

CONTENTS
INTRODUCTION
OTHER LASER BASIC PRODUCTS
GLOSSARY OF TERMS
TAPE/DISK MAP
OPERATING INSTRUCTIONS

GETTING STARTED WITH LASER BASIC
Laser BASIC Variables
Screen Operations
Sprite Operations
Sprite Window Operations
Sprite/Screen Operations
Sprite Window/Screen Operations
Sprite Window/Sprite Operations
Sprite Utilities
Laser BASIC's Dedicated Variables
MOVE Commands in Detail
BILD
Collision Detection and Pattern Recognition
High Resolution Movement
Background Execution of Laser BASIC Commands
Sound
Tracking Sprites

LASER BASIC EXTENDED COMMANDS IN DETAIL
Sprite Utilities
Parameter Related Commands
System Switches
Group IGETs and PUTs
Group I GETs and PUTs
Group WM GETs and PUTs
Group IScrolls and Wraps
Group Il Scrolls and Wraps
Group Il Scrolls and Wraps
Group IV Scrolls and Wraps
Group ITransformations
Group Il Transformations
Group Il Transformations
Data Exchanges
Linear MOVE Commands
Joystick/Keyboard MOVE Commands
Bouncing MOVE Commands
BWST
Data Scanning Commands
FILL
SPNV
KBFN
SCLS
BILD
DEEKand DOKE
Tracking Sprites
Controllers
Background Execution
Compiler Related Commands
Laser BASIC Sound

oD bDw
NNFP OO

LASER BASIC ERRORS
COMMAND SUMMARY

THE SPRITE GENERATOR PROGRAM
Introduction
TheMainMenu
DesigningSprites
AnimatingSprites
SavingSprites
LoadingSprites
MergingSprites
A sample session with the Sprite Generator
CreatingaSprite
FunctionKeySummary

APPENDIX A - SPT1 SPRITES
APPENDIX B - SPT2SPRITES
APPENDIX C(i)) -SPT3SPRITES
APPENDIX C(il) -SPT4SPRITES
APPENDIXC(iii)- SPT5SPRITES

98

100

110
110
110
111
114
115
115
115
115
117
120

123
124
126
128
129

LASER BASIC EXTENSION

by OASIS SOFTWARE

COPYRIGHT NOTICE

Copyright © by Oasis Software. No part of this manual may be reproduced on any media
without prior written permission from Oasis Software.

THIS MANUAL

Piracy has reached epidemic proportions and it is with regret that we are forced to re-
produce this manual in a form which cannot be photocopied. Our apologies for any
inconvenience this may cause to our genuine customers. A reward will be paid for infor-
mation leading to the successful prosecution of parties infringing this Copyright Notice.

NOTE

This manual is essential for the use of Laser Extended BASIC. For this reason we would
warn customers to look after it very carefully, as separate manuals will not be issued under
any circumstances whatsoever.

ENQUIRIES

If you have any queries on the use of Laser Extended BASIC, please send them to us in a
letter, ensuring you enclose the Enquiry Card printed on the last page of this manual. A
new card will be returned to you with your reply. Please note that enquiries not accom-
panied by the card will not be answered.

Copyright © byOasisSoftware

LASER BASIC EXTENSION
by John Gross

INTRODUCTION

Laser Extended BASIC is an extension to the existing set of BASIC commands in the Amstrad's
BASIC ROM. Although Locomotive BASIC is one of the most elegant implementations of the time
honoured language, it's features had to be designed to make it as flexible as possible. BASIC has
numerous applications but the specific area of our interest is graphics and animation. Laser BASIC
was designed to enhance the ease and in particular the speed, with which complex animated
graphics could be produced and about 200 commands and functions are included to do this. The
extracommands are all implemented as ‘BAR’commands (RSX’s) and so the firstcharacter of each is
a vertical bar (shifted @). Where commands are referred to in the text the ‘BAR’ is ommitted

Those users already familiar with the Lightning series will recognise most of the command set,
although for clarity a number of the command names have been changed. Laser BASIC does not
produce stand-alone programs (you need the extended interpreter to be resident) buta compiler has
also been developed which will make your Laser BASIC programs run faster and not require the
extended interpreter to be resident. This will mean thatyou can marketyour programs commercially.

