B 180 125 DURATION 180 6FF9 119 235 TONE PERIOD 119
6F8D 95 127 TONE PERIOD 95 6FFB 9 237 JUMP
6F8F 18 129 CALL-TO NE-DURATION 6FFC 11 238 PC ADDRESS 11
6F90 20 130 DURATION 20
6F92 60 132 TONE P E R IOD 60
6F94 18 134 CALL-TO NE-DURATION
6F95 60 135 DURATION 60
6F97 71 137 TONE PERIOD 71
6F99 18 139 CALL-TO N E-DURATION
6F9A 40 140 DURATION 40
6F9C 80 142 TONE PERIOD 80
6F9E 18 144 CALL-TO N E-D U RATION
6F9F 20 145 DURATION 20
6FA1 95 147 TONE PERIOD 95
6FA3 18 149 CALL-TONE-DURATION
6FA4 40 150 DURATION 40
6FA6 106 152 TONE PERIOD 106
6FA8 18 154 CALL-TO N E-D U RATION
6FA9 20 155 DURATION 20
6FAB 119 157 TONE PERIOD 119
6FAD 18 159 CALL-TO N E-D U R AT ION

TRACKING SPRITES
Sound handling and tracking sprites are the two most difficult to use facilities of Laser BASIC and we
do not recommend tackling them until you have gained a fairly good fam iliarisation with the package.
T racking sprites in particular haveonly m odestcrash protection and it is usuallyveryd ifficu ltfo r usto
provide answ ers to techn ica l queries arising from their use or m isuse. Having said all that, if you do
spend the time and effort then the results can be very satisfying indeed. In th isfina l part of "GETTING
STARTED " we’ll look at a few exam ples of the use of tracking sprites.
A tracking sprite , in th is context, is a sprite which conta ins a program that is used to control the
movement of a graph ics sprite or sprites. The internal format is described in the section "The Laser
BASIC com m ands in detail". S ince tracking sprites are normally used to move sprites around
predetermined tracks it is normally required to start by physica lly putting a sprite onto the screen in
the same way as PTXR for example, is normally used before XM O V or XBNC. Th is is normally carried
out with the TPU T comm and which as well as physica lly p lacing the image onto the screen also
in itia lises some of the trackers internal parameters. The tracker maintains its own record of where it
last p laced a sprite and w hich sprite it last p laced as well as what type of ‘PU T ’ it is using and
whereabouts within itself it is executing. A ll of these parameters can be set up with PO K E 's but it is
probably easier to set them up with a TPUT.
In this first example w e’ll set up a very simple tracking sprite that just bounces a sprite around a
predefined w indow and loops within itself. Type "NEW " to c lear the current program and then enter
and RUN the following:

5 ’ EXAMPLE QF TRACKING S P R IT E S
10 X 7 .= 0 :Y 7 .= 0 : IS P N ,4 0 : I IS P R , 3X7., 3 X 7 .,3 X 7 .,3 Y 7 .
2 0 DATA 2 , 0 , 4 , 4 , 1 8 1 , 1 6 2 , 0 , 0
3 0 FOR I7.=Y 7.+5 TO Y7.+ 12 : READ X7.:POKE I7 .,X 7 .sN E X T 17.
4 0 !S E T ,4 : !K E Y ,5 1 : IS P N ,5 1 : ! C O L , 0 : ! R 0 W ,7 5 : :H G T ,5 0 : I L E N ,8 0 : :B W S T
5 0 IH G T ,4 : !L E N ,2 : ! C 0 L , 4 0 : : R D W , 1 0 0 : ! S P l , 4 6 : : S P 2 , 4 7 : I S P 3 , 4 8 : iS P 4 , 4 9
6 0 ! S E T ,O s ! C O L ,4 0 : ! R O W ,1 0 0 : ! K E Y ,4 0 : ! S P l , 4 6 : ! S C L S : IT P U T ,1
7 0 !T M 0 V ,1 0 0 0 ,1

Sprite 46 should appear at column 15, row 25.
Line 10 Initia lises X% and Y% and then interrogates sprite 40 to find its starting address which is

assigned to Y%. Sprite 40 is 13 bytes in length.
Line 20 Data for the sprite tracking program.
Line 30 PO K Es in the tracking sprite program. The first five bytes of sprite 40 are utilised by the

tracker program itself and the data has the follow ing significance:
Th is is the move type - XOR
Th is is the first byte of the program and tells the tracker that the next byte
is to be a control code.
Th is code tells the tracker that the next byte will be a SET number and the
next two bytes after that, the address of a Laser BASIC command.
This is the SET, which is SET 4.
These two bytes are the execution address of
the Laser BASIC command XBN C and were obtained using ADDR (see
the section on com piler related commands).
Th is again tells the tracker to expect a control code.
Th is control code te lls the tracker to execute the first instruction. S ince
there is only one other instruction (the ‘X B N C ’) this m eansthatthe tracker
will loop back and execute an 'XBN C ' on every invocation.

Line 40 S ince the XB N C command uses data in SET 4 it is required to assign the necessary values
to all the relevant variables. W e’re going to start the track at column 15 and row 25 with
sprite 46 so these and all the other variab les as well as a bounce w indow are set up in this
line and line 50.

Line 60 Th is line sets the column and row to launch at, sets the tracker number in KEY, tells the
tracker that the first sprite to be put will be 46 and then launches the sprite with a TPUT. The
“ 1" follow ing the TPU T tells the tracker that the first instruction to execute has a program
counter value of 1 i.e the first instruction after the ’type’ byte.

1st byte = 2
2nd byte == 0

3rd byte = 4

4th byte =4
5th byte = 181
6th byte = 162

7th byte = 0
8th byte = 0

62

This program sets up the tracking sprite and launches it to tne screen, what we need to do now is to
execute the track itself so lets add a line at 60 which will execute the track in a m achine code loop.
Don't c lear the program in memory but just type:

70|TMOV,1000,1
This will execute 1000 times with flyback synchronisation. To execute just type "RUN".
Let's move on now to a second example. Th is time we'll move a sprite around the screen under
joystick or keyboard control and set co llis ion detection on. C lear the last example by typing "NEW"
then enter the following:

5 ’ EXAMPLE OF TRACKING S P R IT E S I I
10 X7.=0: Y 7 .=0 : ! SPN , 4 1 : I IS P R , 3X 7., 3X7., 3X7., 3Y7.
2 0 DATA 2 0 6 , 5 0 , 2 , 8 , 0 , 0
3 0 ! S E T ,0
4 0 FOR I7 .=Y 7.+5 TO Y7.+ 1 0 :R E A D X7.:POKE I7 .,X 7 .:N E X T 17.
5 0 IC O L ,1 5 : I R 0 W , 2 5 : ! K E Y , 4 1 : ! S P l , 5 0 : ! T P U T , 1
6 0 A *= "T M O V A # " : I I S E T , 3 A * : ! IR U N ,0
7 0 GOTO 7 0

Line 10 Initialises X% and V% then ass igns the start address of sprite 41 to V%.
Line 20 Th is con ta ins the data for the tracking sprite program and which has the following

significance:

Line 30
Line 40
Line 50
Line 60
Line 70

1 st byte = 206 Th is is the move type byte. The first two bits se lect the type of movement
which is 2 for exc lu s ive -O R movement. The third bit tells the system
whether or not the sprite is jo y stick/ keyboard controlled. Inthis case it is,
so bit three is set so this adds 4. Bits 4 to 6 tell the system the joystick or
keyrow, in this case the joystick so this adds 72 (If you do not have a
jo ystickyou cou ld u se48 6 = up5 = dow nR = leftT = right). F ina lly bit 7 is
set because co llis ion is on which adds 128. Therefore:
Total = 2 + 4 + 72 + 128 = 206
or 2 + 4 + 48 + 128 = 182

2nd byte = 50 This is the number of the sprite we're moving.
3rd byte = 2 S ize of X-increment.
4th byte = 8 S ize of V-increment.
5th byte = 0 Control code com ing next.
6th byte = 0 Run from start.
Se lects set 0.
PO K Es the data into the tracking sprite.
Launches the sprite at column 15, row 25.
Sets the tracker running under interrupts using SET 0.
End less loop to prevent return to command mode. In command mode the keys
codes/joystick control codes would be printed to the screen.

In our third exam ple we're going to set up two tracking sprites, one which will move in a c lockw ise
square and one which will move in an an tic lockw ise square.

10 ’ EXAMPLE OF TRACKING S P R IT E S I I I
2 0 D E F IN T A -Z
3 0 I SCLS
4 0 U P = 2 4 8 : D N = 8 :L T = 2 5 4 : R T=2
5 0 X 7 = 0 :Y 7 .= 0
6 0 ! SPN , 4 2 : i IS P R , 3X7., 3 X 7 .,3 X 7 ., 3Y7.:P O K E Y 7.+5, 2 : Y7.=Y7.+6
7 0 C = 0 :R = 0 :S = 5 2
8 0 C = R T :R = 0 :F O R N=1 TO 17:G O S U B 2 5 0 :N E X T N
9 0 C = 0 :R = D N :FOR N=1 TO 9 :GOSUB 2 5 0 :N E X T N
1 00 C = L T :R = 0 :F O R N=1 TO 17:G O S U B 2 5 0 :N E X T N
1 10 C = 0 :R = U P :F O R N=1 TO 9 :GOSUB 2 5 0 :N E X T N
1 2 0 C = 0 :R = 0 :S = 0 :G 0 S U B 2 5 0
1 3 0 I SPN , 4 3 : ! IS P R ,3 X 7 .,3 X 7 ., 3 X 7 , 3Y 7.: POKE Y 7 .+5 , 2 : Y7.=Y7.+6
1 40 C = 0 :R = 0 :S = 5 2
1 50 C = 0 ':R = D N :F 0 R N=1 TO 9 :GOSUB 2 5 0 :N E X T N
1 60 C = R T :R = 0 :F 0 R N=1 TO I7 :G 0 S U B 2 5 0 :N E X T N
l 7 0 C = 0 :R = U P :F 0 R N=1 TO 9 :GOSUB 2 5 0 :N E X T N
1 80 C = L T :R = 0 :F 0 R N=1 TO 17:G O S U B 2 5 0 :N E X T N
190 C = 0 :R = 0 :S = 0 :G 0 S U B 2 5 0

63

191 LOCATE 1 , 1 8 : FOR N=1 TO 4 :P R IN T " LASER B A S IC FROM OCEAN I . Q . " : N E X T N
2 0 0 ! S E T , 0 : ! C O L ,0 : : R 0 W , 1 0 0 : ! K E Y , 4 2 : : S P 1 , 5 2 : : T P U T , 1
2 1 0 !T M 0 V ,5 2 0 ,1
2 2 0 !S E T ,0 : !C 0 L , 4 0 : !ROW, 1 0 0 : ί K E Y , 4 3 : ! S P l , 5 2 : ,'T P U T , 1
2 3 0 iT M 0 V ,5 2 0 , l
2 4 0 END
2 5 0 POKE Y X ,S : Y7.=Y7.+ 1 : POKE Y '/., C : Y7.=Y7.+1 : POKE V / . ,R : Y7.=YV.+1 : RETURN

Line 20
Line 30
Line 40

Line 50
Line 60

Line 70
Line 80
Line 90
Line 100
Line 110
Line 120

Line 130

Line 191
Line 200
Line 210
Line'220
Line 230
Line 250

Declares all variab les to be integer.
C lears the screen.
Sets up four constan ts which correspond to the X and Y increments for up and down, left
and right. Note that 248 is -8 and 254 is -1.
Initialises X% and Y%.
Interrogates sprite 42 (the tracker) to find its start address then PO KEs the move type byte
with 2 (exclus ive-O R movement). The data pointer (Y%) isthen incremented to point to the
first program byte.
Initialises C (X increment), R (Y increment) and S (sprite number).
PO K E s 17 instructions into the tracker which moves it 17 characters to the right.
PO K Es 9 instructions into the tracker which moves it 9 characters downwards.
A s line 80 but movement is left.
A s line 90 but movement is upward.
PO K Es 3 bytes (only the first 2 are used) which te lls the tracker to loop back to the start of
the tracker program.
Th is line, together with 140,150,160,170,180 and 190 do the same thing as lines 70 to 120
but this time an an tic lockew ise track is generated.
Prints some text onto the screen.
Launches the first tracker.
Executes the whole track 10 times.
Launches the second tracker.
Executes the second track 10 times.
Subroutine which PO K Es the data into the tracker. The first byte is the sprite number, the
second is the X-increm ent and the third is the Y-increment.

The final exam ple in th is section com bines trackers from the previous three exam ples so you will
need to execute those exam ples before attempting this one.

5 ’ EXAMPLE OF TRACKING S P R IT E S IV
10 ! S E T ,4
2 0 !K E Y , 5 1 : !H G T , 4 : ! L E N , 2 : ! C 0 L , 0 : ! R 0 W , 7 5 : I S P l , 4 6 : iS P 2 , 4 7 : i S P 3 , 4 8 : ! S P 4 , 4 9
3 0 !S E T ,0
4 0 ! SCLS
5 0 X 7 .=0 :Y 7 .=0
6 0 !S P N ,4 4 : !IS P R ,5 > X 7 .,3 X '/.,3 X 7 .,3 Y 7 .
7 0 FDR N =0 TO 1 8 : READ A :P O K E Y 7 .+ N ,A :N E X T N
8 0 !S P N ,4 5 : I IS P R ,3 X 7 .,3 X 7 ., 3X7., 3Y 7 .:TG T=Y '/.+3
9 0 FOR N =0 TO 6 : READ A :P O K E Y 7 .+ N ,A :N E X T N
1 0 0 !S P N .4 2 : I IS P R ,3X 7.,3X 7 .,3X 7.,S >Y 7.
110 POKE Y7.+ 1 6 2 ,0 :P 0 K E Y7.+ 1 6 3 , l : P 0 K E Y7.+ 1 6 4 ,4 3
1 20 !S P N .4 3 : I IS P R ,3 X 7 .,3 X 7 .,3 X X ,3 Y 7 .
1 30 POKE Y"/.+1 6 2 , 0 : POKE Y '/.+ 1 6 3 , l :P O K E Y 7 .M 6 4 ,4 2
1 4 0 !S P N ,4 4 : !C P U T
1 5 0 IS P N ,4 5
1 6 0 i C M O V , l , l : I F P E E K (T G T)< > 0 THEN P R IN T C H R *< 7) :L 0 C A T E 1 ,1
1 7 0 GOTO 160
1 80 DATA 4 0 , 0 , 7 5 , 4 6 , 1 , 0 , 4 1 , 1 5 , 2 5 , 5 0 , 1 , 0 , 4 2 , 0 , 1 0 0 , 5 2 , 1 , 0 , 0
1 9 0 DATA 4 2 , 0 , 4 1 , 0 , 4 0 , 0 , 0

L in e10 S e le c tsS E T 4 .
Line 20 Sets the information in SET 4 which will be used by the bouncing sprite in tracker 40.
Line 30 Se lects SET 0.
Line 40 C lears the screen.
Line 50 in itia lises X% and Y%.
Line 60 Interrogates sprite 44 and ass igns the start address to Y%.
Line 70 PO K Es the 19 bytes of data that will launch the 3 trackers. There are six bytes for each

sprite to be launched (see CPUT) and one delimiter.
Line 80 Interrogates sprite 45 and ass igns the start address to Y%. The address of the second

64

r
sprite 's co llis ion detection address (see CMOV) is assigned to TGT.

Line 90 P O K E s the 7 bytes of data that w ill control the 3 trackers. There are two bytes for each
sprite to be controlled and a delim iter (see CMOV).

Line 100 Interrogates sprite 42 and ass igns the value to Y%.
Line 110 Ad juststhe end o ftracker 42 so that instead of simply looping round, control jumps to the

start of tracker 43.
Line 120 Interrogates sprite 43 and ass igns the value to Y%.
Line 130 Adjusts the end of tracker 43 so that instead of simply looping round, control jumps to the

start of tracker 42. Thus control will loop around 42 and 43.
Line 140 Launches the 3 trackers.
Line 150 Se lects sprite 45 (to execute the CMOV).
Line 160 Executes the contro ller and then checks to see ifthe joystick controlled sprite collided with

any other screen image, if so then a sound is made.
Line 170 Loops back to 160.
Line 180 Data for the CPUT.
Line 190 Data for the CMOV.

This conc ludes the section on T racker sprites and the "GETTING STARTED" example programs.

k.
65

LASER BASIC EXTENDED COMMANDS IN DETAIL

SPRITE UTILITIES

Command
SSPR,e1,e2

Action
Sets up sprites. Th is command needs to be executed before any sprite
operations can be carried out. The first expression, e1, tells the system what the
maximum sprite number is, and hence, how much table space to allocate. The
table will a llocate 4 bytes for each sprite and 4 bytes for sprite 0. The second
expression, e2, tells the system the address of sprite space, and the table and
sprites will expand downwards from that address. Any existing sprites are
destroyed.

Parameters Use
e1 BASIC expression which g ives the maximum sprite number which the user can

utilise. Ifa sp rite number is used with a valuegreater than e1,then ** SPN TOO
HIGH ** w ill be displayed. If the value of the expression is 0 then ** SPN OF
ZER O ** w ill bed isp layed . In both cases, no action will betaken. In facte1 must
be in the range 1 to 255.

e2 Th is BASIC expression tells the system the lowest protected byte of memory.
Sprites will build down from the first byte below that address.

Example: SSPR,7,&7000 will make the maximum sprite number 7, and the top of sprites
equal to 6FFF hex.

Command
DSPR

Action
Delete the sprite w hose number is held in SPN . The sprite table entry is cleared,
the sprite data deleted and sprite space is contracted upwards. If the sprite was
not previously defined then ** SPN D O ESN ’T EXIST ** will be displayed.

Parameter
SPN

Use
Number of sprite to be deleted.

Command
ESPR

Action
lncrease/decrease maximum sprite number and expand/contract sprite space.
Ifthe new maximum is low erthan the old maximum then all existing sprites with
numbers greater than the new sprite maximum are deleted.

Parameter
SPN

Use
New maximum sprite number.

Command
CSPR

Action
Create a sprite with the number held in SPN and d im ensions held in HGT and
LEN. Sprite space extends down. If the sprite already exists then ** SPN EXISTS
** will be displayed.

Parameter
SPN
HGT
LEN
NOTE:

Use
Number of sprite to be created.
HGT in p ixels of new sprite.
Width in bytes of the new sprite.
Each byte will be 4 pixels w ide in 4 co lour mode and 2 p ixe ls w ide in 16 co lour
mode.

Command
RSPR,e1

Action
Relocate sprite space by the signed increment, given by the BASIC expression
e1. A positive value will move sprites to h igher memory, and a negative
expression will move sprites to a lower address. Th is command will very rarely
be used.

66

Parameters
e1

Use
BASIC expression which gives the size and direction of the relocation.

Command
PSPR,@V$

Action
Puts sprites to tape or disk. The filename must be held in a string variable and
must be in the form "N A M E S P R ” . In fact three files are saved. The first file
conta ins the system variab les SM AX, STAB, SPST and SPN D which contain the
maximum sprite number, start of table, start of sprite data and end of sprite data
respectively. If "S P R ” is not found as the last 3 characters of the filename then * *
ILLEGAL FILENAM E ** is displayed. F ilenam es must be typed in upper case.

Parameters
@V$

Use
The address of the 3 byte descriptor for the filename under which the three files
"N A M E SY S ”, "N AM ETAB" and “N A M ESPR " are to be saved.

Example: A$="TESTSPR" followed by PSPR ,@ A$ will create three files:
“TESTSYS" The current system variab les
"TESTTAB" The sprite table
'T E S T S P R '' The actual sprite data

Command
GSPR,@V$

Action

Gets sprites from tape or disk. The filename is again held in a string and the last 3
characters must be "S PR " or the last 7 chracters must be "S P R .B A K " . The three
files are loaded and the sprites are positioned where they were saved from.
F ilenam es must be typed in upper case. Tape prompts are suppressed.

Parameter
@V$

Example:

Use
The address of the 3 byte descriptor for the filename of the files to load.
A$="TESTSPR" followed by GSPR ,@ A$ will load the three files:
“T ESTSYS”, “TESTTAB" and "TESTSPR".

Command
MSPR,@V$

Action

Merge sprites from tape or disk. The filename specifier is the same as that
employed by P S PR and GSPR . The table of the file being loaded is merged with
the residentfile. If however, a sprite being loaded has an existing sprite number,
then an error is generated and no further action is taken. If this happens the
filename will be ofthe form “N AM ETAB" and will need to be reassigned before a
second attempt.

If the tables are successfu lly merged and the highest sprite number being
loaded is le ss than or equal to the current maximum sprite number then the
sprite data is loaded and sprite space expanded downward to accom odate the
new sprites. M S PR can be used to effectively load sprites into an address other
than that from w hich they were saved. Filenam es must be typed in upper case.
Tape prompts are suppressed.

Parameter
@V$

Note:

Use

The address of the 3 byte file descriptor for the sprite to be merged.
If the ** OUT OF M EM O R Y ** error is generated you will need to re-set
M EM O R Y (Amstrad BASIC) and perform an MSET, to a lower address. Th is
applies to G S P R and MSPR.

Command
RNUM

Action
Renumber sprite SP1 (if it exists) to become sprite SP2 (if it doesn't already exist).
SP1 ceases to exist.

Parameters
SP1
SP2

Use
Sprite to be renumbered.
New sprite number.

67

Command
ADNM

Action
Increment all existing sprite numbers by the value held in SPN . Errors will be
generated if this would cause a current sprite to exceed the maximum sprite
number. The value in SPN must be positive and non-zero.

Parameter
SPN

Use
Holds the value by which all current sprite numbers are to be incremented.

Command Action
ISPR,@ V1,@ V2,@ V3,@ V4 Interrogate sprite detaiis. The follow ing variab les are assigned the

respective system information:

Command
MASK

V1 Start of sprite table (lowest address utilised by sprites).
V2 Start of sprite data.
V3 End of sprites (highest address utilised by sprites).
V4 Address of the data of the sprite whose number is held in SPN.
In addition to the above, HGT and LEN are set to the d im ensions of the
sprite w hose number is held in SPN . If the sprite is found not to exist
then no error m essage is generated, but instead SPN is set to zero and
the BASIC and grapn ics variab les are left unchanged.

Action
Create a masked sprite from an unmasked sprite. The move com m ands FM OV
and BM O V will allow sprites to move non-destructively in Front of, or Behind,
screen data. Th is is not an exc lu s ive -O R operation but instead provides the user
with a facility sim ilar to that afforded by hardware sprites. The technique
employed involves generating a negative mask of pixel data and creating a
sprite with alternating data and mask bytes. Th is means that the width of the
d isplayed sprite is half the physical size of the sprite. Thus any sprite to be
m asked must have an even physica l width or ** C A N T M ASK ** will be
displayed. Prior to masking, the data to be displayed, should occupy only the left
hand half of the sprite.