The chief aim of Laser BASIC is to make the use of graphics, animation and sound as simple and
‘unfussy' as possible. The command set has been designed so that someone with a modest
knowledge of BASIC and the minimum of patience can see results as quickly as possible (hence the
extensive use of examples). However, it has to be said that if Laser BASIC was merely a couple of
dozen very simple animation commands then the more adventurous user might well question his
value for money. In fact there are more that 200 commands with some fairly advanced features
(tracking sprites and sound handling for instance) and so itis our hope that months from now you will
still find the package challenging but not frustrating.

OTHER AMSTRAD LASER PRODUCTS

Although Laser BASIC is a fully self contained package there are a number of companion products
which compliment its use. For details of availability and prices contact your local dealer or write
directly to us.

The Laser BASIC Compiler

Laser BASIC programs require the extended interpreter to be resident and this limits the potential
user base for your completed programs. The Laser BASIC Compiler, however, will compile your
BASIC programs into fast Z80 machine code that will run on any Z80 Amstrad micro withoutthe need
for Laser BASIC to be resident. Most ofthe Amstrad's BASIC is catered for but integer arithmetic is
used and so none of the floating point functions are supported. Itis a good idea to start all your
programs with DEFINT A-Z as a matter of course. Not only will this make sure that you have used
integer arithmetic, but it will also make your program run faster and use less memory.

The Laser Graphics Designer

Although Laser BASIC is supplied with the Sprite Generator Program, a much more powerful ICON
driven screen/sprite designer is available that produces graphics in a format compatible with all the
products in the Laser range. Remember that no other designer will produce compatible graphics.

The Laser Music/Sound Composer

Again, Laser BASIC is supplied with a sound generator program which enables music and sound
effects to be assembled into sprites. A much more comprehensive package that will ease and speed
up the development of music and sound is also available. Itis the only package which will produce
compatible sound sprites.

The Laser Assembler/Monitor

There really isn't space to do this product justice. We believe it to be the most powerful
assembler/monitor ever produced fora Z80 machine. The assembler has a number of compiler like
qualities and will generate code for structured programming loops as well as arithmetic and logical
expressions. The monitor has some features which have previously only been obtainable by
expensive hardware analysers and emulators.

Although the assembler tokenises its text for speed and efficiency, source files from a number of
alternative assemblers can be loaded and converted into the Laser assemblers tokenised format.

1

The Graphics/Sound Source Code

An enormousamountoftimeand effortwentintodeveloping and debugging thegraphicsand sound
routines which Laser BASIC and the other Laser packages use. The advanced user who works in
assembly language may be able to make great savings in effort by using these routines in theirgames
writing. The routines are supplied as souce code, in a format compatible with the Laser Assembler
and each entry pointis carefully documented (the workings ofthe code itself is notdocumented) Any
source code which is not used can of course be deleted before assembly time and so the final
run-time object code is likely to be a lot smaller than that employed by the compiler.

Mini Laser BASIC

A cutdown version of Laser BASIC which supports only the main features of Laser BASIC and leaves
much more memory for sprites and BASIC source is also available.

GLOSSARY OF TERMS USED IN THIS MANUAL

SPRITES

A sprite is a software controllable graphics character which is stored in memory as a series of data
'bytes’. The block of memory which makes up the sprite can be displayed by 'PUTting" it into video
memory where itappears as avisible image on the screen. References to 'sprites' generally mean the
bytes of data in memory which make up the graphics character but occasionally apply to the visible
screen image. Laser BASIC allows 255 sprites to be defined, each with their own user selectable
dimensions (up to 255 by 255). The limit on the size and number of sprites available to the user is set
by the amount of memory available.

SCREEN WINDOWS

A screen window is a section of the screen defined by the four variables (see Laser BASIC variables)
COL, ROW, HGT and LEN. COL is in the range 0 to 79, ROW is in the range 0 to 199, HGT is in the
range 1to 200and LEN isintherange 1to80.TheunitsforCOLand LENarebytes-1/2charactersin
4 colour mode and 1/4characters in 16 colour mode. The units for ROW and HGT are pixelsin both
modes. COL and ROW specify the column and row position on the screen of the left hand corner of
the window, with ROW 0 at the top of the screen and COL 0 on the far left hand side. HGT and LEN
define the dimensions of the window.

To see an example of a window on the screen type in the following line and hit ENTER.
JCOL,8:]ROW ,8:]LEN,32:]HGT,64:]INVV

SPRITE WINDOWS

A sprite window is a section of a sprite defined by the variables SPN, COL, ROW, HGT and LEN. SPN
specifies the sprite, COL and ROW specify the column and row within the sprite and HGT and LEN
define the size of the window.

If the window defined by these variables lies outside the sprite or overlaps its borders then the
command will not execute but no error message will be issued.

SPRITE SPACE

Sprite space is the area of memory containing all previously defined sprites. The top of sprite space is
28671 decimal (6FFF HEX) and the lower end grows downward from this point.

SCREEN OPERATIONS

These are operations which are carried outon a particular area of the screen. The area of the screen
to be operated upon is called the screen window and has been defined in an earlier section. The
operations themselves include scrolls, inversions, reflections, enlargements etc., and most
commands in this category have a suffix 'V' for 'video', eg. MIRV, MGXV and so on. If the window
overlaps the edge of the screen then it will be 'clipped’ to lie 'on-screen’.

SPRITE OPERATIONS

These cover more or less the same operations as the screen window commands butthistime a sprite
isoperated upon in memory instead ofasection ofthe screen. Theonlyvariable used isSPN and the
syntax for these commands is the same as those governing screen operations with an ‘S’ replacing
the 'V. The result of these operations can only be seen when the sprite is re-displayed to the screen
using a PUT or MOVE, command.

SPRITE WINDOW OPERATIONS

These operations are carried out on a section of a sprite in memory and more or less the same
facilities are available as for the former two sets of operations. This time the commands have the
suffix 'P' and the section of the sprite to be operated upon is defined by SPN, COL, ROW, HGT and
LEN. The sprite window is ‘clipped’ to lie 'on-sprite’.

SPRITE/SCREEN OPERATIONS

These are operations between the screen and a sprite. The dimensions of the sprite are used as the
dimensions of the screen window and COL and ROW are used to give the co-ordinates of the top left
hand corner ofthe window, thus the operations are defined using the variables SPN, COL and ROW.
Ifthe window lies partially 'off-screen’ then itwill be ‘clipped’ so that part of the sprite will be ‘PUT’ or
'GOT'. Commands in this category are prefixed with ‘PT'or 'GT' eg. GTBL, PTXR, PTND etc.

SPRITE/SPRITE WINDOW OPERATIONS

These are operations between a whole sprite and a window within a second sprite. The two sprite
numbers are held in SP1 (the sprite not containing the window) and SP2 (the sprite containing the
window). The dimensions of the window are the dimensions of the sprite not containing the window
and the position of the window in the sprite whose number is held in SP2 and is specified by SCL and
SRW. The window will be ‘clipped" ifitoverlaps sprite SP2. Commands in this group are prefixed with
'PM* or'GM".

SPRITE WINDOW/SCREEN OPERATIONS

These are operations between a screen window and a sprite window. As before, ROW, COL, HGT
and LEN definethe screen window, butthistime SCLand SRW are used todefinethe position ofthe
window within the sprite. Again the window will be clipped if it overlaps the sprite or the screen.
Commands in this group are prefixed with 'GW' or 'PW".

DUMMY SPRITE

A dummy sprite is a sprite which does not contain data for display. It may be used, for instance, to
store a machine code subroutine, an array, a sound program, or may be used as part of a collision
detection routine.

INK NUMBERS

The Amstrad has a palette of 27 colours butin 4 colour mode only 4 of these are selected for display
and in 16 colour mode only 16 are selected. The colour number refers to one of the 27 colours and the
INK number refers to one of the 4 or 16 INK numbers. Each of the INKs can be assigned one of the 27
colours orindeed all of the INKs could be assigned to the same colour, but this is seldom ofany use.
Laser BASIC uses two variables, IK1 and IK2 which are set to hold an INK number NOT a colour
number.