Parameter
SPN

M asked sprites should only be used with the comm ands FMOV, BMOV, FMVJ,
BMVJ, FBNC, BBNC, FSW P, BPUT, BGET, RM SK, DMSK, M ASK or utilised as
tracking sprites.
Use
The number of the sprite to be masked.

Command
RMSK

Action
Re-crea te a masked sprite from a sprite which has previously been masked but
needs re-masking. Th is would be the case if a sprite had been moved behind
screen data and was then required to move in front of screen data.

Command
DMSK

Action
De-m ask a previously masked sprite and re-create the pixel data in the left hand
half. The right hand half will be cleared.

Parameter
SPN

Use
The number of the sprite to be de-masked.

Command
HRSP

Action
Create h i-res sprite pair. When the software is put into 160 column mode, the
column resolution can be effectively halved. Th is is achieved by dividing the
column value by 2 and adding the remainder(1 or0) to the sprite num berand this
is carried out automatically after execution of CLHI and continues until the
system is returned to 80 column mode using CLLO. The action of H RSP then, is
to produce a new sprite, with sprite number, 1 greater than the specified sprite.
Th is new sprite is identical to the specified sprite but the data is scro lled by a half
byte (2 p ixels in 4 co lour mode or 1 pixel in 16 co lour mode). If sprite SPN+1
already exists then an error results.

68

IMPORTANT NOTE:
MASK, RM SK, D M SK and H RSP test the mode flag before execution. If the operation is to be carried
out on 4 co lour data then ONHI M U ST be executed before any of the former. If the operation is to be
carried out on 16 co lour data then ONLO M UST be executed before any of the former.

Parameter Use
SPN The number of the sprite to be paired.

NOTE: The sprite to be paired should not contain any data in the rightmost half column
as this will be wrapped into the leftmost
half column of the target sprite.

Command
FREE,@V1

Action
Test the amount of free sprite space and assign the result to V1. Th is command
is provided to interrogate the amount of free space available for sprites, and
returns the result into the variable V1.

Parameter
V1

Use
The amount of free sprite space is returned to the BASIC integer variable V1.

Command
MSET,e1

Action

Set MBOT. This te lls the system the lowest free byte availab le for sprites and
workspace and should be set to HIMEM + 1 each time BASIC 's M EM O RY
command is executed.

Parameter

e1

Use
The value of the expression e1 is assigned to the system variable e1.

PARAMETER RELATED COMMANDS

Command

S E T , e 1

Action

The value of the expression e1 is assigned to the g raph ics variable SET. The
value for the expression must be in the range 0 to 15 and is used to se lect one of
the 16 sets of g raph ics variables.

X C L , e 1 The value of the expression e1 is assigned to the g raph ics variable XCL. The
value must be in the range 0 to 319 and is used by the FILL command to give the
X-coord inate of the point at which to begin FILLing.

I K 1 , e 1 The value of the expression e1 is assigned to the graph ics variable IK1. The
va luem ust be in the range 0 to 15 and is used to set the INK number for the FILL,
STCV and SETV commands.

I K 2 , e 1 The value of the expression e1 is assigned to the graph ics variable IK2. The
valuem ust be in the range 0 to 15 and is used to set the INK number forthe SETV
command.

C 0 L , e 1 The value of the expression e1 is assigned to the graph ics variable COL. The
value must be in the range -128 to 255 and is used to define the screen column
for various operations.

R 0 W, e 1 The value of the expression e1 is assigned to the graphics variable ROW. The
value must be in the range -128 to 255 and is used to define the screen row (in
pixels) for operations.

L E N , e 1 The value of the expression e1 is assigned to the graph ics variab le LEN. The
value must be in the range -128 to 255 and isu sed variously to define the width of
screen w indows, sprite w indows, sprite d im ensions and the X-increm entforthe
move commands.

H G T , e 1 The value of the expression e1 is assigned to the graphics variable HGT. The
value must be in the range -128 to 255 and is used in sim ilar applications to LEN.

69

SPN,e1 The value of the expression e1 is assigned to the graph ics variable SPN. The
value must be in the range 1 to 255 and is used to specifythe sprite number in a
variety of applications.

SP1,e1 The value of the expression e1 is assigned to the g raph ics variable SP1. The
value must be in the range 1 to 255 and is used to specify one of two sprite
numbers in sprite to sprite operations or one offour sprite numbers in animated
sequences.

SP2,e1 The value of the expression e1 is assigned to the graph ics variab le SP2. The
value m ustbe in the range 1 to255and isu sed in a sim ila rm annerto SP1 above.

SP3,e1 The value of the expression e1 is assigned to the graph ics variab le SP3. The
value must be in the range 1 to 255 and is used as one of four sprite numbers in
an animated sequence.

SP4,e1 The value of the expression e1 is assigned to the g raph ics variab le SP4. The
va lu em ustbe in the range 1 to255and isu se da so neo fth e fo u rsp rite num be rs
in an animated sequence.

SCL,e1 The value of the expression e1 is assigned to the g raph ics variab le SCL. The
value must be in the range 0 to 255 and is used to specify the column of a sprite
w indow within a sprite or the screen column for the target of a rotation.

S R W, e 1 The value of the expression e1 is assigned to the graphics variable SRW. The
value must be in the range 0 to 255 and is used to specify the row of a sprite
w indow within a sprite or the screen row for the target of a rotation.

NPX,e1 The value of the expression e1 is assigned to the graph ics variable NPX. The
value must be in the range -128 to 255 and is used to specify the size (in pixels)
and d irection by which to vertica lly scro ll a screen window, sprite w indow or
whole sprite.

KEY,e1 The value of the expression e1 is assigned to the graph ics variab le KEY. The
value must be in the range 0 to 79 and specifies amongst other th ingsthe KEY to
be scanned for bythe KBFN command orthe key/joystick row to be scanned by
the FM VJ, BMVJ, XM VJ and W M VJ commands.

SETQ,3V1 The value in the graph ics variable SET is assigned to the BASIC variable V1. V1
must be an integer variable.

XCLQ,3V1 The value in the graph ics variable XC L is assigned to the BASIC variable V1. V1
must be an integer variable.

IK1Q,3V1 The value in the g raph ics variab le IK1 is assigned to the BASIC variable V 1 . V1
must be an integer variable.

IK2Q,aV1 The value in the g raph ics variable IK2 is assigned to the BASIC variable V1. V1
must be an integer variable.

C0LQ,aVl The value in the g raph ics variab le CO L is assigned to the BASIC variab le V1. V1
must be an integer variable.

R 0 WQ, 3 V 1 The value in the graph ics variab le ROW is assigned to the BASIC variable V1 . V1
must be an integer variable.

LENQ,3V1 The value in the graph ics variable LEN is assigned to the BASIC variable V1. V1
must be an integer variable.

HGTQ,av1 The value in the g raph ics variab le HGT is assigned to the BASIC variab le V1. V1
must be an integer variable.

SPNQ,aV1 The value in the g raph ics variab le SPN is assigned to the BASIC variable V1. V1
must be an integer variable.

spiQ,avi The value in the graph ics variable SP1 is assigned to the BASIC variable V1. V1
must be an integer variable.

SP2Q,aV1 The value in the graph ics variable SP2 is assigned to the BASIC variable V1. V1
must be an integer variable.

SP3Q,3V1 The value in the graph ics variable SP3 is assigned to the BASIC variable V1. V1
must be an integer variable.

70

SP4Q,3V1

SCLQ,3V1

S RWQ, 3V 1

NPXQ,3V1

KEYQ,avl

EXXV

SWPS

ASTV

Parameter
SPN

AVTS

Parameter
SPN
SET
ESAV

Paramete r
SPN
SET

The value in the graph ics variable SP4 is assigned to the BASIC variable V1. V1
must be an integer variable.
The value in the graph ics variable S C L is assigned to the BASIC variable V1. V1
must be an integer variable.
The value in the g raph ics variable SRW is assigned to the BASIC variable V1. V1
must be an integer variable.
The value in the g raph ics variab le NPX is assigned to the BASIC variable V1. V1
must be an integer variable.
The value in the g raph ics variab le KEY is assigned to the BASIC variab le V1. V1
must be an integer variable.
Exchange foreground and background SET variables. In order to allow the user
to utilise locomotive BASIC ’s powerful EVERY and AFTER comm ands it is
necessary to be ab le to save the current value for SET and assign the new value
that the interrupt now requires. EXXV should be executed as the first and last
comm ands of all interrupt routines.
Swop the sprite numbers in SP2 and SP4. Th is command is provided so that the
order of an animation sequence can be reversed.
A ss igns sprite data to current variable SET. The sprite should contain 20 bytes of
information and must have a height of 1 and a length of 20, otherw ise a
parameter error will be issued.

Use
Number of the sprite containing the data for variables.
SET The set to which the data should be assigned.

A ss ign the current variab le set to the sprite whose number is held in SPN . The
sprite must have a height of 1 and a length of 20, otherw ise a parameter error will
be issued.

Use
Number of the sprite which will contain data.
The set of variab les to be assigned.
Exchange the current variable set with the data in the sprite whose number is
held in SPN . The sprite must have a height of 1 and a length of 20, otherw ise a
parameter error will be issued.

Use
Number of the sprite containing the data to be exchanged.
The set of variab les to be exchanged.

SYSTEM SWITCHES

0 N L 0 Puts the hardware and software into 16 co lou r mode. Th is should be executed instead of
BASIC ’s M ODE command.

0 N Η I Puts the hardware and software into 4 co lour mode. Again this rep laces the use of BASIC ’s
M ODE command.

C L L 0 Puts the software into 80 colum n mode. In th is mode column 79 is the rightmost column.
C L H I Pu tsthe software in to160co lum n mode. In this mode, all G E T sand PUTstrea tthe screen

as being 160 co lum ns w ide and column 159 is the rightmost column. Note, however, that
for all other purposes the screen is still treated as having 80 co lum ns and in particular,
w indow s defined for scro lling, m irroring etc., will still treat the screen as having 80
columns.

IMPORTANT NOTE:

When operations are carried out on sprites or sprite w indow s the ONHI and ONLO comm ands are
needed to inform the system that the mode has been changed BEFO RE the operation is carried out. If,
for instance, a 16 co lour sprite is M ASKed and the last sw itch used was ONHI, then the sprite will be
corrupted.

71

GROUP 1 GETs and PUTs
Group 1 G ET s and PU Ts are prefixed with GT and PT respectively. G ET comm ands use a screen
w indow as their source of data and a sp riteas their destination. PU Ts use a sprite as their source and
the screen as their destination. Each command has one of six suffixes.
BL Data is b lock moved from source to destination and rep laces the data previously held in the

destination.
OR Data from the source is ORed into the data currently held in the destination.
ND Data from the source is ANDed into the data currently held in the destination.
XR Data from the source is XORed into the data currently held in the destination.
BH Data from the source is p laced behind data in the destination.
IF Data from the source is p laced in front of data in the destination.
In each case, SPN is used to specify the sprite and CO L and ROW are used to define the top left hand
corner of a screen window. The d im ensions ofthe w indow are the d im ensions of the sprite and in the
event of the w indow overlapping the screen border, the operation takes p lace on the "on-screen '
portion of the window. If the sprite is wholly off screen no operation takes p lace but no errors are
generated.
For each of the twelve com m ands in G roup 1:
Parameter Use
SPN The number of the sprite to be used.
CO L The screen column of the window.
ROW The screen row of the window.
@V1 Used in co llis ion detection (see next section).

Command Action
G T B L B lock move screen w indow into sprite.
G T 0 R OR screen w indow into sprite.
G TN D AND screen w indow into sprite.
G T X R XOR screen w indow into sprite.
G T B H P lace screen w indow data behind sprite data.
G T I F P lace screen w indow data in front of sprite data.
P T B L B lock move sprite into screen window.
PTOR O R sp rite in to sc re enw indo w .
P T N D AND sprite into screen window.
P T X R XOR sprite into screen window.
P TBH P lace sprite data behind screen w indow data.
PT I F P lace sprite data in front of screen w indow data.

Collision Detection
Each of the 12 com m ands in this group can be executed with or without co llis ion detection. If any of
the com m ands in the group is executed without a follow ing parameter then detection is flagged “off"
If the command is executed with the address of an integer variable as its single operand, then
detection is flagged "on”. Co llis ion detection will slow the execution and should only be used when
necessary. If the sou rce data co llid e s with the target data then the value in the BASIC variab le is
incremented, but if not, remains unchanged.
Example: If the value of X% was set to 7 and the command PTBH,@X% were executed.

then co llis ion between the sprite and screen data would cause X% to be
incremented so that it subsequently held 8.

GROUP II GETs and PUTs
Group II G ET s and PU Ts are prefixed with GW and PW respectively. The GET comm ands use a
screen w indow as their sou rce of data and a sprite w indow as their destination. The PU Ts use a
sprite w indow as their source and a screen w indow as their destination. Each command has one of
six suffixes:
BL Data is b lock moved from sou rce to destination and rep laces the data previously held in the

destination.

72

OR Data from the source is ORed into the data currently held in the destination.
ND Data from the source is ANDed into the data currently held in the destination.
XR Data from the source is XORed into the data currently held in the destination.
BH Data from the source is placed behind data in the destination.
IF Data from the source is placed in front of data in the destination.
In each case SPN is used to specify the sprite, S C Lan d SRW specify the column and row of the sprite
w indow within the sprite, C O Lan d ROW specifythe column and row ofthe screen w indow and HGT
and LEN spec ify the d im ensions ofthe window. Thed im ens ions ofthe w indow will be reduced ifthe
w indow lies partially “off-sprite" or "off-screen”. If the w indow is wholly “off-sprite" or "off-screen"
then no operation will take place, but no error m essage will be generated.
For each of the twelve comm ands in Group II:

Parameter Use
SPN The number of the sprite to be used.
SC L T he sp r ite co lum no fth ew indo w .
SRW The sprite row of the window.
CO L The screen column of the window.
ROW The screen row of the window.
LEN The width of the window.
HGT T hehe ig h to fth ew indow .
@V1 Used in co llis ion detection.

Command Action
GWBL B lock move screen w indow into sprite window.
GWOR OR screen w indow into sprite window.
GWND AND screen w indow into sprite window.
G W X R XOR screen w indow into sprite window.
GWBH P lace screen w indow data behind sprite w indow data.
G WI F P lace screen w indow data in front of sprite w indow data.
PWBL B lock move sprite w indow into screen window.
PWOR OR sprite w indow into screen window.
PWND AND sprite w indow into screen window.
PWXR XOR sprite w indow into screen window.
PWBH P lace sprite w indow data behind screen w indow data.
PWI F P lace sprite w indow data in front r1 screen w indow data.

Collision Detection
Co llis ion detection for the Group II com m ands works in exactly the same way as the previously
described Group I commands. If no param eterfo llow sthecom m and then detection isoff, ifan integer
variable address fo llows the command then the variable will be incremented if co llis ion takes place,
or remain unchanged if no co llis ion is detected. Again detection will slow the operation of the
command.

GROUP III GETs and PUTs
Group III G E T s and PU Ts are prefixed with GM and PM respectively. The G ET comm ands use a
sprite w indow as their source of data and a whole sprite as their destination. The PU Ts use a whole
sprite as their source and a sprite w indow as their destination. Each command has one of six
suffixes:
BL Data is b lock moved from sou rce to destination and rep laces the data previously held in the

destination.
OR Data from the source is ORed into the data currently held in the destination.
ND Data from the source is ANDed into the data currently held in the destination.
XR Data from the source is XORed into the data currently held in the destination.
BH Data from the source is p laced behind data in the destination.
IF Data from the source is p laced in front of data in the destination.

73

In each case SP1 is used to specify the whole sprite, SP2 specifies the sprite containing the window,
SC L and SRW specify column and row ofthe w indow in sprite SP2 and d im ensions ofthe w indow are
the d im ensions of sprite S P 1 . The d im ensions of the w indow will be reduced of the values of SC L and
SRW cause sprite SP1 to overlap the borders of sprite SP2. If SP1 lies wholly "off-sprite” then no
operation will take p lace but no error will be generated.
For each of the twelve comm ands in Group III:

Parameter Use
SP1 The number of the whole sprite.
SP2 The number of the sprite containing the sprite window.
S C L Colum n of the sprite w indow in sprite SP2.
SRW Row of the sprite w indow in sprite SP2.
@V1 Used in co llis ion detection.

Command Action
GHBL B lock move sprite w indow into whole sprite.
GMOR OR sprite w indow into whole sprite.
GMND AND sprite w indow into whole sprite.
GMXR XO R sprite w indow into whole sprite.
GMBH P lace whole sprite data behind sprite w indow data.
GMI F P lace whole sprite data in front of sprite w indow data.
PMBL B lock move whole sprite into sprite window.
PMOR OR whole sprite into sprite window.
PMND AND whole sprite into sprite window.
P Μ X R XOR whole sprite into sprite window.
PMBH P lace sprite w indow data behind whole sprite data.
PM I F P lace sprite w indow data in front of whole sprite data.

Collision Detection
Co llis ion detection for the G roup III comm ands works in exactly the same way as the previously
described Group I and II commands. If no parameter follows the command then detection is off, if an
integer variable address fo llows the command then the variable will be incremented if co llis ion takes
p lace or remain unchanged if no co llis ion is detected. Again, detection will slow the operation ofthe
command.

IMPORTANT NOTE:
Ensure that ONLO and ONHI are used to put Laser BASIC into the correct mode before using 'G M ' or
'PM ' commands.

GROUP I SCROLLS AND WRAPS
Group I scro lls and w raps are prefixed with SV and WV respectively. The scro ll comm ands scroll data
without wrap and the w raps scro ll data with wrap. Each command has one of six suffixes:
R1 Data moves right by 1 pixel. Th is is 1 /320 ofthe screen width in 4 co lour mode or 1/160 ofthe

screen width in 16 co lour mode.
L1 Data moves left by 1 pixel. Th is is 1 /320 ofthe screen width in 4 co lour mode or 1/160 ofthe

screen width in 16 co lour mode.
R4 Data moves right by 1 byte. Th is is 1 /80 of the screen width in both modes. In 4 co lour mode

this represents a 4 pixel move and in 16 co lour mode this represents a 2 pixel move.
L4 Data moves left by 1 byte. Th is is 1 /80 ofthe screen width in both modes. In 4 co lou rm odeth is

represents a 4 pixel move and in 16 co lour mode this represents a 2 pixel move.
R8 Data moves right by 2 bytes. Th is is 1 /40 ofthe screen width in both modes. In 4 co lour mode

this represents an 8 pixel move and in 16 co lour mode this represents a 4 pixel move.
L8 Data moves left by 2 bytes. Th is is 1 /40 of the screen width in both modes. In 4 co lour mode

this represents an 8 pixel move and in 16 co lour mode this represents a 4 pixel move.
In each case CO L and ROW specify the column and row of the top left ofthe screen w indow and HGT
and LEN specify the d im ensions ofthe window. The d im ensions ofthe w indow will be adjusted ifthe
w indow lies partially "off-screen". If the w indow is wholly "off-screen" then no operation will take
p lace but no error will be generated.

74

For each of the twelve comm ands in G roup I:

Parameter Use
CO L
ROW
LEN
HGT
e1
e2

Column of screen window.
Row of screen window.
Width of screen window.
Height of screen window.
Optional parameter to specify number of executions.
Optional parameter to specify frame sync status.

Command Action
SVR1 Scroll screen w indow right, 1 pixel, no wrap.
SVL1 Scroll screen w indow left, 1 pixel, no wrap.
S V R 4 Scroll screen w indow right, 1 byte, no wrap.
S V L 4 Scroll screen w indow left, 1 byte, no wrap.
S V R 8 Scroll screen w indow right, 2 bytes, no wrap.
S V L 8 Scroll screen w indow left, 2 bytes, no wrap.
WVR1 Scroll screen w indow right, 1 pixel. with wrap.
UVL1 Scroll screen w indow left, 1 pixel, with wrap.
WVR4 Scro ll screen w indow right, 1 byte, with wrap.
WVL4 Scro ll screen w indow left, 1 byte, with wrap.
WVR 8 Scro ll screen w indow right, 2 bytes, with wrap.
WVL8 Scro ll screen w indow left, 2 bytes, with wrap.

Repeated Execution
If any of the Group I sc ro lls or w raps (or Group II or III scro lls or wraps for that matter) is executed
without any follow ing parameters, then the command will simply execute once. If, however, the
command is followed by 2 expressions then the command will repetetively execute. The first
expression sets the number of times the command will execute. The second parameter specifies
whether the command will synchron ise with frame-flyback or not. A zero value for the second
parameter causes the command to repeatedly execute without delay but a non-zero value causes
the execution to com m ence 50 times a second (or multiples of 1 /50 second period depending on the
execution time) and thus produces much smoother movement. If the command is followed by 1
parameter or more than 2 parameters then ** PARAM ETER ERROR ** will be displayed.

GROUP II SCROLLS AND WRAPS
Group II sc ro lls and w raps are prefixed with SS and W S respectively. The scro ll comm ands scroll
data without wrap and the w raps scro ll data with wrap. Each command has one of six suffixes:
R1 Data moves right by 1 pixel. Th is is 1 /320 ofthe screen width in 4 co lour mode or 1 /160 ofthe

screen width in 16 co lour mode.
L1 Data moves left by 1 pixel. Th is is 1 /320 o fthe screen width in 4 co lour mode or 1 /160 ofthe

screen width in 16 co lour mode.
R4 Data moves right by 1 byte. Th is is 1 /80 of the screen width in both modes. In 4 co lour mode

this represents a 4 pixel move and in 16 co lour mode this represents a 2 pixel move.
L4 Data moves left by 1 byte. Th is is 1 /80 ofthe screen width in both modes. In 4 co lour mode this

represents a 4 pixel move and in 16 co lour m odeth is represents a 2 pixel move.
R8 Data moves right by 2 bytes. Th is is 1 /40 ofthe screen width in both modes. In 4 co lou rm ode

this represents an 8 pixel move and in 16 co lour mode this represents a 4 pixel move.
L8 Data moves left by 2 bytes. Th is is 1 /40 of the screen width in both modes. In 4 co lour mode

this represents an 8 pixel move and in 16 co lour mode this represents a 4 pixel move.
In each case, SPN specifies the sprite to be scro lled or wrapped, so for each of the twelve commands
in Group I:

Parameter Use
SPN Sprite to be scro lled or wrapped.

75

Command Action
SSR1 Scro ll sprite right, 1 pixel, no wrap.
S S L 1 Scro ll sprite left, 1 pixel, no wrap.
S S R 4 Scro ll sprite right. 1 byte, no wrap.
S S L 4 Scro ll sprite left, 1 byte, no wrap.
S S R 8 Scro ll sprite right, 2 bytes, no wrap.
S S L 8 Scro ll sprite left, 2 bytes, no wrap.
WSR1 Scro ll sprite right, 1 pixel, with wrap
WSL1 Scro ll sprite left, 1 pixel, with wrap.
WSR4 Scro ll sprite right, 1 byte, with wrap.
U S L 4 Scro ll sprite left, 1 byte, with wrap.
WSR8 Scroll sprite right, 2 bytes, with wrap.
WSL8 Scro ll sprite left, 2 bytes, with wrap.