PIXELS

The screen on which images are displayed is divided into a grid of 'PIXELs'. All characters and
sprites are made up of pixels. In 4 colour mode the grid is 200 high and 320 wide so it consists of
62,000 individual pixels. Each ofthese contains a pixel which is displayed with the colour held in one
of the 4 INKs. Each of these 62,000 cells can be thought of as holding 0,1,2 or 3. Ifitcontains 0 it will
display the colour which was assigned to INKO and so on. In 16 colour mode the grid is 200 high but
only 160 wide so there are only 32,000 individual pixels. These pixels are no longer ‘square’ but are
twice as wide as they are high. Each pixel can now contain a number in the range 0to 15and can
therefore display one of the 16 colours which were assigned to the 16 INKs. It is important to
understand the difference between an INK and a colour or the remaining manual may well be very
confusing, so read this definition and the one previous to it again if you are at all uncertain.

SOURCE DATA

Several groups of commands in Laser BASIC are involved in moving data between sprites and the
screen. The source data refers to the data that is actually being moved.

TARGET DATA

This refers to the data that was originally held in the area of memory or screen, into which, the source
data is being moved.

TAPE/DISK MAP

TAPE LOCATION TAPE/DISK DESCRIPTION
FILENAME
Tape 1 - Side A "LB” The Laser BASIC extension
“SPT2SPR" The example sprites used in the
example programs
Tape 1-Side B "DEMO" The Laser BASIC extension (modified)
“DEMO” The demo program which automatically
loads its sprites when run
“SPT3SPR" The sprites used by the demo program
“SPT4SPR"
"SPT5SPR"
Tape 2 - Side A "SPTGEN" The sprite generator program
“SPT1SPR" The arcade sprites
Tape 2 - Side B “SNDGEN" The sound generator program
"MUSICSPR" The example tunes

OPERATING INSTRUCTIONS

The Laser BASIC Extension
0] To load type RUN"LB followed by ENTER.
(ii) Laser BASIC will load, display the copyright message and wait for a key to be pressed.

The Demo Program
(0] Type RUN"DEMO - for the tape version
or Type RUN"LB - press any key, and then RUN"DEMO for disk.

The Sprite Generator Program
0] Laser BASIC must first be loaded using the previous procedure.

(i) The sprite generator can then be loaded and executed using RUN"SPTGEN followed by
ENTER. Laser BASIC will need to be loaded from Tape 1. All sprites currently in memory are
lost and the default maximum sprite number is 120.

NOTE: Ensure the keyboard is set to upper case before RUNning (if not press CAPS SHIFT)

The Sound Generator
0] Laser BASIC must first be loaded using the previous procedure.

(ii) The sound generator can then be loaded and executed using RUN"SNDGEN followed by
ENTER. Laser BASIC will need to be loaded fromTape 1.The sound generatorcan be 'broken
out of and re-run from any position.

NOTE: Ensure the keyboard is set to upper case before RUNning (if not press CAPS SHIFT)

GETTING STARTED WITH LASER BASIC

First reset the machine by pressing SHIFT,CTRLand ESC simultaneously.ToLOADthe Laser BASIC
extension just type RUN"LB and press ENTER. Ifyou are loading from tape you will need to press
PLAY on the cassette recorder. The program will load and display the copyright notice. Now press
any keyand the screen will clearand "Ready” willappear in thetop left hand corner. Forthistutorial
session we're going to use the sample sprites, so if you are using tape do not rewind. Now type

AS="SPT2SPR" :|GSPR,3A$

The sample sprites are now loaded and we’re ready to start. To be safe, stick to the examples in the
text for now and don't type any other Laser or Locomotive BASIC commands.

LASER BASIC VARIABLES

Before going any further it is worth briefly mentioning the way that Laser BASIC deals with its own
variables. These are distinct from the normal variables and a full list is given in the more detailed
section ‘Laser BASIC’s dedicated variables’. Since we're going to begin by looking at SCREEN
OPERATIONS we’ll introduce just 5 variables - COL, ROW, LEN, HGT and SET. Laser BASIC has 16
‘SETs' of variables and each SET consists of 17 variables. Let’s begin by defining a screen window
using SET 0.

[SET,0:]COL,24:|ROU,64:|HGT,64:|LEN,8

We have selected SET 0 and will continue to work with SET 0 until we change to another SET. Let's
begin by taking a look at the screen window we've selected. To do this type:

[INVV
To begin with the screen window was empty but what we've done is to ‘invert’ it. This means that

pixels set to INK 0 are now set to INK 3
pixels set to INK 1 are now set to INK 2
pixels set to INK 2 are now setto INK 1
pixels set to INK 3 are now set to INK O

The window was originally empty (all pixels were set to INK 0) so by executing INVV (invert video)
what we've done is to set all pixels to INK 3 which is red. If we repeat the operation by typing:
[INVV

The window disappears because all the pixels return to their original INK 0 colour. So lets repeat it
again so that we can see the window again - type:

|SCLS:[INVV

The window is now red again. Let's define a second window inside the original window - type:
|SET,1 :]COL,26:|ROW ,80:|HGT,3 2:|LEN,4

We have now defined a second window inside the first and to see it type:

[INVV

The second window can now be seen clearly because all pixels have been inverted from INK 3 to INK
0 again. Lets now set the pixels in this second window to INK 1. Remember that we are currently
working with SET 1. To set the pixels to INK 1 - type:

[1IK1,1 :|STCV

Note thatthe STCV command (setcolour video) uses a new variable IK1 to contain the INK number to
flood the window with. Let's do something slightly more interesting now - type:

|SET,0:FOR IX=1TO 500:|[INVV:NEXT 1%

This will invert the window defined by SET 0 (which physically contains the window defined by SET 1)
500 times. Before moving on to something more useful let's look at one more example of the use of
variable sets. Type the following:

|SCLS:FOR 1* =1TO 50:|SET,0:]INVV:FOR J%=1TO 10 :|SET, 1 :[INVV:NEXT

JX INEXT 1%
The inner (3% loop) inverted the smaller window defined by SET 1ten times. This was contained in the
outer loop (1% loop) which began by inverting the SET 0 window (which contains both windows) then
executed the inner loop. This use of variable sets not only makes your programs execute much faster
but also compacts your program because only one variable is assigned (the SET) instead of all 4
(COL,ROW,LEN and HGT). We'll leave Laser BASIC variables for now but their use should become
apparent as we proceed through further examples.

5

SCREEN OPERATIONS

We've already looked at one screen operation (INW) but in fact there are quite a few operations we
can carry out on the screen windows so let's have a look at the rest. Let's first make two simple
observations and mention a few do's and don'ts.

1. You will notice if you enter a line at the bottom of the screen that it does not scroll up in the
normal way. This is because Laser BASICforcestheAmstrad’s screen scroll to bea'software
scroll' and not a 'hardware scroll’. This is achieved by using a text window which is the full
width of the screen but only 24 character rows high instead of the full 25. Thus the 25th
characterrow is never used fortext. Do notgetconfused between theAmstrad'stextwindows
and the Laser BASIC’s screen windows. The text window that Laser BASIC works with uses
stream 0 so ifyou set stream 0 to work with the whole screen then be sure to reset itby typing:

ISCLS

This will clear the whole screen and set stream 0 to be the current stream with thedimensions
Laser BASIC uses. Ifyou have allowed the screen to 'hardware scroll’ by using stream 0 or any
other stream then always execute an SCLS before using any of Laser BASIC's commands. We
won't be doing any hardware scrolling in the sample session so we need not concern
ourselves for now.

2. Laser BASIC contains commands which operate in MODE 1 (4 colour mode) or MODE 0 (16
colour mode) but there is no restriction on the use of MODE 2 other than that some Laser
BASIC commands will not operate properly in this mode (see 'COMMAND SUMMARY?’). Your
program can change freely between modes but only certain Laser BASIC commands should
be used in MODE 2. The commands "MODE 0" and "MODE 1" are replaced by their Laser
BASIC equivalents "ONLO and ONHI" respectively. "MODE 0" and "MODE 1" will still function
normally as far as Locomotive BASIC is concerned but Laser BASIC needs the execution of
"ONLO" and “ONHI” before it knows that the mode has been changed.