Repeated Execution
Group II sc ro lls and w raps can be repeatedly executed in exactly the same manner as previously
described for G roup I repeated execution.

GROUP III SCROLLS AND WRAPS
Group III sc ro lls and w raps are prefixed with SP and W P respectively. The scro ll com m ands scroll
data without wrap and the w raps scroll data with wrap. Each command has one of six suffixes:
R1 Data moves right by 1 pixel. Th is is 1 /320 ofthe screen width in 4 co lour mode or 1/160 ofthe

screen width in 16 co lour mode.
L1 Data moves left by 1 pixel. Th is is 1 /320 ofthe screen width in 4 co lour mode or 1/160 ofthe

screen width in 16 co lour mode.
R4 Data moves right by 1 byte. Th is is 1 /80 o fthe screen width in both modes. In 4 co lour mode

this represents a 4 pixel move and in 16 co lour mode this represents a 2 pixel move.
L4 Data moves left by 1 byte. Th is is 1 /80 ofthe screen width in both modes. In 4 co lour mode this

represents a 4 pixel move and in 16 co lour mode this represents a 2 pixel move.
R8 Data moves right by 2 bytes. Th is is 1 /40 ofthe screen width in both modes. In 4 co lour mode

this represents an 8 pixel move and in 16 co lour mode this represents a 4 pixel move.
L8 Data moves left by 2 bytes. Th is is 1 /40 of the screen width in both modes. In 4 co lour mode

this represents an 8 pixel move and in 16 co lour mode this represents a 4 pixel move.
In each case SPN specifies the sprite contain ing the w indow to be scrolled, CO L and ROW contain
the column and row at the top left of the w indow within the sprite, and LEN and HGT specify the
d im ensions of the window. If the cho ice of CO L and ROW causes the w indow to lie partially
“ off-sprite" then the w indow dim ensions are adjusted accord ing ly and if the w indow lies wholly
“off-sprite" then no execution takes p lace but no error m essage is generated.

Parameter Use
SPN Number of the sprite containing the window.
CO L Sprite column of the w indow
ROW Sprite row of the window.
LEN Width of the window.
HGT Height of the window.
Command Action
SPR1 Scro ll sprite w indow right, 1 pixel, no wrap.
S P L 1 Scro ll sprite w indow left, 1 pixel, no wrap.
S P R 4 Scro ll sprite w indow right, 1 byte, no wrap.
S P L 4 Scro ll sprite w indow left, 1 byte, no wrap.
S P R 8 Scro ll sprite w indow right, 2 bytes, no wrap.
S P L 8 Scro ll sprite w indow left, 2 bytes, no wrap.
WPR 1 Scro ll sprite w indow right, 1 pixel, with wrap.
WPL1 Scro ll sprite w indow left, 1 pixel, with wrap.
WPR4 Scro ll sprite w indow right, 1 byte, with wrap.
WPL4 Scro ll sprite w indow left, 1 byte, with wrap.
UP R 8 Scro ll sprite w indow right, 2 bytes, with wrap.
WPL8 Scro ll sprite w indow left, 2 bytes, with wrap.

76

Group III sc ro lls and w raps can be repeatedly executed in exactly the same manner as previously
described for G roup I and II repeated execution.

GROUP IV SCROLLS AND WRAPS
These are the vertical sc ro lls and wraps, and each is suffixed with VN (Vertically NPX). The scro ll
comm ands scro ll without wrap and are prefixed with S, whilst the w raps scro ll with wrap, and are
prefixed with W. There are three differenttypes (given by the second character in the name) and these
are:

Repeated Execution

Type V
Scro lling takes p lace on a screen window, where CO L and ROW specify the screen position of the
w indow top left and HGT and LEN specify the w indow dim ensions. The w indow parameters are
adjusted if it lies partially "off-screen".

Type S
Scrolling takes p lace on the whole sprite whose number is held in SPN.

Type P
Scro lling takes p lace on a sprite window. The number of the sp rite isg iven by SPN and the w indow is
specified by COL, ROW, HGT and LEN. The w indow is adjusted if it lies partially "off-sprite".

Command Action
SVVN The screen w indow is scro lled vertically by NPX pixels, without wrap.
WVVN The screen w indow is scro lled vertically by NPX pixels, with wrap.

Parameter Use
CO L
ROW
LEN
HGT
NPX

Screen column of w indow top left.
Screen row of w indow top left.
Width of screen window.
Height of screen window.
S ize and d irection of scro ll in p ixe ls (1/200 of screen height). Positive values
cause upward movement and negative values cause downward movement.

Command Action
S S V N The sprite is scro lled vertically by NPX pixels, without wrap.
WSVN The sprite is scro lled vertically by NPX pixels, with wrap.

Parameter Use
SPN Number of the sprite to be scrolled.
NPX S ize and direction of scro ll in pixels.

Command Action
SPVN The sprite w indow is scro lled vertically by NPX pixels, without wrap.
WPVN The sprite w indow is scro lled vertically by NPX pixels, with wrap.

Parameters Use
SPN
CO L
ROW
LEN
HGT
NPX

Number of sprite to be scrolled.
Sprite co lum n of w indow top left.
Sprite row of w indow top left.
W idth of sprite window.
Height of sprite window.
S ize and direction of scroll in pixels.

Repeated Execution
Group IV scro lls and w raps can be repeatedly executed in exactly the same manner as previously
described in G roup I, II and III commands.

77

IMPORTANT NOTE:
Ensure that ONLO and ONHI have been executed correctly before carrying out any operations on
sprites or sprite windows.

TRANSFORMATIONS
A range of com m ands are included in the package which carry out various transformations on
sprites, sprite w indows or screen w indows. In each case oniy the w indow or the sprite itself is
affected, and there is no flow of data between the w indow or sprite being transformed and any other
w indows or sprites. There are three data types (indicated by the command suffix) and these are:

Type V
Transform ationstake p lace on a screen w indow where CO L and ROW specify the screen position of
the w indow top left and HGT and LEN specify the w indow dim ensions. The w indow parameters are
adjusted if it lies partially “off-screen".

Type S
The transformation takes p lace on the whole sprite whose number is held in SPN.

Type P
The transformation takes p lace on a sprite window. The number of the sprite is given by SPN and the
w indow is specified by COL, ROW, HGT and LEN. The w indow is adjusted if it lies partially
“off-sprite".

GROUP I TRANSFORMATIONS
Group I transform ations are all type V and are carried out on screen w indows. Each command is
suffixed with V. For the follow ing comm ands in G roup I:

Parameter Use
CO L
ROW
LEN
HGT

Screen column of w indow top left.
Screen row of w indow top left.
W indow width.
W indow height.

Command Action
CLSV
M6XV
MGYV
MIRV
MORV

FIPV
FOPV

INVV

C lear w indow to paper co lour (INK 0).
X-expand left hand half of screen w indow into full screen window.
Y-expand top half of screen w indow into full screen window.
M irror screen w indow about its vertical centre.
M irror left hand half of screen w indow into right hand half (creates a horizontally
symetric window).
M irror screen w indow about its horizontal centre.
M irror top half of screen w indow into bottom half (create a vertica lly symetric
window).
Invert (1’s compliment) all the pixel data in the screen window.

For the follow ing comm ands in G roup I:

Parameter Use
CO L
ROW
LEN
HGT
IK1
IK2

Screen column of w indow top left.
Screen row of w indow top left.
Width of window.
Height of window.
First INK colour.
Second INK colour.

Command Action
S T C V Fill screen w indow with the INK whose number is held in IK1.
SETV Re-co lou r a w indow graphic. Rep laces every pixel which currently has the

co lour w hose number is held in IK1, by a pixel which has the co lour whose
number is held in IK2.

78

GROUP II TRANSFORMATIONS
Group II transform ations are all type S and are carried out on whole sprites, and each command is
suffixed with S.
For the following com m ands in Group II:

Parameter
SPN

Use
Number of sprite to transform.

Command
CLSS
MGXS
MGYS
MIRS
MORS

Action
C lear sprite to paper co lour (INK 0).
X-expand left hand half of sprite into full sprite.
Y-expand top half of sprite into full sprite.
M irror sprite about its vertical centre.
M irror left hand half of sprite into right hand half (creates a horizontally symetric
sprite).

FIPS Mirror sprite about its horizontal centre.
F 0 P S M irror top half of sprite into bottom half (creates a vertically symetric sprite).
For the following comm ands in G roup II:

Parameter
SPN
IK1
IK2

Use
Number of sprite to be transformed.
First INK number.
Second INK number.

Command
STCS
SETS

Action
Fill whole sprite with the INK whose number is held in IK1.
Reco lour a sprite graphic. Rep laces every pixel which currently has the colour
w hose number is held in IK1, by a pixel which has the co lour w hose number is
held in IK2.

GROUP III TRANSFORMATIONS
Group III transformations are all type P and are carried out on a sprite window. Each command is
suffixed with P.
For the follow ing comm ands in G roup III:

Parameter
SPN
CO L
ROW
LEN
HGT

Use
Number of sprite to be transformed.
Sprite column of the w indow top left.
Sprite row of w indow top left.
Width of sprite window.
Height of sprite window.

Command
CLSP
MGXP
MIRP
M0RP

Action
C lear sprite w indow to paper co lour (INK 0).
X-expand left hand half of sprite w indow into full window.
M irror sprite w indow about its vertical centre.
M irror left hand half of sprite w indow into right hand half (creates a horizontally
symetric sprite window).

INVP Invert (1 's compliment) all the p ixe ls in the sprite window.
For the follow ing comm ands in G roup III:

Parameter

SPN
CO L
ROW
LEN
HGT
IK1
IK2

Use
Number of the sprite to be transformed.
Sprite column of w indow top left.
Sprite row of w indow top left.
Width of sprite window.
Height of sprite window.
First INK number.
Second INK number. ^

Com m and
S T C P Fill sprite w indow with the INK whose number is held in IK1.
S E T P R e -co lou ra spritegraphic. Rep lacesevery pixel which currently ha sthe co lou r

whose number is held in IK1, by a pixel which has the co lour whose number is
held in IK2.

IMPORTANT NOTE:
Ensure that ONLO and ONHI have been correctly executed before carrying out any operations on
sprites or sprite windows.

Ac tion

DATA EXCHANGES
Three data exchange com m ands are provided which utilise M ASKed sprites to allow data to be PUT
behind or in front of screen data, and which store the screen data in the sprite so that the screen and
sprite can be returned to their former state.
In each case, SPN is used to specify the number of the M ASKed sprite and CO L and ROW are used to
define the top left hand corner of a screen w indow. The height of the w indow isthe height ofthe sprite
but the width of the w indow is only half the width of the sprite. Th is is because of the internal format of
M ASKed sprites (see MASK). If any of these com m ands is executed with a sprite which has not been
masked then the outcome is unpredictable. If the w indow overlaps the screen border, the operation
takes p lace in the "on-screen '' portion of the window. If the w indow is wholly "off-screen" then no
operation takes p lace but no error is generated. Although the above description may sound rather
confusing, the effect of the operation is quite simple.
For each of the three commands:

Parameter Use
SPN The number of the masked sprite to use.
COL The screen column of the window.
ROW The screen row of the window.
@V1 Used in co llis ion detection.

Command Action
FSWP The masked sprite is p laced in front of the screen data and the screen data is

lifted into the sprite. Note that executing a second FSW P at the same CO L and
ROW with the same m asked sprite will return both the sprite and the screen to
their former states. If FSW P is not executed a second time, the sprite will be left
corrupted.

BPUT The masked sprite is placed behind the screen data and the screen data is lifted
into the sprite. Th is command does not do an exchange in the same way as
FSW P does and so BPUT should not be executed tw ice to restore the data
Instead, data is restored using a BGET.

BGET The m asked sprite data that was placed behind the screen data by the BPUT
command is lifted back up into the sprite and the screen is restored to the state it
was in before the BPUT. Note that BPU T should a lw ays be followed by BGET or
the masked sprite will be left in a corrupted state.

NOTE: If a sprite is used in a B PU T -B G E T sequence, then it cannot be used in a
FSW P-FSW P sequence un less the sprite is re-masked using RMSK.

Collision Detection
Data exchanges support co llis ion detection in exactly the same manner as the G ET s and PUTs
previously described.

UNEAR MOVE COMMANDS
There are four M O VE com m ands which allow a previously p laced sprite to be moved from one
screen position to another. The only difference between them is the type of operation they use to
make the movement. A ll M O VE com m ands can be repeatedly executed and have a co llis ion
detection option. A ll M OVE comm ands are suffixed with MOV.

80

Animation Sequences
The M O VE com m ands a lso provide a facility for animated movement and use the four graphics
variab les S P 1 , SP2, SP3 and SP4 for this purpose. Each time a move command isexecuted , a check
is first made to ensure that either HGT or LEN are non-zero. If both are in fact zero then no execution
takes place, nor is the animation sequence effected. If one or both of HGT and LEN are non-zero then
a movement w ill take place. At this stage it is assum ed that SP1 is the number of the sprite which was
previously PUT at the co-ord ina tes currently held in CO L and ROW. Th is sprite is removed, the
increm ents HGT and LEN are added to CO L and ROW, and sprite SP2 is PUT at the new C O L and
ROW position. In addition to this, the old va lues for CO L and ROW are rep laced by the new values
(incremented values) and the four sprite numbers are rotated. That is to say that SP1 takes the value
SP2 held, SP2 takes the value SP3 held, SP3 takes the value SP4 held, and SP4 takes the value SP1
held. If a sprite is to be moved without animation then simply se tS P1 , SP2, SP3 and SP4 to contain the
same sprite number.
For each of the four M O VE commands:

Parameter Use
SP1
SP2
SP3
SP4
COL
ROW
HGT
LEN
@V1
e1
e2

Sprite to be removed.
New sprite to be PUT.
Sprite to be PUT when SP2 is removed.
Sprite to be PUT when SP3 is removed.
Screen column of sprite to be moved.
Screen row of sprite to be moved.
Y-increm ent of movement.
X-increm ent of movement.
Variable address for co llis ion detection.
Number of times to execute the command.
Fram e-flyback synchronisation flag.

Command Action
FMOV M ove and animate, in front of screen data. Note that before the first execution of

FM OV, the masked sprite needs to be PUT to the screen ready to be moved. This
can be ach ieved either by using FSW P (when SPN is the same as SP1) or by
moving from an “o ff-screen" position to an “on -screen ” or partially "on -screen”
position. An FM OV sequence should be terminated either by executing another
FSW P with SPN equal to SP1, or by moving
“off-screen".

FMOV,@V1 Move and animate as for FM OV, but th is time co llis ion detection is on, and the
integer variable V1 is incremented if co llis ion
is detected.

FMOV,e1,e2 Move and animate as for FM OV, e1 times, with flyback synchronisation if e2 is
non-zero, without flyback synchronisation if e2 is zero.

FMOV,@V1 ,e1 ,e2 Move and animate as for FMOV, with detection, e1 times, with or without flyback
synchronisation.

BMOV Move and animate, behind screen data. Note that before the first execution of
BMOV, the masked sprite needs to be PUT to the screen ready to be moved. This
can be ach ieved either by using BPUT (where SPN is the same as SP1) or by
moving from an "off-screen” position to an "on-screen" or partially "on-screen"
position. A BM O V sequence should be terminated either by executing a BGET
with SPN equal to SP1, or by moving "off-screen". BM OV and BGET can only be
used with masked sprites and every sprite which has been “BM OVed" will need
to be re-masked before it can be "FM OVed".

BMOV,@V1 Move and animate as for BMOV, but this time co llis ion detection is on and the
integer variable V1 is incremented if co llis ion is detected.

BMOV,et,e2 Move and animate as for BMOV, e1 times, with flyback synchronisation if e2 is
non-zero, without flyback synchronisation if e2 is zero.

BMOV,@V1,e1 ,e2 Move and animate as for BMOV, with detection, e1 times, with or without flyback
synchronisation.

81

XMOV

XMOV,@V1

XMOV,e1,e2

Move and animate, using the exc lu s ive -O R operation. Note that before the first
execution of XMOV, the non-m asked sprite needsto be PUT to the screen ready
to be moved. T h iscan beach ieved e itherby using PTXR (w hereSPN isthe same
as S P1) or by moving from an "o ff-screen” position to an "on-screen" or partially
"on-screen" position. An XM O V sequence need not be terminated as the sprites
being used are not affected by the XOR operation. If, however, the sprite is to be
removed from the screen (without clearing the screen window) then this can be
achieved by executing another PTXR (with SPN equal to SP1), or by simply
moving "off-screen".
Move and animate as for XMOV, but this time co llis ion detection is on and the
integer variable V1 is incremented if a co llis ion is detected.
Move and animate as for XM OV, e1 times, with flyback synchronisation if e2 is
non-zero, without flyback synchronisation if e2 is zero.

XMOV,@V1 ,e1 ,e2 Move and animate as for XMOV, with detection, e1 times, with or without flyback
synchronisation.

WMOV Move and animate, using a b lock over-write operation. The block over-write
operation is a lot le ss sophisticated than the previous three M OVE types, but it
can be as much as ten times faster in its execution. When W M OV is executed it is
assum ed that SP1 was PUT to the screen at the current C O L and ROW. All
W M O V actually does is to add LEN and HGT to the current CO L and ROW values
and PUT SP2 to these new co-ord inates. Fo rth is reason SP2 must have a blank
border (containing no data) which is at least as large as the increments HGT and
LEN, so thatthe old sprite SP1 is completely blotted out by the placing ofthe new
sprite SP2. C learly this would destroy any other screen data in the w indow being
used by SP2, but when a sprite is being moved over a blank background with no
other data present, this operation should always be used because of the
enorm ous time savings. The sprite can be removed from the screen using CLSV
or moving "off-screen".

WMOV,@ V1 Move and animate as for W M OV, but this time co llis ion detection is on, and the
integer variab le V1 is incremented if co llis ion is detected. In fact there is little
point in using this option, as a detection is inevitable (SP1 is being blotted out
and detection does slow execution down considerably.

WMOV,e1,e2 Move and animate as fo rW M O V , e1 times, with flyback synchronisation ife2 is
non-zero, without flyback synchronisation if e1 is zero.

WMOV,@V1 ,e1 ,e2 Move and animate as for W MOV, with detection, e1 times, with or w ithoutflyback
synchronisation. Again, the detection option is unlikely to be of use.

JOYSTICK/KEYBOARD MOVE COMMANDS
There are four com m ands in th is group and each a llow s a previously p laced sprite to be moved from
one screen position to another under keyboard or joystick control. A s with the previously detailed
M OVE commands, the only difference between them is the type of operation used to carry out the
movement. The four com m ands in this category can be repeatedly executed and have a co llis ion
detection option. All joystick/keyboard M OVE comm ands are suffixed with MVJ.

Animation Sequences

TheJ/K (jo ystick /keyboa rd) M OVE comm ands provide exactly the same animation facilities as the
previously described linear M O VE commands. If the joystick/keyboard is not activated then the
movement routines are effectively handed zero va lues for the X and Y increment and no movement
takes place. Th is means that the animation sequence does not increment either and th isprevents the
animation being out of step.
For each of the four commands:

Parameter Use
SP1 Sprite to be removed.
SP2 Next sprite to be PUT.
SP3 Sprite to be PUT when SP2 is removed.
SP4 Sprite to be PUT when SP3 is removed.
CO L Screen column of sprite to be moved.

82

ROW
HGT
LEN
@V1
e1
e2
KEY

Screen row of sprite to be moved.
Y-increm ent of movement.
X-increm ent of movement.
Variable address for co llis ion detection.
Number of times to execute command.
Fram e-flyback synchronisation flag.
Physica l row to poll for movement (see "GETTING STARTED").

Joystick/Keyboard Control
If the joystick/keyboard is not activated, no operation takes place.
If the joystick/keyboard is activated left, the sprite will move left by the value held in LEN. If LEN is
negative it will actually move right. If LEN is zero it will not move or animate.
If the joystick/keyboard is animated right, the sprite will move right by the value held in LEN. If LEN is
negative is will actually move left. If LEN is zero it will not move or animate.
Ifthe joystick/keyboard is activated upward, the sprite w ill move upward by theva lue held in HGT. If
HGT is negative it will actually move down. If HGT holds zero it will not move or animate.
If the joystick/keyboard is activated downward, the sprite w ill move downward by the value held in
HGT. If HGT is negative it will actually move upward. If HGT holds zero it will not move or animate.
Com binations o fthe above will cause diagonal movement.

Command
FMVJ

Action
The same action as the linear move FM OV, i.e. animate in front of screen data,
but the direction of movement is under joystick/keyboard control.

FMVJ,@V1 The same action as the linear move FM O V,@ V1, i.e. animate in front of screen
data, with co llis ion detection, but the direction of movement is under joystick/
keyboard control.

FMVJ,@V1,e1,e2 The same action as the linear move command FMOV,gV1 ,e1 ,e2 ,i.e. animate in
front of screen data, e1 times, with or without flyback synchronisation. Direction
of movement is under joystick/keyboard control.

BMVJ The same action as the linear move command BMOV, i.e. animate behind screen
data, but with the direction of movement under joystick/keyboard control.

BMVJ,@V1 The same action as the linear move command BM OV,@ V1, i.e. animate behind
screen data, with co llis ion detection, but with the direction of movement under
joystick/keyboard control.

BMVJ,@V1,e1,e2 The same action as the linear move command BMOV,gV1,e1,e2 ,i.e. animate
behind screen data, e1 times, with or without flyback synchronisation. Direction
of movement is under joystick/keyboard control.

XMVJ The same action as the linear move command XM OV, i.e. animate using the
exclu s ive -O R operation, but with the direction of movement under joystick/
keyboard control.

XMVJ,@V1 The same action as the linear move command XM OV,@ V1, i.e. animate using the
exc lu s ive -O R operation, with co llis ion detection, but with the direction of
movement under joystick/ keyboard control.

XMVJ,@V1,e1,e2 The sam e action as the linear move command XMOV,@V1,e1,e2 ,i.e. animate
using the exc lusive-O R operation, e1 times, with or without flyback synchron isa­
tion. D irection of movement is under joystick/keyboard control.

WMVJ The sam e action as the linear move command WMOV, i.e. animate with the block
over-w rite operation, but with the direction of movement under joystick/
keyboard control.

WMVJ,@V1 The same action as the linear move command WMOV,@V1, i.e. animate using
the b lock over-write operation, with co llis ion detection, but with the direction of
movement underjoystick/ keyboard control.