Let’'s move onto the examples and begin putting a pre-defined sprite onto the screen, not strictly
speaking a screen operation, but necessary to allow us to fully appreciate the operations we're
carrying out. Type:

[SET,0:]SCLS:|COL,40:|ROW ,8:|SPN,6:[PTBL:|LEN,28:|HGT,32

We begin by selecting SET 0 and clearing the screen. We then set the target for the window to have
column 40 (half way across the screen) and row 8 (one characterfrom the top). We then select sprite 6
and place iton the screen with PTBL. Finally, we seta screen window around the sprite with the same
dimensions as the sprite (32 pixels high and 28 bytes wide). Note that 32 pixels high means 4
characters high and in 4 colour mode 28 bytes wide means 14 characters wide. Now that we've filled
a screen window with some meaningful data we can carry out some operations on it. Also note that
the operations we carry out on this data will in no way effect sprite 6 which is still stored in memory.
Let’s begin by looking at some scrolling. We’'ll scroll the window by a pixel to the right. In 4 colour
mode there are 4 pixels per byte (8 per character). We’ll scroll with wrap around. Type:

[WVR1

Remember that the window is 28 bytes (14 characters) wide and since there are 4 pixels per
character we could scroll the whole window back to its original position by repeating the operation
112 times and since we have already scrolled itonce - hit ENTER 3 times to move the text cursor
down and then type:

FOR 1% =1 TO 111 :|WVR1 :NEXT 1%

In fact we could have achieved the same result more elegantly without using the relatively slow
FOR-NEXT loop. Certain Laser BASIC commands, of which the scrolls are an example, can be
executed in a machine code loop. There are two types of machine code loop, those which
synchronize to frame-flyback and those which don't. Frame-flyback to the uninitiated is something
which happens 50 times a second when the 'dot' which produces your TV picture finishes scanning
the screen and 'flies back’ to startthe next scan. By synchronizing your operation to frame-flyback,
much smoother movement can usually be obtained. Of course it won't be as fast but 50 times a
second is fast enough for mostapplications. Toexecute the command in a machine code loop you
need to follow the command by two parameters. These can be any legal BASIC expressions. The first
parameter defines the number of times the command will execute, whilst the second dictates
whether or not the loop will wait for frame-flyback between executions. If the value of the second
expression is 0, execution will not be synchronized, but if it has any non-zero value, then it will be.
Let's have a look at an example which scrolls our window left, 112 pixels without flyback and then
inverts it and repeats with flyback.
6

FOR 1%=0 TO 1:|WVL1,112,IX:[INVVINEXT 1X

In faci there are 12 screen scrolls in all. The syntax is as follows:

First character: 'W' for wrap or ‘S’ for no wrap.

Second character: Always 'V for video.

Third character: 'R' for right or ‘L’ for left.

Fourth character: ‘1’ for 1 pixel '4' for 1 byte '8' for 2 bytes

The commands are:

SVR1, SVL1, SVR4, SVL4, SVR8, SVLS8
WVR1, WVL1, WVR4, WVL4, WVRSE, WVLS

Let's have a look at a scroll without wrap. If we scroll our window with no wrap around, we will of
course lose the screen window data. Let’s enlarge the window toward the right and scroll the sprite
without wrap this time in larger steps of 1 byte (half acharacter in 4colour mode, 1/4character in 16
colour mode). Type:

[SCLS:|COL,0:|LEN,56:|PTBL :|SVR4,56,1

Note that repeating SVR4 56 times was enough to scroll the sprite right out ot the window because
each scroll was by 1 byte (4 pixels). The movement was much faster thistime, and because the sprite
was much larger itseemed to flicker half way down. This is because the ‘dot’arrived halfway through
the scroll and thiswill be explained more fully later on. Before we can proceed any further we'll need
to PUT the sprite onto the screen again. This time let's PUT 2 sprites into our window since itis now
56 bytes wide. What we'll do is PUT the sprite into the left hand side of the window, scroll the sprite
right and PUT the sprite again so we will twice fill the window with two copies of the sprite. Type
ENTER 5 times to move the cursor and then type:

FOR 1% =1 TO 2 :|PTBL :|WVR8,14,1 :NEXT 1%

Note that WVR8 moves data by 2 bytes so it needs to be repeated 14 times to make 28 bytes (4
characters in 4 colour mode) of space for the sprite to be PUT in.