83

BOUNCING MOVE COMMANDS
There are four com m ands in this group and each a llow s a previously p laced sprite to be 'bounced'
within the confines of a pre-defined rectangular window. The w indow is set using the BWST
command which is described at the end of this section. Again, the difference between the four
com m ands in the group is the type of movement employed. Each command in this category can be
repeatedly executed and has a bounce detection option. All bouncing M OVE comm ands are suffixed
with BNC.

Animation Sequences
The bouncing M OVE com m ands use SP1, SP2, SP3 and SP4 to provide an animation option. The
‘frames' are rotated every time the command is executed un less the M O VE increments in HGT and
LEN are both set to zero, in this case no action is taken. When a 'bounce ’ takes place, the animation
sequence is automatically reversed. If bounce detection is 'on', then the user has the option to
're-reverse ' the sequence using SW PS if a bounce is tested for and found to have occurred. If,
however, the sprite bounces sim ultaneously on two edges, the result of the two 're-reversa ls ' will
cance l each other out and the animation sequence will not run in reverse. It should also be noted that
a double bounce will still only increment the co llis ion detection variable by 1 and there is no way of
testing for a double bounce without exam ining the co llis ion detection variable and SP2.

For each of the four commands:

Parameter Use
KEY

SP1
SP2
SP3
SP4
CO L
ROW
HGT
LEN
@V1
e l
e2

Number of the sprite containing the bounce w indow parameters. Note that KEY
and not SPN is used.
Sprite to be removed.
Next sprite to be PUT.
Sprite to be PUT when SP2 is removed.
Sprite to be PUT when SP3 is removed.
Screen column of sprite to be removed.
Screen row of sprite to be removed.
Y-increm ent of movement.
X-increm ent of movement.
Variable address for co llis ion detection.
Number of times to execute command.
Fram e-flyback synchronisation flag.

Command Action
FBNC The same action as the linear move FMOV, i.e animate in front of screen data, but

the direction of movement is subject to the bounce condition imposed by the
pre-defined bounce
window.

FBNC,@V1 The same action as the linear move FMOV,@ V1, i.e. animate in fron to f screen
data,th istim ew ith bouncedetection ,butd irection ofm ovem entissub jectto the
bounce condition.

FBNC,@V1,e1,e2 The same action as the linear move FMOV,@V1,e1,e2, i.e. animate in front of
screen data, with co llis ion detection, e1 times, with or without fiyback synchron­
isation. D irection of movement is subject to bounce condition.

BBNC The same operation as FBNC, but movement is behind screen data.
BBNC,@V1 The S3me operation as FBNC,@ V1, but movement is behind screen data.
BBNC,@V1 ,e1 ,e2 The same operation as FBNC,@ V1 ,e1 ,e2 but movement is behind screen data
XBNC The same operation as FBNC, but movement is acheived by the XOR operation
XBNC,@V1 The same operation as FBNC,gV1, but movement is acheived by the XOR

operation.
XBNC,@V1 ,e1 ,e2 The same operation as FBNC,@ V1 ,e1 ,e2, but movement is acheived by the XOR

operation.
WBNC The same operation a sFB N C , but movement is acheived by the block over-write

operation.

84

WBNC,@V1 The same operation as FBNC,gV1, but movement is acheived by the block
over-write operation.

WBNC,@V1,e1,e2 The same operation as FBNC,@V1,e1,e2, but movement is acheived by the
block over-write operation.

BWST

An additional command is required to set up the w indow in which 'bouncers’ are constrained to
move. The command is detailed in this section as it is only applicab le to this group of operations.

Parameter
KEY
CO L
ROW

LEN

HGT

Command
BWST

Use
The number of the sprite which is to contain the w indow information.
The left hand column of the window. Th is is the furthest left the sprite will move.
The top row of the window. Th is is the lowest row value the sprite will take before
bouncing.
Th is is the length of the w indow and is the horizontal d istance the sprite will
move, as m easured from COL, before bouncing. Note thatthe sprite s ize will not
affect the w indow size as it is the sprite co-ord inates which are constra ined to
move within the window.
Th is is the he igh to fthe w indow and is thevertical d istance the sprite will move,
as measured from ROW, before bouncing.

Action

Set up bouncing w indow data in sprite KEY. Note that the sprite contain ing the
data must have a height of 1 and a length of 4 or a parameter error will be issued.

THE DATA SCANNING COMMANDS

Three commands are provided for scanning screen windows, sprites and sprite w indows for pixel
data, and are complimentary to the co llis ion detection facility. These can be used in conjunction with
the log ical G ET s and PUTs to facilitate co llis ion detection and pattern matching. If, for instance, a
screen w indow isAN D ed with a sprite, then the SCAN commands can be used to detect data which, if
present, indicates a co llision. If a screen w indow is XORed with a sprite then again, the SCAN
commands can be used to detect data which, if absent indicates a pattern match. There are three data
types (indicated by the command suffix) and these are:

Type V

The scan takesp lace over a screen window, where CO L and ROW specify the screen position ofthe
w indow top left, and HGT and LEN specify the w indow dimensions. The w indow parameters are
adjusted if it lies partially “off-screen".

Type S
The scan takes place over the whole sprite whose number is held in SPN.

Type P

The scan takes p laceover a sprite w indow .The num berofthe sprite is given by SPN and thew indow
is specified by COL, ROW, HGT and LEN. The w indow is adjusted if it lies partially "off-sprite".

Parameter Use
CO L Screen column of w indow top left.
ROW Screen row of w indow top left.
LEN W indow width.
HGT W indow height.
V1 Data detection variable.

Command Action
SCNV,@V1 The screen w indow is scanned for pixel data, and if found, the integer variable

V1 is incremented.
SUMV,@V1 The 16 bit sum of all the data in the screen w indow is formed and the result

assigned to the BASIC variable V1.

85

SUMV,e1,
e2,...@V1

Aga in the 16 bit sum of all the data in the screen w indow is formed.
If more than one parameter is used however, the sum is compared with each
expression in the list and the position in the list of the first expression to match
the calculated sum is assigned to V1. If no match is found V1 is assigned 0. A
maximum of 8 parameters (including gV1) is allowed.

Parameter
SPN
V1

Use
The number of the sprite to be scanned.
Data detection variable.

Command
SCNS,@V1

Action
The sprite is scanned for pixel data, and if found, the integer variable V1 is
incremented.

SUMS,@V1 The 16 bit sum of all the data in the sprite is calculated and the result assigned to
the BASIC variable V1.

SUMS,e1,
e2,...@V1

Th is command works in exactly the same way as the previously described
SU M V command except that the sprite whose number held in SPN is used
instead of a screen window.

Parameter
SPN
CO L
ROW
LEN
HGT

Use
The number of the sprite containing the w indow to be scanned.
The column of the w indow top left.
The row of the w indow top left.
W idth of sprite window.
Height of sprite window.

Command
SCNP,@V1

Action

The sprite w indow is scanned for pixel data, and if found, the integer variableV1
is incremented.

SUMP,@V1 The 16 bit sum of all the data in the sprite w indow is formed and the result
assigned to the BASIC variable V1.

SUMP,e1,
e2,...@V1

Th is command works in exactly the same way as the previously described
described SU M V and SU M S comm ands except that a sprite w indow is used as
data for the sumation.

MISCELLANEOUS COMMANDS

FILL
Th is command is provided to fill irregular shapes with a particular INK. The user must specify the
co -o rd ina tes (in pixels) at which FILLing is to begin, and thenum ber ofthe INK to FILL with. The area
that contains the co lour of the pixel at the chosen starting point will be filled with the indicated INK. In
4 co lour mode the screen is 320 p ixe ls wide, in 16 co lour mode the screen is 160 p ixe ls wide. In both
cases the screen is 200 p ixe ls high. The FILL command makes extensive use of the machine stack
and if the object to be filled is particularly intricate the command may terminate before completing
with ** OUT OF M EM O R Y** . Fo rth is reason usethecom m and with greatcare .Thecom m and only
works with one data type and this is the screen.

Parameter
XCL

Use
Pixel co-ord inate of starting point (0 to 319 in 4 co lour mode or 0 to 159 in 16
colour mode) as measured from the left.

ROW Pixel co-ord inate of starting point (0 to 199 in both co lour modes) as measured
from the top of the screen.

IK1 INK number to fill with (0 to 3 or 0 to 15).

Command
FILL

Action
The screen is filled from the starting point outward, bounded by p ixe ls with a
co lour different from the starting point, or the screen edges.

86

SPNV
The screen window, indicated by COL, ROW, HGT and LEN is rotated by 90 degrees into a window
whose d im ensions are the transpose of the source w indow and whose top left is specified by SC L
and SRW. The w indows are adjusted to lie "on-screen". The source and target w indows should not
overlap or the results will be unpredictable, albeit spectacular!!! Th is command is provided for use
with screen data only. Note that the height of the w indow to be ‘S PU N ’ is rounded down to the nearest
8 pixels, i.e. HGTs of 25, 26, 27, 28, 29, 30 and 31 would all be rounded down to 24 - and so on.

Parameter Use
CO L
ROW
HGT
LEN
SCL
SRW

Screen column of source w indow top left.
Screen row of source w indow top left.
Height of w indow to be rotated. (Mod 8).
Width of w indow to be rotated.
Screen column of target top left.
Screen row of target top left.

Command Action
SPNV The screen w indow is rotated by 90 degrees in the c lockw ise direction, into a

second screen window, with the transposed dim ensions of the source window
and the top left specified by S C L and SRW.

KBFN,@V1
Th is command scansthe keyboard hardware (its BASIC equivalent scansthe table which is updated
on interrupt). Thus KBFN can beused to scan even if the interrupt is disabled. The command KBFN is
followed by one parameter, which is the address of a BASIC integer variable V1. If the key whose
number is specified in the graph ics variable KEY is pressed, V1 is incremented, otherwise it is
unchanged. M ultip le key p resses are thus enabled but if three keys on one row are pressed then the
hardware may return a fourth as being pressed.

Parameter Use
KEY Number of key to be tested (see Appendix A).

Command Action
KBFN,@V1 Test the key whose number is held in KEY and increment V1 if it is pressed.

SCLS

C lear the whole screen to INK 0 (paper colour), home the cursor to the top left, set the screen to
w indow 0 with full width, and height 24 rows. The bottom row cannot be used by BASIC but all of the
graph ics routines will utilise the whole screen. If the user changes the current w indow to be the
whole screen then hardware scro lling is enabled. Ifthis happensthen SC LS must be executed before
any of the extended graph ics commands. SC LS has no parameters.

Command Action
SC LS C lear the screen, home the cursor, make the screen the current stream and

define a w indow with the width of the screen and height 24 rows (1 less than the
full screen).

BILD
Th is command is used to set up screen backdrops and is really best explained by example. A data
com pression technique is used so that sprite building b locks are represented by bits in a data sprite.
The command has 5 parameters. CO L and ROW are used to specify where the building should begin
from. Note that CO L and ROW can be "off-screen" and the backdrop can be larger than the screen. In
each case the command will fit as much data as it can onto the screen. The graph ics variable TYP is
used to hold the type of operation that should be used to PUT the data to the screen.
Value in KEY Operation
0 B lock overwrite
1 Exclusive-OR
2 PUT in front of current data
3 PUT behind current data

87

The graph ics variable SP1 is used to hold the number ofthe sprite which is used as the building block
and the variab le SPN holds the number of the sprite which contains the BIT pattern that determ ines
where the building b locks will be PUT.

The Data Sprite Format
The format for the data sprite (containing the bit pattern) is quite straightforward. The width in
"sprites" ofthe scenario will be 8 times the width of the data sprite. Th is is because there are 8 bits per
byte. The height of the scenario in “ sprites” will be the height of the data sprite. The actual physical
size of the scenario a lso depends on the size of the sprite which forms the building block. If, for
instance, the sprite building block was 20 pixels high and 5 bytes w ide and the data sprite was 2 bytes
w ide and 10 bytes high, then the backdrop would be 5x2x8=80 bytes w ide and 20x10=200 p ixels high
and would exactly fill the screen. Thus ifyour basic build ing block is 20 p ixels high and 5 bytes wide
then you will need 20 bytes per “ screen”.

Parameter Use
CO L Screen column to begin building.
ROW Screen row to begin building.
KEY Typeofoperation .
SPN Number of data sprite (contains bit map).
SP1 Number of sprite to build with.

Command Action
BILD The data sprite, whose number is held in SPN, is scanned from left to right, a bit at

a time. If a bit is set then the sprite whose number is held in SP1 is PUT to the
screen and the column advanced by the width of the building sprite. If a bit is not
set then the column is simply advanced by the width of the build ing sprite. The
operation is repeated for each of the rows in the data sprite and each time the
screen row is advanced by the height of the building sprite. The overall effect is
just to expand from bit to sprite.

NOTE: The gaps between build ing b locks (represented by bits set to 0) are not
overwritten so data already present is not cleared. The data sprite can be
scro lled using WSVN, WSL4, WSR4, WSL8, W SR8 without corrupting the data
structure. Using the scro lls and suitable values for CO L and ROW, users can
create scenarios many screens high and w ide and move a screen w indow
through them. This is, however, an advanced technique and should not be
attempted until familiarity is gained with the whole package.

DEEK and DOKE

D EEK and DOKE are the 16 bit equivalents of P E EK and PO KE and are included in this package
because of their om ission from locomotive BASIC.

Command Action
DEEK,e1,@V1 16 bit equivalent of PEEK. The contents of the address e1 are assigned to the

BASIC integer variable V1.

Parameter

@V1
e1

Command
DOKE,e1,e2

Parameter
e1
e2

Use
Address of variable in the assignment.
BASIC expression for the address e l.

Action
16 bit equivalent of POKE. The low byte of the value of e1 is p laced in e1 and the
high byte is placed in e1+1.

Use'
Address to be 'DOKE'd.
Data to 'DOKE'

88

TRACKING SPRITES
Although one of the main aim s ofthe package throughout has been to keep the features as simple as
possib le, some complex features have been included for the more adventurous user. Before
attempting to use tracking sprites, p lease ensure that you are fully conversant with the workings of
the rest of the package. The nature o fthese com m ands m eansthatthey are not crash protected and
the outcome of m istakes is unpredictable.

Format for Tracking Sprites
A tracking sprite, in the context of Laser Basic, is not really a sprite at all. A tracking sprite is really a
primitive program which is held within a dummy sprite. The program contro ls where the sprite moves
to, the type of operation used for its movement, and which sprites are actually used in the animation
sequence. Th is provides much greater flexibility than the previously described M OVE commands
and the advanced user will appreciate that almost entire programs could be written using tracking
sprites alone. The format of the tracker is as follows:

BYTE USE
0,1 16 bit program counter. Th is is a pointer to the next instruction in the tracker sprite and is

advanced by the length of the instruction each time an instruction is executed.
2 The screen column at which the sprite was last PUT.
3 The screen row at which the sprite was last PUT.
4 The number of the sprite that was last PUT.
5 The type of move operation that the tracker is currently using.

The type byte has four fields:
B its 0 and 1 These specify the movement operation.

00 = Move in front of screen data.
01 = Move behind screen data.
10 = Move with the XOR operation.
11 = Move with block overwrite.

Bit 2 If bit 2 is set, then the increment will be joystick/keyboard controlled.
Bits 3,6 If bit 2 is set, then bits 3 to 6 specify the key row /joystick to be used.
Bit 7 If bit 7 is set, then co llis ion /bounce detection is enabled.

After the initial 6 bytes of system information com e the instructions themselves. If a sprite is simply to
be moved and animated then the instructions will be 3 bytes long:

BYTE OPERATION
0 The number of the sprite to be PUT. The system knows the number of the last sprite PUT

and if either XINC or YINC (see next paragraph) is non-zero then the last sprite to be PUT
will be removed and the new sprite to be PUT will be given by this byte. If this byte is zero
then the system does not execute a M OVE but instead looks for a control code (see Control
Codes in next section).

1 Th is is the X-increm ent and is the amount by which to move in the horizontal direction. The
M OVE command takes into accountw hether the system is in 80 or 160 column mode and
positive values move right and negative values move left.

2 Th is is the Y-increm ent and is the amount by which to move in the vertical direction.
Positive values move downward and negative values move upward.

NOTE: If the X-increm ent and the Y-increm ent are both zero the instruction is ignored and the
program counter is advanced to point to the next instruction before returning.

Control Codes
lfthe control program finds that byte 0 (which it expects to be a sprite number) contains a zero, then it
knows that a control code is to follow. There are four control codes in all, and these are:

Code Operation
0 Start at first instruction. The program counter is set to point to the first instruction in the

tracker. Th is instruction is executed and the program counter is advanced to point to the
second instruction before returning.

89

1 Start new track with sprite num berequal tothe value in the nextbyte ofthecurrenttracker.
The last sprite PUT is removed using the current operation and then the new tracker sprite
is launched.Track ing involves setting the program counterto point to the first instruction,
setting the CO L and ROW pointers to those of the sprite last removed and re-PUTting the
sprite just removed but using the operation specified in the new tracker. For this reason,
the new tracker must use the same type of sprite (masked or unmasked) as the old tracker.
Th is code should only be used if the tracker is being executed from within a controller or
the outcome is unpredictable.
Continue track with move type equal to the value in the next byte ofthe current tracker. The
current sprite is removed from the screen using the current operation, and then put back
using the new operation. Byte 5 of the tracker variab les is amended to hold the new move
type and then the next instruction in the current tracker is executed. Thus a code of 2
effectively executes 2 instructions and the program counter is therefore advanced by 6
bytes.

3 Start new track with sprite number equal to the value in the next byte of the current tracker
and program counter equal to the value in the next two bytes after that. The effect is exactly
the same as CO D E 1 except that the new tracker can be entered at a convenient point and
need not be run from the start. Again this code should only be used where the tracker is
being executed from within a controller.

4 Execute the command whose address (see ADDR) is in the next 2 bytes but one, using the
variable set whose number is in the next byte. For details of command addresses see the
section on compiler related commands.

Launching a Tracker
Before a tracker can be executed using the TM O V command, it needs to be "launched" using the
TPUT command. The TPU T command requires 5 parameters. The column and row at which to start
the track, the number of the first sprite to PUT, the number of the tracker and the value for the program
counter at which execution should begin. The first sprite is PUT to the screen and the system
information set up in the required tracker.

Parameter Use
CO L
ROW
KEY
SP1
e1

Screen column of start of track.
Screen row of start of track.
Holds the number of the sprite holding the tracker program.
First sprite to PUT.
Initial program counter value (1 = first instruction in tracker).

Command Action
TPUT,e1 Tracker KEY is in itia lised and sprite SP1 is p laced at the screen position

specified by COL,ROW using the operation specified by the tracker sprite KEY.
The program counter in the tracker KEY is set to the value of the expression e1.
The tracker can now be executed using the TM OV command.

Moving a Tracker
Parameter Use
KEY The number of the tracker, one instruction of which is to be executed.
@V1 Optional parameter which is the address of the BASIC integer variable which is

to be incremented if co llis ion detection is enabled and detected.

Command Action
TMOV Execute one instruction of the tracker whose number is held in KEY.
TMOV,@V1 Execute one instruction of the tracker whose number is held in KEY. If co llis ion

detection is enabled (BIT 7 of move type) and if a co llis ion is detected, increment
the BASIC integer variable V1.

90

CONTROLLERS
There are two controller commands, CPU T and CM OV. These are analogous to the TPUT and TM OV
com m ands but work with sets oftrackers instead of individual trackers. In each case the information
is held in sprites so theon ly parameter required is the number ofthe sprite containing the controller
information.

CPUT
The CPU T command launchesa ll thetrackers in the listcontained in thedata spritew hose number is
held in SPN . The format for the controller holding the launch information is as follows:

BYTE
0
1
2
3

Use
Number of tracker to be launched.
Screen column to launch at.
Screen row to launch at.
Number of first sprite to PUT.

4,5 16 bit offset into tracker, to begin execution at.
Bytes 6 to 11 contain the information for the second trackerto launch, 12 to 17 the next, and so on. The
end of the list is marked with a zero byte so that the number of the sprite to be launched is read as
zero.

Parameter
SPN

Use
Number of t ie sprite containing the launch information.

Command
CPUT

Action

The set of trackers whose launch information is contained in the sprite whose
number is held in SPN , are launched. Th is means effectively a series of T PU Ts
are executed using the parameters contained in the controller.

CMOV

O n ce a se t o ftra cke rsh a sb een launched u s in g th eC PU T command,the se tcan be executed using
the CM O V command. The format for the controller is as follows:

BYTE
0
1

Use
Number of the tracker to execute.
Th is byte is set to 2 if co llis ion detection is 'on' in the tracker, and if a co llis ion
occurred. If a co llis ion does not occur on the next CM O V it is re-set to 0.

Bytes 2 to 3 hold the second tracker to be executed and so on. Again the list is terminated with a zero.

Parameter
SPN

Use
The number of the sprite containing the list of trackers to execute.

Command
CMOV

Action

Execute an instruction in each of the trackers contained in the data sprite whose
number is held in SPN.

NOTE: If a tracker is executed with the instruction “ start new tracker" it will auto­
matically modify the data sprite to contain the number of the new tracker.

91

BACKGROUND EXECUTION
One of Laser BASIC ’s most unique and powerful features is its ability to execute repeatable
com m ands under interrupt. Th is means that a list of commands, each with its own associated
variable set, can be run in background (synchronised to the frame-flyback) while the normal BASIC
program runs in foreground. Using this facility will provide the user with the optimum speed and
smoothness.

Command
ISET,@V$

Action
The com m ands and their variab le sets contained in the string variable V$ are
compiled into the background table. The form atfor the string is as follows:
Bytes Use
0,3 First command.
4 Variable set for first command.
5,8 Second command.
9 Variable set for second command.

■

NOTE:

■
■

N,N+3 Last command.
N+4 Variable set for last command.
The required variable set is selected by using one of the 16 letters A to P. The last
character in the string must be a “#”.

Example: "W VR1AINVVBXMOVC#" would compile into the table the comm ands WVR1,
INVV and XM OV. WVR1 would use SET 0, INV would use SET 1 and XM OV
would use SET 2. The comm ands would execute in the above order and the
execution of the foreground program would be completely halted until the
completion of the full background task.

Command
IRUN,e1

Action
Beg ins execution of the background program which was compiled using ISET.
The value of the BASIC expression e1 is used to monitor the frequency of the
background program execution. If e1 is zero then the program will execute on
every flyback (50 times a second), if e1 is 1 then it will allow one flyback between
executions and so on up to 65535 which will only execute every twenty minutes
or so.

NOTE: IRUN should never be executed un less ISET has been executed previously.
IRUN should neverbeexecuted ifabackg round program isa lready running.To
ensure that no background program is executing use IEND(see next section) to
halt the background task, or press the “ ESC " key. If the execution time for the
task is longer then 1 /50th of a second and e1 is 0, then control will never return
from the background program. Th is may be the desired effect, but pressing the
“E S C ” key will always halt the execution of the background task and thus
prevent the system from becom ing 'locked-up'. Errors in the extended com ­
mands running in foreground will a lso halt the background task.

Command
lEND

Action
Halts execution of the background task. Th is command should always be
executed before re-executing ISET or IRUN.

For a list of comm ands which can be executed in background refer to the command summary.

COMPILER RELATED COMMANDS
With the exception of ADDR which is used with tracking sprites, these com m ands will probably only
be used if you intend to compile the Laser BASIC program you are writing, or are short of space.
The requirement for these extra com m ands stems from the fact that the RSX command table is not
part of the final compiled run-time program.

92

ADDR,@V1,@A$

Th is command ass igns to the BASIC integer variable V1, the execution address of the command
whose character string is in A$. For example to find out the execution address of WVR1 use:

AS = " M V R 1 " : | A D D R , a X % , a A $: P R I N T X%
The command m ustbeentered in uppe rcase cha rac te rso r" lllega l Com m and” will be reported. The
address returned is generally used as data for tracking sprites when control code 4 is employed.
ADDR cannot be compiled by the Laser BASIC compiler.

IPUTand IGET

Due to the fact that the RSX table is not present in com piled programs, ISET cannot be compiled
either. Th is would prevent background programs from being executed and so 2 additional
comm ands have been included.

IPUT

IPUT will store the current interrupt table (created by ISET) into the sprite whose number is held in
SPN.

IGET
IGET will retrieve the interrupt table data from the sprite whose number is held in SPN.
If you intend to com pile your Laser BASIC program then all you need to do is execute the ISET
command to set up the interrupt table and then execute IPUT to save the information into a sprite. The
sprite can be loaded into the compiled program along with the other sprites and then IGET used to
restore the table to the state it was formerly in. Out of memory errors will o ccu r ifthe sprite is not large
enough to accomodate the table (three bytes per command in the interrupt list p lus one delim iter byte)
or if a table is loaded which overflows the interrupt table space (90 bytes).

LASER BASIC SOUND
Th is final section dea ls with what is probably the most difficult to use feature of Laser BASIC. The
Am strad's own BASIC caters for sound control in a much more ‘sim ple to use' manner and this
extended facility need only be used in very advanced applications. A s with tracking sprites, the
nature of the operation means that there is very little crash protection and the outcome of m istakes is
unpredictable. These com m ands do not have to be driven under interrupt, but in practice this will
usually be the case.
The ph ilosophy employed in Laser BASIC ’s sound handling is very sim ilar to that used by tracking
sprites - the data sprite con ta ins a prim itive program, in this case there are 20 instructions in the set.
The program in the data sprite does not have to be run under interrupt but for most applications it
almost certainly will be. To run sound under tracking sprite control the PLAY command isentered as
a command in a normal tracker sprite (see control code 4 in the section on tracking sprites).

Command Action
PLAY,e1,e2

PLAY

Parameter

The 16 bit program counter in the sound program contained in the sprite whose
number is held in KEY is set to e1. The execution frequency is set to e2 but the
sound program itself is not executed.
The sound program contained in the sprite whose number is held in KEY is
executed.

Use
KEY Holds the number of the sprite containing the sound program.

Format for the Program

BYTE USE
0,1 16 bit program counter. Th is is a pointer to the next instruction in the data sprite and is

advanced by the length of the instruction each time an instruction is executed. Unlike
tracker sprites, sound programs will execute until they reach an instruction which halts
execution.

93

A

2 Th is is an 8 bit counter which is incremented every time PLAY is executed. The sound
program will only execute when th is value is equal to the ‘lim it’ held in BYTE 3. Th is facility
is provided because sound programs usually run much more slow ly than tracking sprite
programs and means that they can be executed on selected tracker executions.

3 Th is is the 8 bit 'limit' which sets the execution rate of the sound program. Se lecting a limit
of 0 will cause execution to begin every time PLAY is executed, selecting a limit of 1 will
cause execution to begin after every other PLAY and so on.

After these initial four bytes of information com e the program itself. The first instruction (byte 4)
corresponds to a program counter value of 1. Let’s now look at the instructions themselves.

CO D E INSTRUCTION
0 SOUND
1 WAIT-SOUND
2 RESET
3 RE L E AS E
4 HOLD
5 CONTINUE
6 AMP- ENV
7 TONE - ENV
8 RE- RUN
9 JUMP
10 R E - L I M
11 C A L L - C H A N N E L
12 C A L L - A M P - E N V
13 C A L L - T O N E - E N V
14 C A L L - T O N E - P E R I O D
15 C A L L - N O I S E - P E R I O D
16 C A L L - I N I T I A L - A M P
17 C A L L - D U R A T I O N
18 C A L L - T O N E - D U R A T I O N
19 STOP

LENGTH OF DATA (INCLUDING CODE)
10
10
1
2
1
1

VARIABLE — UP TO 18
VARIABLE — UP TO 18

1
3
3
2
2
2
3
2
2
3
5
1

To fully appreciate the operation of each ofthese instructions you should refer to the Amsoftfirmware
or BASIC manuals, but a sufficient description of each command is given in the next section. Where
relevant, the entry point into the firmware JU M P table is given. .

SOUND - JUMP table #BCAA
This instruction attempts to add a 9 byte ‘sound’ to the sound queue of one or more channels. If any of
the queues is full then no action will take place and the sound program will continue at the next
instruction. The format for the 9 bytes of the sound are as follows:

BYTE USE POSITION IN LIST OF
BASIC “SO U N D ” CO M M AND

0 Channel status 1
1 Amplitude envelope 5
2 Tone envelope 6
3,4 Tone period 2
5 No ise period 7
6 Volume 4
7,8 Duration 3
For a full description of the range of each ofthe above parameters and their use in defining the sound
produced, consu lt your BASIC manual or the "SOUND" section of this manual.

WAIT-SOUND
Th is instruction works in the same way and uses the same parameters as the sound instructions but
differs in one respect. If any of the queues that the instruction is trying to use are full then the
execution of the PLAY comm and is terminated and the program counter is left pointing at the current
'W AIT-SOUND ' instruction. In fact, 'W AIT-SOUND ' is almost invariably used in place of ’SOUND'.

94

RESET - JUMP table #BCA7
This instruction stops the current sound and c lea rs all sound queues.

RELEASE ■ JUMP table #BCB3
This instruction will R ELEA SE individually held sounds. It uses one byte of data which specifies
which channe ls to release. Only 3 bits of the byte are used - see the BASIC command RELEASE.

HOLD - JUMP table #BCB6
This instruction freezes all sounds. These will be automatically re-started by the execution of
SOUND, W AIT-SOUND, RELEASE or CONTINUE.

CONTINUE - JUMP table #BCB9
Restarts all sounds which have been held.

AMP-ENV - JUMP table #BCBC
Th is is analogous to BASIC ’s ENV command. It uses up to 18 bytes of data and the format for the data
b lock is as follows:

BYTE USE

0 Envelope number
1 Number of sections
2,3,4 Step count, step size, pause time for section 1
5,6,7 Step count, step size, pause time for section 2

14,15,16 Step count, step size, pause time for section 5

Note that data is only supplied for the number of sections indicated in byte 1, and this is therefore a
variable length instruction. For a full description of the parameters and their use, see the description
of BASIC ’s ENV command.

TONE-ENV - JUMP table #BCBF
T h is is analogous to BASIC 's ENT command. It uses up to 18 bytes of data and the format for the data
b lock is as follows:

BYTE USE

0 Envelope number
1 Number of sections
2,3,4 Step count, step size, pause time for section 1
5,6,7 Step count, step size, pause time for section 2

14,15,16 Step count, step size, pause time for section 5
Again data is variab le length and must correspond to the number of sections dictated by byte 1. For a
comprehensive description see BASIC 's ENT command.

RE-RUN
Th is instruction causes control to jump to the first instruction in the program, and execution to
continue from that point. Th is provision a llow s sound programs to be indefinitely repeated.

JUMP
This 3 byte instruction is analogous to BASIC 's GO TO or the Z80 s JP instructions. The two bytes
form ing the 16 bit program counter value to jump to are in LSB, M SB order as are all the 16 bit values
used in this section.

95

RE-LIM
Th is instruction is provided to control the overall speed and phase of the program. It uses two data
bytes w hich are passed to bytes 2 and 3 of the sound program. Th is has the effect of re-setting the
count and limit. By pass ing a sm aller limit the program can be made to execute with a higher
frequency (although this doesn 't usually cause the tune to play any faster!) and vice-versa. Passing a
count equal to the limit will ensure that the program executes on the next invocation.

CALL Commands
There are actually 7 C A LL instructions in all and in order to use these you must ensure that the first
instruction in the program is a SOUND (code 0) o raW A IT -SO U N D (code 1), otherw isean “ILLEGAL
TR A CKER C O D E" error will be generated. A s has been d iscussed , a 'SOUND ' is represented by 9
bytes. What these instructions do is to modify 1 or more bytes in the ‘SO U N D ’, and then return to the
point in the program from whence it was called. If CALL-TO N E -PER IO D or CALL-TO NE-D URATIO N
is executed then the SOUND or W IAT-SO UND will be automatically executed. If the instruction being
called is a SO UND instruction, then control will continue at the next instruction after the CALL
whether the 'SO UN D ' was added to the queue or not. If the instruction was a W AIT-SOUND then
control will only continue at the next instruction after the C A LL if the 'SO UN D ’ was successfu lly
added. If it was not, then the program counter rem ains pointing at the C A LL and the program is
terminated. If the latter was the case then the next time PLAY is executed with count equal to the limit
then this C A LL will be the first instruction to execute.

CALL-CHANNEL
Ca lls the first instruction in the program which must be a SO UND or W AIT-SOUND. The channel
status in the 9 byte 'SO U N D ’ b lock is rep laced by the new channel status and the sound executed.
The new channel status is left in the data block after control returns but a SOUND or W AIT-SOUND is
not executed.

CALL-AMP-ENV
This works in the same way as C A LL -C H A N N EL except that the new data is a volume envelope
number.

CALL-TONE-ENV
This works in the same way as C A LL -A M P -E N V except that the data is a tone envelope number.

CALL-TONE-PERIOD
Th is w orks in the same way as C A LL -T O N E -EN V except th is time the data is 2 bytes long and
represents the tone period. The other difference is that this instruction will cause the SOUND or
W AIT-SOUND to execute with the modified TONE-PERIOD .

CALL-NOISE-PERIOD
This w orks in the sam e way as C A LL -T O N E -EN V except that the data is 1 byte long again and
represents the Noise period.

CALL-INITIAL-AMP
W orks in the same way as CALL-N O ISE-PER IO D exceptthat the data represents the starting volume
(which can be altered by the volume envelope if one is specified).

CALL-DURATION
W orks in the same way as the other comm ands but its 2 data bytes specify the new duration.

CALL-TONE-DURATION
W orks in the same way as CALL-TO N E -PER IO D but th is instruction has 4 data bytes, the first two
represent a new duration and the third and fourth represent a new tone period. A s with CALL-TO N E -
PERIOD, the SOUND or W AIT-SOUND instruction being called is executed.
NOTE: A ll two byte numbers are entered in least significant, most significant byte order.

96

STOP
Th is will cause the termination of the sound program and a return to be made to w herever'PLAY ' was
executed from (usually a tracker). The program is exited with the program counter pointing to the
instruction after STOP, which will be the next instruction to be executed the next time PLAY is
executed.
This conc ludes the final section of the Laser BASIC comm ands in detail, for more exam ples of
interrupt driven sound see the section on SOUND in the main part of this manual.

97

LASER BASIC ERRORS

Error 1 — ** SPN TOO HIGH **
This error o ccu rs whenever a sprite number is being used with a value greater than SMAX. The
variab les which hold the sprite numbers are SPN , SP1 ,SP2 , SP3, SP4 and KEY. Sprite numbers are
a lso held in tracking sprites. Be sure that you are using the correct SET particularly when using
background programs, tracking sprites, EXXV, ASTV, AVTS and ESAV.

Error 2 — ** SPN EXISTS **
Th is o c cu rs when an attempt is made to add a sprite to the table with a number that has been
previously allocated. It can occu r with CSPR , HRSP, RNUM, ADNM and M SPR . Th is error is usually
straightforward to identify.

Error 3 — ** SPN OF ZERO **
This error o ccu rs when an attempt is made to use sprite number zero and can occur in numerous
instances. The best way to deal with this error is to look at the values held in SPN, SP1, SP2, SP3, SP4
and KEY. Although this error has many possib le causes it is usually fairly obvious where to look.

Error 4 — ** SMAX OF ZERO **
This o ccu rs if an SM A X of zero is given as the first parameter of SSPR . This error seldom occu rs as
SSPR is seldom used.

Error 5 — ** ZERO LENGTH DATA **
This error very rarely o ccu rs and signals an attempt to b lock move a zero length of code. It can
happen if an attempt is made to relocate an empty sprite file, or if IPUT/IGET are used to move an
empty interrupt list, but generally ind icates that the sprite table or system variab les have become
corrupted. It is unw ise to continue after the error un less you are sure of it’s cause.

Error 6 — ** SPN DOESN’T EXIST **
Again th is error can result from numerous different situations. By exam ining the variab les SPN, S P1 ,
SP2, SP3, SP4 and KEY it is usually possib le to work out where the error occured.

Error 7 — ** CAN’T MASK ****
An attempt has been made to M ASK, re -M ASK or de -M ASK a sprite with an ‘odd’ as opposed to ‘even’
width (in bytes).

Error 8 — ** ILLEGAL TRACKER TERMINATOR **
An illegal control code has been found in a tracker or sound program.

Error 9 — ** OUT OF MEMORY **
An attempt has been made to carry out an operation which requires more space than is available
between M BO T (which should be HIMEM+1)andthebottom of sp rite so rh a s run outof stack space.
To overcom e this you will need to reduce HIMEM with the M EM O R Y command (followed by an M SET
command), delete one or more of the existing sprites or relocate sp ites upwards (if this is possible).
Th is error can also be caused by FILL if insufficient stack space is available but there is no way
around this as the space allocated to a the stack is fixed. The follow ing com m ands require free
memory:

WVVN, WSVN, WPVN, HRSP, ISET, GSPR and MSPR
IPUT and IGET may also generate this error see the section on "compiler related commands".
Note: The BASIC ‘LOAD’ command uses a buffer which is not required after LOADing. This means
that you can usually reduce HIMEM (don't forget the MSET!), once your BASIC program has been
loaded. Sprites can then be loaded into a larger space.

Error 10 — ** ILLEGAL FILENAME **
This error occu rs when an attempt is made to load, save or merge sprite files using a filename that
does not end in "S PR " or "SPR .BA K ". F ilenam es must be typed in upper case. If an error occu rs
during one of these 3 operations you may find that the filename has been altered. If this o ccu rs you
will need to re-type the filename.

98

Error 11 - ** PARAMETER ERROR **
Th is error occu rs if a Laser BASIC command is followed by the wrong number of parameters or one of
the SUM com m ands Is followed by more than 8 parameters.

Error 12 — ** NO SPRITES **
This error occu rs if an attempt is made to save an empty file of sprites.

Error 13 — ** OUT OF RANGE **
Th is error will o ccu r if an attempt is made to assign one of the Laser BASIC variab les with an illegal
value. Th is error will a lso occu r if an attempt is made to set up a bounce w indow in a sprite which
does not have a height of 1 and a width of4. S im ilarly this error will o ccu r ifASTV , AVTS or ESAV are
used with sprites that do not have a height of 1 and a width of 20.

Error 14 — ** ILLEGAL COMMAND **
This error can occu r when using the ISET command and means that one of the com m ands in the
string doesn 't exist, or has be typed in lower case, or '#' is m issing from the end of the string or a SET
has been se lected without using one of the letters 'A ' to 'P ' (in upper case). It can a lso occu r when
using the ADDR command.

99

COMMAND SUMMARY
The follow ing is a summary of Laser BASIC 's extended commands. The number after the command
in the table is called the command c lass. Below is a description of each class.

CLASS 1
Com m ands in th is c la s s can be used in M ODE 2 (2 co lour mode) as well as M O D Es zero and one.
These com m ands do not have a co llis ion detection option, cannot be included in tracker sprites,
cannot be executed in background (see ISET) and do not have a repeat option. The following
comm ands are included in C la ss 1:
ADDR COL COLQ DEEK D0KE HGT HGTQ IK1 IK1Q I SET
I SPR KBFN KEY KEYQ LEN LENQ MSET MSPR NPX NPXQ
PSPR ROW R0WQ RSPR SCL SCNP SCNS SCNV SET SETQ
SP1 SP1Q SP2 SP2Q SP3 SP3Q SP4 SP4Q SPN SPNQ
SRW SRWQ SSPR SUMP SUMS SUMV TPUT XCL X CLQ

CLASS 2
Com m ands in th is c la s s cannot be used in M O D E two and can only be used in M O D Es zero and one.
They do not have a co llis ion detection option but could be used as instructions in tracker sprites.
They cannot be executed in background and do not have a repeat option.
F I L L HRSP MASK MGXP MGXS MGXV ONHI 0NL0 RMSK SPNV

CLASS 3
Com m ands in th is c la s s can be used in M ODE two as well as M O D Es zero and one, do not have a
co llis ion detection option, can be used as instructions in a tracker, cannot be executed in
background and do not have a repeat option.
ADNM CSPR DMSK DSPR ESPR GSPR IEND MGYS MGYV RNUM

CLASS 4
Com m ands in this c la s s can be used in all three graph ics modes, do not have a co llis ion detection
option, can be executed in trackers, can be executed in backgrodnd but do not have a repeat option.
ASTV AVTS B I L D BWST CLHI C L L0 CLSP CLSS CLSV CPUT
ESAV EXXV
I PUT PLAY

CLASS 5

F I P S
SCLS

F I P V
STCP

FOPS
STCS

F0PV
STCV

IGET
SWPS

INVP I NVS I NVV

Com m ands in th is c la s s do not work in M ODE two, do not have a co llis ion detection option, can be
executed in trackers, can be executed in background but do not have a repeat option.

MIRP MIRS MIRV MORP MORS MORV SETP SETS SETV

CLASS 6
Com m ands in this c la s s do not work in M ODE two, but do have a detection option, can be executed in
trackers, can be executed in background, but do not have a repeat option.
BGET BPUT FSWP GMBH GMIF GTBH GT I F GWBH GWIF PMBH
PMIF PTBH P T I F PWBH PWIF

CLASS 7
Com m ands in th is c la s s work in all three g raph ics M ODEs, do have a detection option, can be
executed in background, but do not have a repeat option.
GMBL GMND
GWOR GWXR
PWBL PWND

GMOR GMXR
PMBL PMND
PWOR PWXR

GTBL GTND
PMOR PMXR

GTOR GTXR
PTBL PTN0

GWBL GWND
PTOR PTXR

100

CLASS 8
Com m ands in this c la ss do not work in g raph ics M ODE two, do not have a detection option, but can
be executed in trackers, can be executed in background and do have a repeat option.
SPL1 SPR1 SSL1 SSR1 SVL1 SVR1 WPL1 WPR1 WSL1 WSR1
WVL1 WVR1

CLASS 9
Com m ands in th is c la s s do work in g raph ics M O D E two, do not have a detection option but can be
executed in trackers, are background executable and do have a repeat option.
CMOV S P L 4 S P L 8 SPR4 SPR8 SPVN S S L 4 S S L 8 SSR4 SSR8
SSVN SVL 4 SVL 8 SVR4 SVR8 SVVN WPL4 WPL8 WPR4 WPR8
WPVN WSL4 WSL8 WSR4 WSR8 WSVN WVL4 UVL8 WVR4 UVR8
WVVN

CLASS 10
Com m ands in th is c la s s do not work in M ODE two but do have a detection option, can be executed in
a tracker, can be executed in background and do have a looping option.

BBNC BMOV BMVJ FBNC FMOV FMVJ

CLASS 11
Com m ands in th is c la s s do work in M O D E two, do have a detection option, can be executed in a
tracker, can be executed in background and have a repeat option.

TM0V WBNC WMOV WMVJ XBNC XM0V XMVJ

CLASS OPTIONS
The follow ing is a summary of available options and a summary of the c la sses supporting them.

MODE 2
All Laser BASIC com m ands will execute in M ODE zero (16 co lour mode) and M ODE one (4 colour
mode), but only se lected com m ands will function correctly with M ODE 2 (2 co lour mode). The
following c la s se s will work in M ODE 2:

C la ss 1, c la s s 3, c la s s 4, c la ss 7, c la s s 9, c la ss 11.

Collision Detection Option
Laser BASIC com m ands which move data around the screen and between sprites have a co llis ion
detection option. Th is option will never work on M ODE two data. The follow ing c la sse s support the
option:
C la ss 6, c la s s 7, c la ss 10, c la s s 11.

Tracking Option
Laser BASIC com m ands can be executed from within tracking sprites (see T racking Sprites, Control
Code 4). Only certain com m ands can be executed in this way and only com m ands in the follow ing
c la sse s should be used:
C la ss 2, c la s s 3, c la ss 4, c la ss 5, c la s s 6, c la s s 7, c la ss 8, c la ss 9, c la ss 10, c la ss 11.

Background Execution
Certain com m ands can be com piled into an interrupt table and executed in background under
interrupt. The follow ing command c la sse s support this option:
C la ss 4, c la ss 5, c la s s 6, c la ss 7, c la ss 8, c la s s 9, c la ss 10, c la ss 11.

Repeat Option
Certain comm ands can be repeatedly executed in a m achine code loop with or without frame-flyback
synchronisation. The follow ing c la s se s support this option.
C la ss 8, c la ss 9, c la s s 10, c la ss 11.

101

COMMAND/CLASS PARAMETERS ACTION
ADDR 1 a v i , a v $ Assigns the execution address of the command

in the 4 character string V$ t o t h e B AS I C
integer variable V1.

ADNM 3 SPN Increment all existing sprite numbers by
the value held in SPN.

A S T V 4 S E T , S P N The 20 bytes in sprite SPN are assigned to the
current variable set.

A VTS 4 S E T , S P N The current variable set is assigned to
sprite SPN.

BBNC 10 S P 1 , S P 2 , S P 3 Bounce ‘behind’ screen data.
SP4,HGT,LEN
COL,ROW,KEY
3 V 1 , e 1 , e 2

BGET 6 S P N , COL , ROW
av i

Remove a previously 'BPUT' sprite.

B I L D 4 C O L , R O W , SPN
S P 1 , K E Y

Expand BIT pattern.

BMOV 10 S P 1 , S P 2 , S P 3
S P 4 , H G T , LEN
C O L , R O W , a V 1
e 1 , e 2

Move linearly 'behind' screen data.

BMVJ 10 S P 1 , S P 2 , S P 3
S P 4 , H G T , L E N
C O L , R OW, KEY
3 V 1 , e 1 , e 2

Move under keyboard/joystick control,
'behind' screen data.

BPUT 6 S P N , COL , ROW
av i

'PUT' a sprite 'behind’ screen data.

BWST 4 K E Y , C O L , R O W
H G T , L E N

Bounce window data is set up in sprite KEY.

C L H I 4 Puts the software into 160 column mode.
C L LO 4 Puts the software into 80 column mode.
C L S P 4 S P N , COL , ROW

H G T , L E N
Clear sprite window to INK 0.

C L S S 4 SPN Clear whole sprite to INK 0.
C L S V 4 C O L , ROW, HGT

LEN
Clear screen window to INK 0.

CMOV 9 SPN Execute one instruction in each of the
trackers listed in SPN.

COL 1 e1 Assign the value of the expression e1 to the
graphics variable COL.

COLQ 1 av i Assign the value in the graphics variable CO L
to the BASIC integer variable V1.

CPUT 4 SPN Launch all of the trackers listed in SPN.
CSPR 3 S P N , H G T , L E N Create sprite SPN with height HGT and length LEN.
DEEK 1 e i , a v i The 16 bit contents of address e1,e1+1 are

assigned to the BASIC integer variable V1.
DMSK 3 SPN Sprite SPN is de-masked.
DOKE 1 e1 , e 2 The 16 bit value e2 is POKEd into e1 and e1+1

in LSB,MSB order.
DSPR 3 SPN Sprite SPN is deleted.

102

ESAV 4 S E T , S P N

ESPR 3 SPN
E X X V 4
FBNC 10 S P 1 , S P 2 , S P 3

S P 4 , H G T , L E N
COL , ROW, KEY
S I V1 , e 1 , e 2

F I L L 2 X C L , R 0 W , I K 1
F I P S 4 SPN
F I P V 4 C0L , R0 W, HGT

LEN
FM0V 10 S P 1 , S P 2 , S P 3

S P 4 , H G T , L E N
C 0 L , R 0 W, 3 V 1
e 1 , e 2

FMVJ 10 S P 1 , S P 2 , S P 3
S P 4 , H G T , LEN
C O L , R0W, KEY
a v i , e 1 , e 2

FOPS 4 SPN
F0PV 4 C O L , R0W,HGT

FREE 1 a v i

FSWP 6 C O L , R O W , SPN
a v i

GMBH 6 S P 1 , S P 2 , S R W
s c L , a v i

GMBL 7 S P 1 , S P 2 , S R W
s c L , a v i

GMI F 6 S P 1 , S P 2 , S R W
s c L , a v i

GMND 7 S P 1 , S P 2 , S R W
s c L , a v i

GM0R 7 S P 1 , S P 2 , S R W
s c L , a v i

GMXR 7 S P 1 , S P 2 , S R W
s c L , a v i

GSPR 3 av$
GTBH 6 S P N , C 0 L , R 0 W

a v i
GTBL 7 S P N , C0L , R0W

a v i
GTI F 6 S P N , COL,ROW

a v i
GTND 7 S P N , COL,ROW

a v i
GT0R 7 S P N , COL,ROW

a v i
GTXR 7 S P N , C0L , R0W

a v i

Exchange the current SET with the contents
of sprite SPN.
Expand/contract sprite table space.
Exchange current and alternative SET pointers.
Bounce 'in-front o f screen data.

Fill the shape w ith lNKIK1.
Vertically reflect sprite SPN.
Vertically reflect screen window.

Move linearly 'in-front of' screen data.

Move under keyboard/joystick control ‘in-front
of’ screen data.

Make sprite SPN vertically symmetric.
Make screen window vertically symmetric.
LEN
Calculate free space and assign result to
the BASIC integer variable V1.
Exchange sprite and screen data in front of
screen data.
P lace sprite SP1 'behind' window SP2.

Block move sprite SP1 into window in SP2.

Place sprite SP1 ‘in-front of’ window in SP2.
data in SP1.
AND sprite SP1 into window in SP2.

OR sprite SP1 into window in SP2.

XOR sprite SP1 into window in SP2.

Load sprites from DISK/TAPE.
‘GET ’ screen data ‘behind1 sprite data.

B lock move screen window into sprite.

‘GET ’ screen data ‘in-front o f sprite data.

AND screen data into sprite.

OR screen data into sprite.

XOR screen data into sprite.

103

G U B H 6 S P N , C O L , R O W
S C L , S R W , H G T
L E N , 3 V 1

'GET' screen window 'behind' sprite window.

G W B L 7 S P N , C O L , R O W
S C L , S R W , H G T
L E N , 3 V 1

Block move screen window into sprite window.

G W I F 6 S P N , C O L , R O W
S C L , S R W , H G T
L E N , 3 V 1

'GET' screen window 'in-front of' sprite window.

G W N D 7 S P N , C O L , R O W
S C L , S R W , H G T
L E N , 3 V 1

AND screen window into sprite window.

G W O R 7 S P N , C O L , R O W
S C L f S R W , H G T
L E N , a V 1

OR screen window into sprite window.

G W X R 7 S P N , C O L , R O W
S C L , S R W , H G T
L E N , 3 V 1

XOR screen window into sprite window.

H G T 1 e1 Assign the value of e1 to the graphics
variable HGT.

H G T Q 1 av i Assign the value in the graphics variable
HGT to the BASIC integer variable V1.

H R S P 2 S P N Create hi-res pair in SPN and SPN+1.
I E N D 3 Terminate execution o fthe background program.
I G E T 4 S P N Move data from sprite SPN into the

interrupt table.
IK1 1 e1 Assign the value of e1 to the graphics variable

IK1.

I K 1 Q 1 a v i Assign the value in the graphics variable IK1
to the BASIC integer variable V1.

I K 2 1 e 1 Assign the value of e1 to the graphics variable
IK2:

I K 2 Q 1 av i Assign the value in the graphics variable IK2
to the BASIC integer variable V1.

I N V P 4 S P N , C O L , R O W
H G T , L E N

Invert (1's complement) sprite window.

I N V S 4 S P N Invert (1's complement) whole sprite.
I N V V 4 C O L , R O W , H G T

L E N
Invert (1's comlement) screen window.

I P U T 4 S P N Move the interrupt table into sprite SPN.
I R U N 1 e1 Set background program running with execution

interval e1.
I S E T 1 a d V $ Compile all the com m ands/sets in the string

V$ into the interrupt table.
I S P R 1 S P N , H G T , L E N

a v 1 , a v 2 , a v 3
a v 4

Interrogate sprite SPN.

K B F N 1 K E Y , a v i Increment the BASIC integer variable V1 if
KEY is pressed.

K E Y 1 e1 Assign the value of e1 to the graphics
variable KEY.

K E Y Q 1 av i Assign the value in the graphics variable
KEY to the BASIC integer variable V1.

104

L E N 1 e1
L E N Q 1 av i

M A S K 2 S P N

M G X P 2 S P N , C O L , R O W
H G T , L E N

M G X S 2 S P N

M G X V 2 C 0 L , R 0 W , H G T
L E N

M G Y S 3 S P N

M G Y V 3 C O L , R O W , H G T
L E N

M I R P 5 S P N , C O L , R O W
H G T , L E N

M I R S 5 S P N

M I R V 5 C 0 L , R 0 U , H G T
L E N

M 0 R P 5 S P N , C O L , R O W
H G T , L E N

M O R S 5 S P N

M 0 R V 5 C O L , R O W , H G T
L E N

M S E T 1 e1

M S P R 1 a v $

N P X 1 e1

N P X Q 1 av i

0 N H I 2
0 N L 0 2
P L A Y 4 K E Y , e 1 , e 2
P M B H 6 S P 1 , S P 2 , S C L

S R w , a v i

P M B L 7 S P 1 , S P 2 , S C L
S R w , a v i

P M I F 6 S P 1 , S P 2 , S C L
S R W , 3 V 1 M

P M N D 7 S P 1 , S P 2 , S C L
S R u , a v i

P M 0 R 7 S P 1 , S P 2 , S C L
S R u , a v i

P M X R 7 S P 1 , S P 2 , S C L
S R W , a v i

P S P R 1 av i

P T B H 6 S P N , C O L , R O W
av i

P T B L 7 S P N , C O L , R O W
a v i

Assign the value e1 to the graphics variable LEN.
Assign the value in the graphics variable LEN
to the BASIC integer variable V1.
Convert sprite SPN to become a MASKed sprite.
X-expand sprite window.

X-expand whole sprite.
X-expand screen window.

Y-expand whole sprite.
Y-expand screen window.

Horizontally mirror sprite window.

Horizontally mirror whole sprite.
Horizontally mirror screen window.

Make sprite window horizontally symmetric.

Make whole sprite horizontally symmetric.

Make screen window horizontally symmetric.

Set lowest address usable by Laser BASIC to be
e1.
Merge sprite files.
Assign the value of e1 to the graphics variable
NPX.
Assign the value in the graphics variable
NPX to the BASIC integer variable V1.
Put Laser BASIC into 4 colour mode.
Put Laser BASIC into 16 colour mode.
Execute sound program.
GET data in window SP2 behind data in SP1.

Block move window in SP2 into sprite SP1.

PUT data in window SP2 'in-front o f
data in SP1.
AND window in SP2 into sprite SP1.

OR window in SP2 into sprite SP1.

XOR window in SP2 into sprite SP1.

'PUT' sprite file to TAPE/DISK.

'PUT' sprite ‘behind’ screen data.

Block move sprite into screen.

105

PTIF 6 SPN,COL,ROW
av i

'PUT' sprite 'in-front o f screen data.

PTND 7 SPN,COL,ROW
av i

AND sprite into screen data.

PT0R 7 SPN,COL,ROW
av i

OR sprite into screen data.

PTXR 7 SPN,COL,ROW
av i

XOR sprite into screen data.

PWBH 6 SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

'PUT' sprite window 'behind' screen window.

PWBL 7 SPN,COL,ROW
S C L , SRW,HGT
LEN,3V1

Block move sprite window into screen window.

PWIF 6 SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

'P U T sprite window 'in-front o f screen window.

PUND 7 SPN,COL,ROW
SCL,SRW,HGT
LEN,aV1

AND sprite window into screen window.

PWOR 7 SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

OR sprite window into screen window.

PWXR 7 S P N , C O L , R O W
S C L , SRW, HGT
L E N , a V l

XOR sprite window into screen window.

RMSK 2 SPN Re-M ASK a previously M ASKed sprite.
RNUM 3 SP1,SP2 Re-number sprite SP1 to become sprite SP2.
ROW 1 e1

ROW.
Assign the value of e1 to the graphics variable

ROWQ 1 av i Assign the value in the graphics variable
ROW to the BASIC integer variable V1.

RSPR 1 e1 Relocate sprite space by the signed value e1.
SCL 1 e1 Assign the value of e1 to the graphics variable

S C L
SCLQ 1 av i Assign the value in the graphics variable

SC L to the BASIC integer variable V1.
SCLS 4 Clear the screen and make the current text window

Laser BASIC 's text window.
SCNP 1 SPN,COL,ROW

HGT,LEN,aV1
Scan sprite window for data.

SCNS 1 SPN Scan whole sprite for data.
SCNV 1 COL,ROW,HGT

LEN
Scan screen window for data.

SET 1 e1 Assign the value of e1 to the current set
pointer SET.

SETP 5 SPN,COL,ROW
HGT,LEN,IK1
IK2

Re-colour the sprite window.

SETQ 1 av i Assign the value of the current set pointer
to the BASIC integer variable V1.

106

S E T S 5 SPN Re-colour the whole sprite.

S E T V 5 C 0 L , R 0 W , H G T
LEN

Re-colour the screen window.

SP1 1 e1 Assign the value of e1 to the graphics variable
SP1.

SP1Q 1 av i Assign the value in the graphics variable
SP1 to the BASIC integer variable V1.

S P2 1 e 1 Assign the value of e1 to the graphics variable
SP2.

SP2Q 1 av i Assign the value in the graphics variable
SP2 to the BASIC integer variable V1.

S P3 1 e 1 Assign the value of e1 to the graphics variable
SP3.

SP3Q 1 av i Assign the value in the graphics variable
SP3 to the BASIC integer variable V1.

S P 4 1 e1 Assign the value of e1 to the graphics variable
SP4.

SP4Q 1 av i Assign the value in the graphics variable
SP4 to the BASIC integer variable V1.

SPL1 8 S P N / COL , ROW
H G T , L E N , e 1
e2

Scroll sprite window left 1 pixel, no wrap.

S P L 4 9 S P N , C O L / R O W
H G T , L E N , e 1
e2

Scroll sprite window left 1 byte, no wrap.

S P L 8 9 S P N , COL , ROW
H G T , L E N , e 1
e2

Scroll sprite window left 2 bytes, no wrap.

SPN 1 e1 Assigns the value of e1 to the graphics variable
SPN.

SPNQ 1 avi Assigns the value in the graphics variable
SPN to the BASIC integer vaiable V1.

SPNV 2 C O L , ROW, HGT
L E N , S C L , S R W

Spins screen window 90 degrees clockwise.

SPR1 8 S P N , COL , ROW
H G T , L E N , e 1
e 2

Scroll sprite window right 1 pixel, no wrap.

S P R 4 9 S P N , COL , ROW
H G T , L E N , e 1
e2

Scroll sprite window right 1 byte, no wrap.

S P R 8 9 S P N , COL , ROW
H G T , L E N , e 1
e2

Scroll sprite window right 1 byte, no wrap.

SPVN 9 S P N , COL , ROW
H G T , L E N , N P X
e 1 , e 2

Scroll sprite window vertically, NPX
pixels, no wrap.

SRU 1 e1 Assign the value of e1 to the graphics variable
SRW.

SRWQ 1 av i Assign the value in the graphics variable
SRW to the BASIC variable V1.

S SL 1 8 S P N , e 1 , e 2 Scroll sprite left 1 pixel, no wrap.

107

S S L 4 9 S P N , e 1 , e 2

S S L 8 9 S P N , e 1 , e 2

S S P R 1 e1 , e 2
SSR1 8 S P N , e 1 , e 2
S S R 4 9 S P N , e 1 , e 2

S S R 8 9 S P N , e 1 , e 2

SSVN 9 S P N , N P X , e 1
e 2

S T C P 4 S P N , C 0 L , R 0 W
H G T , L E N , I K 1

STCS 4 SPN

S TCV 4 C 0 L , R 0 W , H G T
LEN

SUMP 1 S P N , COL , ROW
H G T , L E N , e 1
e 2 , . . . , a V 1

SUMS 1 S P N , e 1 , e 2
, . . . , a v i

SUMV 1 C 0 L , R 0 W , H G T
L E N , e 1 , e 2
, . . . , a v i

SVL1 8 C O L , ROW, HGT
L E N , e 1 , e 2

S V L 4 9 C 0 L , R 0 W , H G T
L E N , e 1 , e 2

S V L 8 9 C 0 L , R 0 W , H G T
L E N , e 1 , e 2

S V R 1 8 C O L , ROW, HGT
L E N , e 1 , e 2

S V R4 9 C 0 L , R 0 W , H G T
L E N , e 1 , e 2

S V R8 9 C 0 L , R 0 W , H G T
L E N , e 1 , e 2

SVVN 9 C 0 L , R 0 W , H G T
L E N , N P X , e 1
e2

SWPS 4 S P 1 , S P 2 , S P 3
S P4

TMOV 11 < E Y , a v i

TPUT 1 K E Y , S P 1 , C 0 L
R 0W, e 1

WBNC 11 S P 1 , S P 2 , S P 3
S P 4 , H G T , L E N
C 0 L , R 0 W , K E Y
a v l , e 1 , e 2

UMOV 11 S P 1 , S P 2 , S P 3
S P 4 , H G T , L E N
C 0 L , R 0 W , a v 1
e 1 , e 2

Scroll sprite left 1 byte, no wrap.
Scroll sprite left 2 bytes, no wrap.
Set sprite space.
Scroll sprite right 1 pixel, no wrap.
Scro ll sprite right 1 byte, no wrap.
Scro ll sprite right 2 bytes, no wrap.
Scroll sprite vertically NPX pixels, no wrap.

Set colour throughout sprite window.

Set colour throughout whole sprite.
Set colour throughout whole screen window.

Sum the sprite window and assign or compare.

Sum the whole sprite and assign or compare.

Sum the screen window and assign or compare.

Scroll the screen window left 1 pixel, no wrap.

Scroll the screen window left 1 byte, no wrap.

Scroll the screen window left 2 bytes, no wrap.

Scroll the screen window right 1 pixel, no wrap.

Scro ll the screen window right 1 byte, no wrap.

Scroll the screen window right 2 bytes, no wrap.

Scro ll the screen window vertically NPX pixels,
no wrap.

Reverse frame sequence.

Execute one instruction in a tracker.
Launch a tracker.

Bounce using block over-write.

Linearly move using block over-write.

108

WMVJ 11 S P 1 , S P 2 , S P 3
S P 4 , H G T , L E N
C O L , R O W , K E Y
3 V l , e 1 , e 2

WPL1 8 S P N , C O L , ROW
H G T , L E N , e 1
e 2

WPL4 9 S P N , C O L , R O W
H G T , L E N , e 1
e 2

WPL8 9 S P N , C 0 L , R 0 W
H G T , L E N , e 1
e 2

WPR1 8 S P N , C 0 L , R 0 W
H G T , L E N , e 1
e2

WPR4 9 S P N , C 0 L , R 0 W
H G T , L E N , e 1
e 2

WPR8 9 S P N , C 0 L , R 0 W
H G T , L E N , e 1
e2

WPVN 9 S P N , C 0 L , R 0 W
H G T , L E N , N P X
e 1 , e 2

WSL1 8 S P N , e 1 , e 2

U S L 4 9 S P N , e 1 , e 2

U S L 8 9 S P N , e 1 , e 2

WSR1 8 S P N , e 1 , e 2

WSR4 9 S P N , e 1 , e 2

WSR8 9 S P N , e 1 , e 2

USVN 9 S P N , e 1 , e 2
NPX

WVL1 8 C O L , ROW, HGT
L E N , e 1 , e 2

WVL4 9 C O L , ROW, HGT
L E N , e 1 , e 2

WVL8 9 C O L , ROW, HGT
L E N , e 1 , e 2

UVR1 8 C 0 L , R 0 W , H G T
L E N , e 1 , e 2

WVR 4 9 C O L , ROW, HGT
L E N , e 1 , e 2

WVR8 9 C O L , ROW, HGT
L E N , e 1 , e 2

XMOV 11 S P 1 , S P 2 , S P 3
S P 4 , H G T , L E N
C O L , R0 W, 3 V 1
e1 , e 2

Move under keyboard/joystick control using
block over-write.

Scroll sprite window left 1 pixel, with wrap.

Scroll sprite window left 1 byte, with wrap.

Scroll sprite window left 2 bytes, with wrap.

Scroll sprite window right 1 pixel, with wrap.

Scroll sprite window right 1 byte, with wrap.

Scroll sprite window right 2 bytes, with wrap.

Scroll sprite window vertically NPX pixels,
with wrap.

Scroll whole sprite left 1 pixel, with wrap.
Scroll whole sprite left 1 byte, with wrap.
Scroll whole sprite left 2 bytes, with wrap.
Scroll whole sprite right 1 pixel, with wrap.
Scroll whole sprite right 1 byte, with wrap.
Scroll whole sprite right 2 bytes, with wrap.
Scroll whole sprite vertically NPX pixels,
with wrap.
Scroll screen window left 1 pixel, with wrap.

Scroll screen window left 1 byte, with wrap.

Scroll screen window left 2 bytes, with wrap.

Scroll screen window right 1 pixel, with wrap.

Scroll screen window right 1 byte, with wrap.

Scroll screen window right 2 bytes, with wrap.

Linearly move using exclusive-OR.

109

THE SPRITE GENERATOR
by Cyclone Software

INTRODUCTION
The sprite generator program was developed to compliment the Laser series of languages. The
languages are com prised of com m ands for manipulating sprites and screen data but do not have the
facility to directly design sprites. Th is means there are two phases to games creation. The first
invo lves design ing and editing your sprites with the sprite generator program, and the second
involves the writing of the game itse lfusing the Laser languages. In practice the two areas of work will
probably be carried out simultaneously. The sprite generator program is designed to work in all three
of the Am strad’s screen modes. In order to make the sprite generator as easy as possib le to use, all
operations are executed in the sam e way regard less of the screen mode you are in. The rotation
operation, however, should only be used in mode 1.

THE MAIN MENU
The main menu shows all the optionsthat are available to you. You may se lectone ofthese options by
pressing the appropriate number. Options 1,2 or 3 will allow you to design sprites. Option 4 a llow s the
sprites you have designed to be saved to tape or disk. Option 5 a llow s sprites that have previously
been designed to be loaded back into the sprite generator. Option 6 a llow s sprites on tape or d isk to
be merged with the sprites currently held in the sprite generator. If you are using a d isk then option 7
a llow s you to exam ine what is on a d isk and if you so desire erase a file. Option 8 a llow s you to
animate between several sprites in a defineable pattern. Option 9 a llow s you to choose between
using tape or disk.

GLOSSARY OF TERMS

THE CHARACTER SQUARE
The character square refers to the 8 by 8 grid which is situated in the top left hand corner of the
screen. Th is is the area used to create and edit sprites, one character at a time.

THE SPRITE DISPLAY AREA
This is the larger area located at the bottom of the screen and is the area used to create, develop,
transform and generally work on sprites.

THE CHARACTER SQUARE CURSOR
This is the non-destructive flashing cursor which is used to design and edit the character currently
held in the character square.

THE SPRITE DISPLAY WINDOW
The area of the screen currently being worked on is refered to as the sprite d isplay window. Its
position is defined by SX and SY which co rresponds to the position of thetop left o fthe window, and
its d im ensions are defined by XS and YS. Top left of the sprite d isplay area has co-ord inates SX:0,
SY:0. To d isplay the w indow you are currently working on, press “ :" (colon) and it will flash.

SPRITE LIBRARY
This refers to the set of sprites you are currently working with and contains between 1 and 255
sprites. W hen the program is first RUN you are asked to enter the maximum sprite number which you
w ish to use.

SPRITES
A sprite is a program mable g raph ics character. The sprite generator program can develop up to 255
sprites of user se lectab le d im ensions. The amount of free memory in the generator is about 6k, but
Laser BASIC can merge a number of sprite files so this is not a problem.

INKS AND PAPER
When working in screen mode 0,16 INKS are available, in screen mode 1,4 INKS are available and in
screen mode 2 only 2 INKS are available. The co lours of these INKS are disp layed to the right of the
character square. The co lour of the INK currently in use is indicated by an arrow. The first INK (INK 0)
is referred to as paper and th is will be the co lour d isplayed where no pixels are set. Changing the
colour of the first INK will cause the whole background of the screen to change colour.

110

DESIGNING YOUR SPRITES

THE SPACE BAR
The sprite generator program operates in two modes, character mode and sprite mode. In character
mode the sprite generator a llow s you to design characters on the character square and then put
down or p ick up characters from the sprite d isp lay area. In sprite mode the sprite generator a llow s
you to develop and transform your sprites on the sprite d isplay area. The S PA C E BAR a llow s you to
sw itch between character mode and sprite mode.

CHARACTER MODE

Cursor movement
The non-destructive cu rso r may be moved over the character square using the following keys:

A to move left;
D to move right;
W to move up;
X to move down.

If the 'SHIFT' key is pressed with one o fthe above keys then the cu rso r on the sprite d isp lay area will
move and CX or CY will be updated. The use of ‘A', O ', 'W ' and 'X' is rep licated by the joystick, if
present.

The ‘S ’ key
Th is a llow s you to p lace a character from the character square onto the sprite d isp lay area at the
current cu rso r position w hich is defined by CX and CY. In order to help you a cu rso r will flash to
indicate the position of CX and C Y on the sprite d isplay area.

The ‘L’ key
Th is a llow s you to p ick up a character from the sprite d isp lay area at the current cu rso r position and
expand it into the character square.

The T key
Press ing the T key will cause the INK currently in use to cyc le through all the available co lours until
the T key is released.

The ‘C key
Press ing the 'C ' key will simply c lear the character square. If the 'SHIFT' key is pressed at the same
time then the character square will remain intact but the sprite d isp lay area will be cleared.

The SPACE BAR
Press ing the S P A C E BAR puts the sprite generator into sprite mode.

The 'P' key
Press ing the 'P ’ key will move the arrow indicating the INK being used downward, if the 'SHIFT' key is
pressed at the same time then the arrow will move upward.

The ‘J ’ key
When sp rite sa re used in a program the co lour ofthe INKs will usually be setto those used when the
sprites were designed. To make th is easier pressing the 'J' key will d isp lay the co lour number that all
the INKs are set to.

T h e 'B 'key
Pressing the 'B' key changes the co lour of the border.

The ‘CLR’ key
Pressing the ‘C LR ’ key homes both of the cu rso rs (sends them back to the top left).

111

The 'ENTER ' key sets the pixel at the current cursor position on the character square grid to the
current pen. If a joystick is connected then the fire button can be used to carry out the same function.

The ‘DEL’ key
The 'DEL ' key sets the pixel atthe current cu rsor position on the character square to the paper co lour
(INK 0).

The 'E' key
Press ing the 'E ’ key a llow s you to enter data directly onto the sprite d isp lay area at the current
position. W hen the ’E' key is pressed you will be asked whether you want to enter the data in decimal
or binary. You should respond by pressing either 'D' or 'B' respectively. You will then be asked to
enter 8 bytes of data. These w ill be p laced directly onto the sprite d isp lay area and will leave the
character square unaffected.

T he ‘R’ key
Pressing the 'R' key with the 'SHIFT' key will return you to the main menu.

SPRITE MODE
Sprite d isp lay w indow movement
The sprite d isp lay w indow may be moved using the following keys:

A to move left;
D to move right;
W to move up;
X to move down.

Sprite display window size
The size of the sprite d isp lay w indow may be altered by pressing the follow ing keys together with the
‘SHIFT’ key.

A to decrease length of window;
D to increase length of window;
W to decrease height of window;
X to increase height of window.

Note that the use of 'A', 'D', 'W' and 'X' to move and re-dim ension is replicated by the joystick if
connected.

The ‘@ ’ key
Increases the X-increm ent (in bytes) by which the sprite d isplay w indow will move. The increment will
increase up to a value of 8, then re-start from 1.

The ’;’ key
Increases the Y-increm ent (in pixels) by which the sprite d isp lay w indow will move. Again the
increment will increase until it reaches a value of 8 and then re-start from 1.

The ‘L ’ key
Press ing the 'L' key a llow s a previously created sprite to be placed on the sprite d isplay area at the
current cu rso r position. The whole sprite will be put onto the sprite d isp lay area regard less of the
current size of the sprite window.

Th· ‘S ’ key
Th is a llow s you to 'GET ' a sprite into memory. P ressing the ‘S ' key creates a sprite with the
d im ensions of the current d isp lay w indow and the current SPN value (provided it has not already
been allocated). The data in the w indow is automatically ‘G O T ’ into the sprite. If the sprite number
were previously allocated then a low 'beep' would be issued and no other action taken. If the
operation were successfu l then a high 'beep' would be heard.

The ENTER’ key

112

The sprite generator program puts sprites to the sprite d isp lay area in 1 of 6 ways. Th is is referred to
as the print mode. The six print modes are as fo llows and are represented by PMD.

BL B lock 'PUT ' data onto sprite d isplay area
OR OR data onto sprite d isp lay area
XOR XOR data onto sprite d isplay area
AND AND data onto sprite d isplay area
IF P lace data in front of the data currently on the sprite d isplay area
BH P lace data behind the data currently on the sprite display area

Pressing the 'P ' key will cyc le through these print modes.

T h e 'N 'key
Press ing the 'N' key w ill increment the current sprite number (represented by SPN). If the 'SHIFT' key
is pressed at the same time as the 'N' key then the current sprite number will be decremented.

The 'F' key
Sw itches on the specia l FILL cu rso r which can be guided around the sprite d isp lay area by the
'A','D','W ' and 'X' keys (or a joystick). Pressing 'EN TER ' or 'FIRE' will FILL the appropriate area, from
the cursor position, with the current INK. P ressing SHIFT and 'F' will set the whole sprite display
w indow to the current INK colour.

The Έ ’ key
The 'E' key a llow s a previously created sprite to be erased. Before actually erasing the sprite you will
be asked ''ARE YOU SU R E? (Y/N)" this is to safeguard against the accidental erasure of sprites.

The '0' key
P ress ing the '0 ' key togg les 'wrap' for the sc ro lls (represented by WRP) on and off. If 'wrap' is turned
on when a scro ll is performed any data that goes off one side ofthe sprite d isp lay w indow reappears
on the other side, whereas if 'wrap' is turned off it does not.

The Arrow keys
The arrow keys have two functions. When used on their own the sprite d isp lay w indow is scro lled in
the appropriate direction. If, however, the 'SHIFT' key is pressed at the same time then a flip
(mirroring) will be performed. The follow ing types of flips can be achieved by pressing the 'SHIFT' key
with the arrow keys:
— flips the contents of the sprite d isplay w indow about the Y axis,
t flips the contents of the sprite d isplay w indow about the X axis
— flips the contents of the sprite d isp lay w indow to the right of the w indow (creates a horizontally

symmetric window).
I flips the contents of the sprite d isp lay w indow to the bottom of the w indow (creates a vertically

symmetric window).
Using th e '—' and ' l ' keys it is possib le to produce a symmetrical design whilst only having to create
half or a quarter of the full design.

The ‘B’ key
If the ‘B ’ key is pressed then the contents of the sprite display w indow will be magnified horizontally.
Ifthe ‘SH IFT ’ key is used in conjunction with the 'B' key then the contents ofthe sprite d isplay w indow
will be magnified vertically.
The ‘T ’ key
Using the 'T' key you are able to rotate the contents of the sprite d isplay w indow by 90 degrees in a
clockwJse direction into another area of the screen. When the 'T' key is pressed it is taken that the
data contained within the sprite disp lay w indow is the data to be rotated. The sprite d isplay w indow
should be p laced in the position where the data i sto be rotated to. When the cursor is in position the
'EN TER ’ key should be pressed. The area to which the data is being rotated should not overlap the
area from which the data is taken. The height of the area to be rotated is rounded down to the nearest
multiple of 8 pixels. See SPNV.

T he‘P’ key

113

The ‘Z ’ key
Pressing the 'Z' key will invert the contents of the sprite d isplay window.

The ‘H’, ‘G ’ and ‘V’ keys
It may be necessary at some stage to design a sprite that is bigger than the size of the sprite display
area. Th is may be done by creating a large sprite in memory and then designing it, a section at a time.
P ress ing the Ή ’ key w ill create a large sprite in memory. You will be asked to enter the width of the
sprite in bytes and the height of the sprite in pixels. P ress ing the ‘G ’ key ‘G ET s ' the contents of the
sprite d isp lay w indow into the large sprite. You will be asked for the column and row positions within
the sprite. P ressing the *V' key will p lace a section of a large sprite onto the sprite display area. The
position at w h ich this is p laced and the size of the section to be placed will be indicated by the sprite
d isp lay w indow. You will be asked to enterthe row and column position within the spritefrom which
the data is to be taken. The sprite number is again indicated by SPN.

The *[’ key
Pressing th e '[' key changes the amount by which the sprite display w indow will be scro lled when a
horizontal scro ll is performed.

The ']’ key
Pressing th e ']’ key changes the amount by which the sprite d isplay w indow will be scro lled when a
vertical scro ll is performed.

T h e ‘K’ key

Th is option provides you with the facility to change the co lour of particular p ixels in the sprite display
w indow for some other co lour (see SETV). Th is does not effect the co lour of the INKs but actually
changesthe p ixe ls in the sp rited isp layarea. When the 'K ' key is pressed you will beasked forthefirst
INK. Th is is the INK number of the pixels to be changed. Then you will be asked to enter the second
INK. Th is is the INK number to which the pixels are to be changed.

The 'M’ key

The 'M ' key performs the function of masking and de-m asking a sprite. If the 'M ' key is pressed then
the sprite w ho 's number is shown in SPN will be masked. If the 'SHIFT' key is pressed at the same
time as the 'M ' key then the sprite who's number is shown in SF*N will be de-masked.

Th· ·:’
When th e ':’ key is pressed, the current sprite d isp lay wondow will flash until the key is released. This
option is provided to locate the position and size of the current window.

The T key
When the T key is pressed a new set of information will be shown.

T h e ‘R’ key

Press ing the 'SHIFT' key atthe sam etim easthe 'R' key will return you tothe main menu. P lease note
all data contained in both the character square and in the sprite disp lay area will be lost when you
return to the main menu. All system pointers are a lso reset to their default values.

ANIMATING SPRITES

You are ab le to animate between several sprites by choosing option 8 from the main menu. The
sequence through w hich the sprite generator will animate is entered at the top of the screen, the
actual animation will take p lace on the sprite d isplay area at the bottom.

Entering an animated pattern

To enter a sprite into the animation sequence you must move the cursor to the position in the
sequence where the sprite is to be entered. Then type in the number of the sprite that you w ish to
enter at the position followed by 'ENTER'. At the end of your animation pattern enter 'R ’ and at this
point the animation pattern will start from the beginning again.

114

Cursor movement
The cursor that indicates the current position in the animation sequence may be moved by the
follow ing keys:

A to move left;
D to move right;
W to move up;
X to move down.

If the 'SHIFT ’ key is pressed with one of the above keys then the cursor on the sprite d isplay will move.
Th is cursor indicates the position at which the animation sequence will be displayed.

The SPACE BAR
Pressing the S P A C E BAR starts and stops the animation sequence.

T h e ‘R’ key
Pressing the 'SHIFT' key at the same time as the 'R' key will return you to the main menu.

SAVING SPRITES
You can save your sprites onto tape o rd isk by selecting option 4 from the main menu. After selecting
this option you will be asked for the filename under which the sprites are to be saved. The filename
should be typed in upper case with a maximum of 5 characters. Three sets of data are saved, the first
conta ins system variab les used by the Laser routines, the second contains the sprite table holding
information about each sprite, and the third is the actual sprite data.

LOADING SPRITES
Option 5 will allow a file of previously saved sprites to be loaded from tape or disk. After se lecting this
option you will be asked for the filename of the sprites to be loaded. "SPR " will automatically be
appended to the filename you enter. The new maximum sprite number (from the loaded file) is
d isp layed and an option is given to alter it. If you respond with "Y" to the prompt then a new SM AX
should be entered. Th is must be in the range 1 to 255. If the file is not found, the prompts will still be
issued but you w ill probably respond with "N " un less you w ish to modify SM AX for some other
reason.

MERGING SPRITES
Sprite files can also be merged from tape or disk. However, this can only be done if none of the sprites
being merged from tape or d isk have the same number as any of the sprites that are currently held in
the sprite generator and if the maximum number of the sprites being merged does not exceed the
current maximum sprite number, entered at the start of the session when you first RAN the program.
Again, after se lecting to merge sprites you will be asked to enter the filename of the sprites to be
merged from tape or disk.

A SAMPLE SESSION WITH THE SPRITE GENERATOR
lfyou haven’ta lready loaded Laser BASIC then load th isfirs t.The sprite generator program can now
be loaded and RUN, making sure the keyboard is in upper case before RUNning - if not press C A PS
SHIFT. You should a lso ensure that the volume is turned up to make error ‘beeps' audible.
Tape users p lace Tape 2 S ide A in the cassette and type RUN"SPTG EN . D isk users just type
RU N "SPTG EN to load and run the sprite generator program.
When the program first executes you will be prompted to enter the maximum sprite number. This
should be a value in the range 1 to 255, but for now, enter 120. The message ''IFYOU HAVE MADE AN
ERRO R YOU WILL H E A R ..." will appear, and two low beeps will be heard. This is to demonstrate what
will be heard when an error occurs. The m essage "IF THE OPERATION W AS S U C C E S S F U L ..." will
appear and two high beeps will be heard. Th is is to demonstrate what w.ll be heard if an operation is
successfu l. Now press any key and the main menu will appear.
You w ilfn ow need some sprites to work with; we will use the SPT1 sprites (see Appendix A).
The SPT1 sprites should be loaded using the following procedure:
1. If you are using tape then you should p lace the cassette containing the S P T 1 sprites into the

cassette player. The SPT 1 sprites are situated directly after the sprite generator on tape 2 side
A.

115

2. From the main menu select option 5. Th is a llow s you to load your sprites.
3. The prompt "ENTER FILEN AM E” should appear. You should now enter “SPT1” followed by

the key marked 'ENTER '. Note that “SPR " is automatically appended to the filename. For the
purposes of this session, do not modify the maximum sprite number (so type N).

4. You will now return to the main menu.
We are going to start the sample session in 16 co lour mode (MODE 0) so select option 1 from the main
menu.

THE CURSOR KEYS
The 'A','D', 'W' and 'X' keys will a llow you to move the flashing cursor around the character square. By
pressing the 'SHIFT ’ key and the above keys you may move the cursor around the sprite display area.
Use the keys to move both of them around until you get a feel for it. Notice that the cursors will wrap
around, that is to say they will re-appear on the opposite side if they are moved off the edge of the
character square or the sprite d isplay area.
In order to set a particu lar pixel, move the character square cursor to the required position, release
the cursor keys and press 'ENTER '. Move the cursor to the next position you want to set and press
'ENTER ' again. To unset a pixel, position the cursor over the set pixel and press 'DEL'. If neither of
these keys are pressed then the cursor moves non-destructively. That is to say it moves around the
screen without affecting the ce lls it moves across. Now spend a few minutes getting used to the
cursor keys by creating, for example, a space invader. It doesn't have to be a work of art, but will serve
to demonstrate some of the package 's functions.

The ‘S ’ and ‘L ’ Key*
Now that you have designed a character it's time to see what it will look like, reduced to real size on
the sprite d isp lay area. P ress 'S ' to put your invader onto the sprite disp lay area, it will appear at the
current sprite d isp lay area cursor position. Now press 'C ' and this will c lear the character square.
P ress 'L' to lift the invader back to the character square. Using this method, sprites can be created or
edited a section at a time.

Before going any further, let’s take a qu ick look atthe internal format ofthe Am strad 's pixel data. You
may skip this section if you w ish and come back to it at a later date.

When characters are stored on the screen they are stored either in 8 bytes, 16 bytes or 32 bytes,
depending on which screen mode you are in at the time. A byte is an 8 bit number. The bits are
numbered from 0 to 7 starting from the right hand side, and each bit represents the value oftwo to the
power of the number of the bit. Therefore, ifjust bits 2 and 5 were set, then the value of the byte would
be 36. The correspond ing va lues of each bit in a byteare shown below in Fig. 1 .B it0 is th e rightmost
bit, bit 7 is the leftmost bit.

FIG.1 Bi tO = 2 t o t h e p o w e r o f O = 1
Bit 1 = 2 to the power of 1 = 2
Bit 2 = 2 to the power of 2 = 4
Bit 3 = 2 to the power of 3 = 8
Bi t4 = 2 t o t h e p o w e r o f 4 = 16
Bit 5 = 2 to the power of 5 = 32
Bit 6 = 2 to the power of 6 = 64
Bit 7 = 2 to the power of 7 = 128

In screen mode 0, 32 bytes are needed to produce a character. The first byte produces the co lour of
the first two p ixe ls in the top line ofthe character, the second byte produces the second two p ixe ls in
the top line of the character, the third byte produces the next two pixels, the fourth byte the last two
pixels, then the fifth byte will produce the co lour of the first two p ixe ls of the second row of the
character. Each byte represents 2 pixels which are encoded as follows:

Right pixel - bits 0,4,2,6
Left pixel - bite 1,5,3,7

In screen mode one, 16 bytes are required to store a character. The first byte produces the co lour of
the first four p ixe ls in the top row of the character. The second byte produces the co lour of the last
four p ixe ls in the top row ofthe character, thethird byte p roducesthe co lou ro fth e firs t four p ixe ls in
the second row of the character and so on. Each byte represents 4 p ixels which are encoded as
follows:

116

Left pixel - bits 0,4
Second pixel - bits 1,5
Third pixel - bits 2,6
Right pixel - bits 3,7

In screen mode two, only eight bytes are required to store a character. In this screen mode each bit
sim ply ind icates whether the correspond ing pixel in the character row is on or off. Now for our
invader, firstly p ress th e 'E ’ key then respond to the question “Decimal or B inary” by pressing the 'D ’
key. You will then be asked to enter the first byte value which can be found in Fig. 2. Then enter the
second byte, third byte and so on until all 8 are entered. Now move the cursor on the sprite display
area one p lace to the right and enter the 8 bytes in Fig. 3, using the same procedure used to enter the
data in Fig. 2. Then move the cursor another p lace to the right and enter the 8 bytes in Fig. 4. Then
move the cursor another p lace to the right and enter the last 8 bytes in Fig. 5.

Fig.2
1 st byte = 17
2nd byte = 34
3rd byte = 17
4th byte = 51
5th byte = 51
6th byte = 51
7th byte = 17
8th byte = 34

Fig.3 Fig.4 Fig.5
0 0 34
0 0 17

51 51 34
17 34 51
17 34 51
51 51 51
34 17 34
0 0 17

Back to the Sample Sesslon....
Now let us change the INK colours. P ress the 'P ' key and you will cause the arrow to move down the
INKs (SHIFT 'P ' moves the arrow up). If you now press 'EN TER ', a pixel on the character square is set
to the INK co lour pointed to by the arrow - try it. Although there are only 16 INKs available in this mode,
by pressing the T key you will cause the current INK to cycle through all of the available colours. You
will notice that all the pixels on both the character square and the sprite d isplay area of the INK
pointed to by the arrow will change colour. If you now press the 'J' key, all the values of the INKs will
be displayed, and these should be noted down before saving sprites, so that you can setthe INKs in
your Laser BASIC programs to the required values. P ress ‘J ’ again to return to the original screen.
Now press the ‘S P A C E BAR ' to enter sprite mode. Notice thatthe cu rso r indicators (CX and CY) have
been rep laced by the sprite d isp lay w indow indicators (SX and SY). To view the window, hold dow n ':'
and it will flash to indicate its s ize and position. The w indow can be moved by pressing the 'A', 'D', 'W'
and 'X ' keys (to move left, right, up and down respectively) or by using a joystick. The width of the
w indow can be increased or decreased in length by pressing SHIFTed 'A' or SHIFTed 'D' and the
height can be increased or decreased by pressing SHIFTed 'W ’ or SHIFTed 'X'. Again, SHIFT can be
used together with the joystick to produce the same result.

CREATING A SPRITE
Move the w indow to the top left hand corner of the sprite disp lay area so that the SX and SY values
indicate 0. Now press the T key and a new set of information will be displayed. P ress the 'N' key (or
SHIFT 'N' key) until the value of SPN in the top right hand corner is 5. Now press 'L' and sprite 5 will
appear. P ress T again and another set of information will be displayed, giving all the information
about sprite 5. P ress T again and you will be back to the original information.
We w ill pretend th is sprite h asju st been designed. You could if you w ish go back to character mode
(‘S P A C E BAR ’) and change the co lours of the INKs; ifyou do, press the 'S PA C E BAR' to return to sprite
mode.
The follow ing sequence must be followed to create a sprite. Adjust the sprite w indow until it contains
all the pixel data required in the sprite. You will notice that the values of LEN and HGT will change; in
this example LEN should be around 7 and HGT around 23. P ress T and set SPN to 26 (an undefined
sprite).
P ress ‘S ' (you will hear a high beep) and the sprite will be created. P ress T and all theinformation for
the sprite will be displayed. P ress T again to return to the original information display. Move the sprite
w indow to a c lear part of the screen. P ress 'L' and if all has gone well, the new sprite will be put on the
screen.
NOTE: If you try to create a sprite with a number which has already been allocated, then a low pitched
beep will be heard. If the latter is ever the case then try again using a different SPN number.

117

You may a lso erase a sprite by setting SPN to the appropriate value and then pressing the 'E' key. The
number of the sprite that you have just erased can now be re-allocated.
The S P T 1 sprites you have loaded into memory are a mixture of both 16 and 4 co lour mode sprites but
only 16 co lour mode sprites will be displayed correctly in the current mode (main menu option 1).
We will now d isp lay anotherone ofthe SPT1 sprites. F irs tdecrease SPN to 6 using 'SHIFT' and 'N',
then press 'L' and sprite 6 will appear. Move the sprite d isp lay w indow with theusua l keys 'A', 'D ’, 'W'
and ‘X ’ until its top left hand corner a ligns with the d isplayed sprite’s top left hand corner. Now modify
the s ize of the sprite d isp lay w indow using 'SHIFT ’ and ’A ’, 'D', ‘W ’ and ‘X ’ until it fits over the sprite.

SPRITE SCREEN TRANSFORMATIONS
We will now perform some scro lls and flips. P ress the right arrow key and the sprite will scro ll to the
right. Notice that W R AP is off at the moment (WRP is set to 0); if W RAP was on, then the part of the
sprite that had disappeared would wrap around to the other side. Now press the downwards arrow
key and the sprite w ill scro ll tow ardsthe bottom, the W R AP is still off. Using 'L', p lace the sprite back
onto the d isp lay area. P ress the '0 ' key and W RAP will be on, (WRP is set to 1) and now see the effect
of scro lling the sprite. P ress '0 ' again to set W RP to 0.
Now let's perform a flip. P ress 'SHIFT' and ‘UP ARRO W ’, and the contents of the sprite display
w indow will be turned upside down (vertically mirrored).
We are now going to FILL an area with a particular INK. For this example you w ill need to design an
enclosed outline on the sp rited isp lay area. Once you have done this, change the INK and enter sprite
mode. Then press 'F'. You will now have control o fasm a ll flashing pixel. Using keys 'A ’, 'D ’, 'W ’ and 'X'
or the joystick, move th is flash ing pixel inside the outline and press 'ENTER ' or 'FIRE', and the whole
interior should be FILLed with the current INK. If there were any gaps in your outline, the INK will be
seen to flood all over the sprite d isplay area!!
Move the sprite d isp lay w indow to a free part of the sprite d isp lay area, enter character mode and
move the arrow to a particular INK. Now go back into sprite mode ('SPACE BAR') then press 'SHIFT'
and 'F ’. The whole of the sprite w indow will be flooded with the INK you chose.
P ress the 'L ’ key to put sprite 6 on the screen. Position the w indow over the sprite.
Now let's change all the p ixe ls in the sprite d isp lay w indow which have a particular INK value to have
a different INK value. P ress 'K ' and you will be prompted to inputthe INK number you wish to change,
so type in number 3 and then 'ENTER '. You w ill now be asked to enter the INK number you w ish to
change it to, so type 14 and then 'EN TER ’. Th is will change everything drawn in INK 3 to INK 14.
At this stage let’s go back to the main menu. Go back to character mode by pressing the 'S PA C E
BAR ’. Before you return to the main menu check that all the sprites on the sprite d isplay area have
been stored in memory as the sprite d isp lay area is about to be cleared. Now p ress 'SHIFT ’ and 'R'
and the main menu will be displayed.

MODE 1 SPRITES
Se lect Option 2 to use the sprite generator in graph ics mode 1. The d isplay is sim ilar to the one
selected by option 1.

P ress the S P A C E BAR and then p ress 'L ’. S PN will be set to 1 (the default value on se lecting the
option) so sprite 1 w ill appear on the screen (sprite 1 is a M O D E 1 sprite). You may, if you wish, go
back to character mode and set the INKs to their preferred colours.

ROTATION

We are now going to demonstrate rotation (which will only work correctly in this mode). Firstly set the
sp rited isp layw indow tocoverthe tank(rem em bertha tH G Tm ustbed iv is ib leby8). LEN should be10
and HGT should be 24.

You can check thatthe sprite d isp lay w indow lies overthe tank by holding do w n ':' or by pressing 'Z'
to invert the w indow. If you do invert the w indow by pressing 'Z ' then 'Z' should be pressed again
before you proceed.

P ress 'T' and move the sprite disp lay area w indow to a free part of the screen (clear of the tank) and
then press ENTER. A 90 degree rotated tank will appear.

118

SPRITE DISPLAY WINDOW AND SPRITE CURSOR REVISITED
By now you will probably have noticed that it takes a long time to move the.sprite display w indow or
cu rso r around the sprite d isp lay area. The sprite generatoris provided with a facility to change the X
and Y increments which define the speed the display w indow and cursor move at. In both character
mode and sprite mode, the '@ ' key will change the value of XS, and the ';’ key the value of YS. The
va lu e sfo rth e tw o modes are, however, independant, so changing XS and YS in character mode will
not affect the values displayed when you enter sprite mode. Press the '@ ' key until XS is 8. P ress th e ';'
key to change the value of YS until it is a lso 8. You can now move around in large steps.
The rate of sprite d isp lay w indow scro lling can be changed using th e '[’ and ']’ keys. In sprite mode
press the T key. You will see two values XSC and YS C displayed. XSC is the resolution of sideways
scro lling. Th is i s s e t to 'PIX' when the sprite generator is first loaded. Th is g ives the scro lling a
resolution of 1 pixel.
If you now p re s s '[’ a resolution of 1 byte will be set, p re ss '[’ again and a 2 byte resolution is set. Press
'[’ and try a sideways scroll.
Y SC indicates the vertical scro lling resolution. P re s s in g '[’ will increase the value in a cycle of 1 to 8.
Try some scro lls with various values of XSC and YSC to see the results.

MORE SCREEN TRANSFORMATIONS
P lace the sprite d isp lay w indow at the top left of the sprite d isplay area, i.e. SX and SY should be setto
0. P ress 'L' to put sprite 1 onto the screen. Now move the sprite d isp lay w indow to cover the sprite (a
tank). Check its position using either the *:’ key or the 'Z' key.
P ress the 'B' key and the tank is magnified by a factor of 2 horizontally. You will notice that the LEN
value Is now tw ice the original value.
P ress ‘SHIFT' and 'B' and the tank is magnified by a factor of 2 vertically. HGT now has tw ice its
orig inal value. If magnification would produce a result larger than the d im ensions of the sprite display
area then no action is taken.

ANIMATION
M ost arcade games require a sequence of animated sprites. The sprite generator program provides
an option which enab les you to view an animation sequence.
Return to the main menu by going into character mode and then pressing SHIFT 'R'.
There are lots of exam ples of sprite animation in the demo, so we will now load in the SPT3 sprites.
Tape users will have to insert the demo tape.
Se lect option 5 and type SPT3. P ress 'N ' in response to ‘change sprite max value', and once you have
returned to the main menu select option 8.
You will see that a cu rsor ('>') is positioned at the top left hand corner of the screen. The sprites we
are going to animate are sprites 30 to 33 (the 'eyeballs').
Type in 30 followed by ENTER, now move the cursor to position 2 using the 'D' key and type in 31
followed by ENTER. Move the cu rso r to position 3 using the 'A ' and then the 'X' key and type in 32.
Finally, enter 33 at position 4.
Move the cursor to position 5 and press 'R'.
The animation data has now been entered and is ready to be run. P ress the ‘S PA C E BAR ' to animate.
To return to the main menu type SHIFT 'R ’.

MORE ADVANCED FEATURES
Return to the main menu and select option 2.

MASKING AND REMASKING
Sprites that are going to be moved using, for example, FM O V or BM O V must be MASKed. You can do
this in your Laser BASIC program or in the sprite generator program.
Set SPN to 10 and press ‘L’ to put sprite 10 onto the sprite display area. The first thing you will notice is
a series of vertical bars indicating that the sprite is already MASKed. P ress SHIFT 'M ' and you should
hear a high beep meaning the operation was successfu l. What you have done is d e -M A SK the sprite
in memory. P ress ‘L ’ to rePUT the sprite and see the result.

119

T ο M A SK a sprite you must make sure, as in sprite 10, that all the useful data is in the left hand side of
the sprite. P ress 'M ' and a high beep should signify a successfu l operation. Now press 'L' and the
M ASKed sprite will be displayed.

NUMERICAL DATA ENTRY
A s stated earlier in th is manual, sprites can be used to hold data for various applications. Ifyou press
the ‘S P A C E B AR ’ to go back into character mode, and then press 'E', 'DEC IM AL OR BINARY' is
displayed. P re s s 'D 'fo r D EC IM ALand 'BY TE 1 'isd isp layed , sotype in 1 and h itEN TER fo llow ed by2,
4, 8, 16, 32, 64 and 128.
The data you have just entered will appear at the sprite screen cursor position.

SAVING YOUR FINISHED SPRITES
Once you have created your sprites, go back to the main menu. Toggle option 9 to point to either
'DISK' or 'TAPE ' depending on your system. Th is is acheived by pressing the '9' key.
Now press '4' to select option 4 and input the filename. Remember you do not put 'SPR ' at the end of
the filename as this is done for you, e.g. ENTER 'FRED ' and a file of sprites named 'FR ED SPR ' w ill be
saved.
If you accidenta lly break out of the sprite generator program, save off the sprites manually using
PSPR before typing RUN. Running the program will erase all the sprites from memory.

FUNCTION KEY SUMMARY

MAIN MENU OPTIONS:

OPTIONS
1,2,3

FUNCTIONS
A llow s you to design your sprites.

Character

KEYS

Mode

A
D
W
X

To move left.
To move right.
To move up.
To move down.

SHIFT with
(A,D,W,X)
S

W ill move cursor around sprite d isplay area.

P laces a character to the sprite display area.
P icks up a character from the sprite d isp lay area.
Changes the co lour of the current INK.
C lears the character square.
C lears the sprite d isplay window.
Puts the sprite generator program in to sprite mode.
M oves arrow indicating the INK down.
M oves arrow indicating the INK up.
D isp lays the co lour value of all the INKs.
Changes the co lour of the border.
Homes both of the cursors.
Sets a pixel to the current INK.
Sets a pixel to the paper colour.
Enters data on to the sprite display area.
Returns you to the main menu.

L

C
SHIFT and C
S P A C E BAR
P
SHIFT and P

J
B
CLR
ENTER
DEL
E
R and SHIFT

120

Sprite Mode
KEVS
A
D
W
X
SHIFT and A
D
W
X

@

To move left.
To move right.
To move up.
To move down.
To decrease length of window.
To increase length of window.
To decrease height of window.
To increase height of window.
Changes the X-increm ent for the sprite d isplay w indow movement.
Changes the Y-increm ent for the sprite d isplay w indow movement.

L
S
P
N
SHIFT and N

F
SHIFT and F
SHIFT and E
0
i

t

A llow s a sprite to be placed on the sprite d isplay area.
A llow s a sprite to be saved to memory.
Changes print mode.
Increases current sprite number.
Decreases current sprite number.
F ills an area bounded by pixels.
F loods the sprite d isplay w indow with the current pen.

E rases a sprite.
Togg les wrap on and off.
S cro lls down.
Scro lls right.
S cro lls left.
S c ro lls up.

SHIFT and -
SHIFT and 1
SHIFT and -
SHIFT and I
B
SHIFT and B
T
Z
H
G
V

[

F lip s contents of w indow about the Y axis.
F lips contents of w indow about the X axis.
F lips contents of w indow to the right of the window.
F lip s contents of w indow to the bottom of the window.
M agnifies w indow horizontally.
M agnifies w indow vertically.
Rotates w indow by 90 degrees.
Invert the w indow contents.
Creates a large sprite in memory.
Saves the contents of the w indow to the large sprite.
Loads a section of a large sprite from memory to the sprite display area.

Changes the step when performing a horizontal scroll.

]
K

Changes the step when performing a vertical scroll.
Changes all o ccurrences of a INK in the sprite d isp lay w indow for some other
colour.

M
SHIFT and M

I

M asks a sprite.
De-m asks a sprite.
Flash the current sprite d isp lay window.
D isp lays information.

SHIFT and R Returns to the main menu.

121

00>
> b =
m - ..
s z =
> Q.

CO X < ο > *~T ~̂ m
<CO

CO
δΓ
3.

.̂ D
O Q.
3 § 0) o

30)

Ξo

oD

Φ
CL

O O O O

3 3 3 3 o o o o < < < <
0) Φ Φ Φ
Q- c 2. φ
O T3 UD § f
$ · £ ·

^_
0)

<

APPENDIX A — SPT1 SPRITES
To load sprites into Laser BASIC, type: A$ = " S P T 1 S P R " :^3SPR, 8A$
Sprite No. Description Suggested co lour values for inks

1 Light tank

HGT

19

LEN

9

1

0

2

13

3
12

4 5 6 7 8 9 10 11 12 13 14 15

2 WWII Zero fighter 13 8 0 23 6
3 WWII Stuka 16 8 0 9 11

4
divebomber
Army helicopter 15 11 0 9 13 ’ —

5 Ghost 22 7 0 18 9 14 6 0 0 0 0 0 0 0 0 0 0
6 Mutant strawberry 20 5 0 16 6 26 3 9 18 2 0 0 0 0 0 0 0
7 Mutant orange 16 6 0 14 15 26 3 9 0 0 0 0 0 0 0 0 0
8 Space cru iser 19 10 0 25 15
9 Space scou t-sh ip 19 9 0 14 23
10 Space transporter 14 11 0 0 8
11 Deep sea submarine 18 15 0 24 15
12 Lunar rover 15 10 0 10 15 -

13 Lunar transporter 18 14 0 13 15 - -
14 Jet interpreter 16 13 0 12 13
15 Alien 22 6 0 2 11 26 6
16 Sports car 15 13 0 2 11 - -
17 Lunar explorer 21 10 0 5 12
18 Martian explorer 27 16 0 13 14 -
19 Martian probe 35 10 0 3 24 -
20 Helicopter 19 15 0 9 12 -

21
transporter
Helicopter gunsh ip 17 15 0 12 11

22 Jet helicopter 16 15 0 13 11
23 Jet fighter 16 13 0 9 12
24 Saloon car 16 14 0 6 13 - -
25 Shuttle 20 13 0 26 13 -

Anim
ating your Sprites

O
PTIO

N

FU
N

CTIO
N

APPENDIX B — SPT2 SPRITES
To L o a d s p r i t e s i n t o L a s e r B A S I C , t y p e : AS =
Sprite No. Description

HGT LEN 1 2
S

3
1 Spider 16 4 14 6 0
2 Droid 16 4 15 18 0
3 Heart 16 8 0 0 6

<defined in
example session>
<defined in
example session>

Suggested co lour values for inks
4 5 6 7 8 9 10 11 12 13 14 15

6 O CEAN IQ Logo 32 28 2 26 11 -
7 Ball 8 2 18 0 9
8 Joystick 16 4 6 0 13 -
9 Face 16 4 16 15 0
10 Teddy bear 40 8 15 17 0
11 Little man 16 4 16 7 9
12 Vintage car 16 16 0 13 14 -
13 Dragster 16 16 0 15 18 -
14 B i-p lane 16 3 13 0 0
15 Dummy sprite 18 9
16 <defined in

exam ple session>
17 Mutant plant #1 22 7 19 0 9
18 Mutant plant #2 22 7 19 0 9
19 Mutant plant #3 22 7 19 0 9
20 Mutant plant #4 22 7 19 0 9
21 W alking robot #1 16 6 0 26 10 -
22 W alking robot #2 16 6 0 26 10 -
23 W alking robot #3 16 6 0 26 10 -
24 W alking robot #4 16 6 0 26 10 -
25 S c isso rs #1 20 8 13 0 0
26 S c isso rs #2 20 8 13 0 0
27 S c is so rs #3 20 8 13 0 0
28 S c isso rs #4 20 8 13 0 0
29 Undefined _

30 <defined in

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

48

49

50
51
52
53
54

exam ple session>
Bricks
Dummy sprite
The letter ‘A ’
Dummy sprite
The letter 'a'
Dummy sprite
The letter 'a ’
B lank block
Banana
Data sprite
Data sprite
Data sprite
Data sprite
Data sprite
Data sprite
P lanet with moon
#1
Planet with moon
#2
Planet with moon
#3
Planet with moon
#4
Site
Data sprite
Arrowed square
Cat
Bird

25 10 0 0 6
25 10
8 2 24 0 0
8 2
8 2 24 0 0 -

2 1
8 2 24 0 0
8 2 24 0 0 -

17 5 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 13
1 11
1 170
1 170
1 19
1 7
16 4 11 26 6 -.

16 4 11 26 6

16 4 11 26 6

16 4 11 26 6 -

13 3 23 0 0
1 4
24 6 25 6 0 -

22 7 0 12 0
25 5 0 0 4

APPENOIX C(i) — SPT3 SPRITES (Sprite· u*ed In the demo part 1)
To L o a d s p r i t e s i n t o L a s e r B A S I C , t y p e : A $ -■ ·<

P lease note that all sprites postfixed with (M) are in a M ASKed form i
Sprite No. Description S i

HGT LEN 1 2 3
1 Tortoise 17 8 0 6 12
2 Rat 17 9 0 6 10
3 Hare 17 8 0 20 15
4 Stone floor section 8 7 0 11 9
5 Rope and pulley

lift
23 7 . 0 11 7

7 Cube 8 2 0 16 20
8 Space scout craft 23 6 0 10 16
9 Alien 24 10 0 8 0
10 Hopping alien #1(M) 33 10 0 8 0
11 Hopping alien #2(M) 33 10 0 8 0
12 Hopping alien #3(M) 33 10 0 8 0
13 Hopping alien #4(M) 33 10 0 8 0
14 Square 16 4 0 0 5
15 Stone ca ll section 24 10 0 0 9
16 Ladder section 24 10 19 0 0
17 Data sprite 8 2
18 Data sprite 8 2
19 Data sprite 10 18
20 Data sprite 1 4
21 Data sprite 1 4 -

22 Data sprite 1 4
23 Data sprite 1 4
24 Chasing alien #1(M) 33 14 0 0 14
25 Chasing alien #2(M) 33 14 0 0 14
26 Chasing alien #3(M) 33 14 0 0 14
27 Chasing alien #4(M) 33 14 0 0 14
28 Long cube 15 5 0 3 6

Suggested alternative co lours for the inks
4 5 6 7 8 9 10 11 12 13 14 15

M PW « Μ — M

M—I

29 Data sprite 3 2
30 Eyeball #1 16 6
31 Eyeball #1 16 6
32 Eyeball #1 16 6
33 Eyeball #1 16 6
34 Data sprite 1 4
35 Data sprite 1 4
36 Data sprite 1 4
37 Data sprite 1 4
38 Data sprite 1 4
39 Data sprite 1 4
40 Data sprite 1 4
41 Data sprite 1 4
42 Data sprite 1 4
43 Data sprite 1 4
44 Data sprite 1 4
45 Data sprite 1 4
46 Data sprite 1 4
47 Data sprite 1 4
49 Small ladder

section
8 3

50 Corkscrew #1 20 4
51 Corkscrew #2 20 4
52 Corkscrew #3 20 4
53 Corkscrew 20 4
55 Animated toilet #1 19 7
56 Animated toilet #2 19 7
57 Animated toilet #3 19 7
58 Animated toilet #4 19 7
63 Data sprite 8 1
64 Data sprite 8 1
65 Data sprite 8 1
66 Data sprite 8 1
67 Data sprite 8 1
68 Data sprite 8 1
69 Data sprite 8 1

0 16 9
0 16 9
0 16 9
0 16 9

0 11 0

0 7 3
0 7 3
0 7 3
0 7 3
14 23 24 -
14 23 24 -
14 23 24 -
14 23 24 -

128
Η

129

APPENDIX C(ll) — SPT4 SPRITES (sprite· used in the demo part 2)
To l o a d s p r i t e s i n t o L a s e r B A S I C , t y p e : A$ = " SPT4SPR" : ^S P R , 3 A S
Sprite No. Description

HGT LEN 1 2
Suggested alternative colours for the inks

3 4 5 6 7 8 9 10 11 12 13 14 15
6 OCEAN IQ Logo 33 28 9 21 23
70 Stone brick 16 8 0 0 13 12 0 0 0 0 0 0 0 0 0 0 0
71 Stone brick

with weeds
16 8 0 24 13 12 1 0 0 0 0 0 0 0 0 0 0

72 Walking monk #1(M) 26 10 0 0 0 0 0 12 25 15 0 13 0 0 0 0 0
73 Walking monk #2(M) 26 10 0 0 0 0 0 12 25 15 0 13 0 0 0 0 0
74 Walking monk #3(M) 26 12 0 0 0 0 0 12 25 15 0 13 0 0 0 0 0
75 Climbing monk #1(M) 27 12 0 0 0 0 0 12 25 15 0 13 0 0 0 0 0
76 Climbing monk #2(M) 27 10 0 0 0 0 0 12 25 15 0 13 0 0 0 0 0
77 Climbing monk #3(M) 26 12 0 0 0 0 0 12 25 15 0 13 0 0 0 0 0
78 Stone window 36 7 0 0 12 25 0 0 0 0 0 0 0 0 0 0 0
79 Spearman #1 38 5 0 0 15 3 12 9 0 0 19 16 0 0 0 0 0
80 Spearman #2 38 5 0 0 15 3 12 9 0 0 19 16 0 0 0 0 0
81 Spearman #3 40 5 0 0 15 3 12 9 0 0 19 16 0 0 0 0 0
82 Pointing monk 29 5 0 0 0 0 0 12 25 15 0 13 0 0 0 0 0
83 Monk’s hand 6 5 0 0 0 0 0 12 25 15 0 13 0 0 0 0 0
84 Woman 35 3 0 11 0 0 2 1 26 15 21 0 0 0 0 0 0
96 Rocket plane #1(M) 14 24 0 0 0 0 14 24 25 0 16 0 0 0 0 0 0
97 Rocket plane #2(M) 14 24 0 0 0 0 14 24 25 0 16 0 0 0 0 0 0
98 “Press any key" (M) 8 50 14 0 -

100 Data sprite 1 20 -

101 Data sprite 1 20
102 Data sprite 1 20
103 Data sprite 1 20
104 Data sprite 1 20
105 Data sprite 1 20
106 Data sprite 1 20
107 Data sprite 1 20
108 Data sprite 1 20 -

109 Data sprite 1 20
110 Data sprite 1 20
i n Data sprite 1 20
112 Data sprite 1 20

APPENDIX C(iii) — SPT5 SPRITES (sprites used in the demo part 3)
To l o a d s p r i t e s i n t o L a s e r B A S I C , t y p e : AS =" S P T 5 S P R" : f e S P R , 3 AS

Sprite No. Description Suggested alternative co lours for the inks
12 13 14 15

HGT LEN 1 2 3 4 5 6 7 8 9 10 11

60 Platform game 7 49 - - _ "
Channel A m usic sprite _

61 Platform game 1 128 - “ _ — — — -

Channel B m usic sprite
152 -

_ _
62 Platform game

Channel C m usic sprite
1

86 Loading screen 2 234 - “ -

Channel A m usic sprite
94 -

_ _
87 Loading screen 1 ” _ — — —

Channel B m usic sprite
94 -

_ _
88 Loading screen 1 " — — — — —

Channel C m usic sprite
119 -

_ _
90 Ocean IQ screen 3 “ _ - - — -

Channel A m usic sprite
128 -

_ _
91 Ocean IQ screen 2 - _

Channel B m usic sprite _
92 Ocean IQ 1 75 - ” _ - - - - “

Channel C m usic sprite
91 -

_ _
93 Hunch back screen 3 ~ _ — — — —

Channel A m usic sprite
237 -

_
94 Hunch back screen 1 “ _ — — — —

Channel B m usic sprite
122 -

_
95 Hunch back screen

Channel C m usic sprite
2

NOTES NOTES

i

130 131

TEC H N IC A L ENQUIRY CARD

W E AT OASIS BELIEVE IN GIVING FU LL TEC H N IC A L SUPPORT TO ALL
OUR PRODUCTS. TO ASSIST US, PLEASE FILL IN THIS CARD AND RETURN
TO TH E ADDRESS BELOW . T E LE P H O N E ENQUIRIES, OR LETTERS NOT
ACCO M PAN IED BY THIS CARD CAN N O T BE AN SW ER ED . A R E P LA C E ­
M EN T CARD W ILL BE EN CLOSED W ITH OUR REPLY. A LL ENQUIRIES
WILL BE A N SW ER ED A T OUR FIRST OPPORTUNITY.

M A K E AN D M O D EL OF CO M PU TER.

SOFTW ARE PURCH ASED.

VERSION No.

PLACE AND D A TE OF PURCH ASE.

YOUR N AM E.

ADDRESS.

TELEP H O N E No.

A G E OCCUPATION.

PLEASE W RITE YOUR ENQUIRY HERE.

] OASIS SO FTW A R E, 12W ALLISCOTE ROAD, W ESTO N -SU PER-M ARE,
Please return to:-

AVON, EN G LAN D . BS23 1UG.