As well as the horizontal scrolling of the previous examples there are also 2 commands for scrolling
vertically. WVVN and SVVN scroll vertically with and without wrap around respectively. At this point
we introduce a new variable, NPX (number of pixels). If NPX has a positive value then data scrolls
upward and if NPX has a negative value itwill scroll downward. Again these commands will execute
only once ifthere are no following parameters or will repeatedly execute iffollowed by 2 parameters.
Type:

FOR I* =16 TO -16 STEP -1 :INPX,I*:]WVVN,8,1 :NEXT 1%

This example will begin by scrolling the screen window upward with wrap. The rate of scrolling will
slow and eventually begin downward. The downward scrolling again accelerates and then halts,
leaving the window contents as they were before the operation began.

Let's move onto some more unusual screen operations but continue to work with the same window.
Let’s begin by looking at X-expansion. MGXV will magnify the left hand half of the screen window
such that it fills the whole window - type:

[HGXV

Notice that the data in the right hand half has been replaced by the expanded data from the left hand
half and has been lost. We can, of course, repeat the operation as many times as we wish and the
window will continue to expand whatever is in the left hand half so let’s again type:

~GXV

The original image of the sprite has been magnified by a factor of 2and now fills the window. Likewise
we can carry out the same operation in the vertical direction - type:

IMGYV

This time the top half of the window has been vertically expanded to fill the whole window. Again the
data in the lower half is lost and again we could repeat the operation as many times as we wanted.

Now let's clear all the data in the window before looking at some other screen operations - type:
|CLSV

This command clears all the data in the window to INK 0. Before going any further let's PUT the sprite
onto the screen again and contract the window to be the width of the sprite again - type:

|SCLS:|PTBL:|LEN,28
and then press ENTER 5 times.

This clears the whole screen, takes the cursor to the top left, which would over-write the sprite so itis
moved down 5 lines.

Let’s look now at the mirroring commands - type:

|IMIRV
You will see that the window has been mirrored in the left to right sense. We can, of course, do the
same thing in the vertical direction, to do this type:

|FIPV

The window has now been mirrored in the top to bottom sense. Before moving on let’s widen the
window and repeat the operation twice - type:

IMIRV:|LEN,56:|MIRV

Notice that no data is actually lost because all the data in the left of the current window went to the
rightand vice-versa. There is in fact a second type of mirroring operation which reflects data from the
left half into the right half but does not reflect data from the right half into the left half. In effect it
produces a symmetric window from half of the image. The best way to demonstrate this is by
example, so type:

|SCLS :|PTBL :|LEN,14:]|MORV :|LEN,28:|MORV
and again, press ENTER 5 times.

After clearing the screen, the sprite is placed into the left hand quarter of the window. The window
length is then setto 14and MORV makes a mirrored copy ofthe left half into the right halfofthe 14
byte wide window. The length is then increased to 28 and the operation is repeated with the displayed
result. In fact we can do the same thing in the vertical direction using FOPV. To see the result - type:

|[FOPV

You will see thatthefinal resultis symmetricinthetoptobottom sense. Combiningthese commands
with the scroll commands can produce some interesting effects. Type in the following:

|SET,1 :|]COL, 14 :|ROW,8 :|LEN, 14 :|HGT,1 6
This sets up a window in the top left of the window defined by SET 0. Now type:

INPX,2:FOR 1% =1 TO 1024:|SET,1 :JWVL1 :|WVVN:|SET,0:
NIRVIIMORV:I|FOPV:|INVVINEXT 1%

This produces a kaleidoscope effect which could, of course, be greatly improved upon and thisisleft
as an exercise for the user at some later stage. For now let's move onto some more screen
operations. Let’s look atSPNV which spinsthe current screen window by 90 degrees in a clockwise
sense. We need to introduce two new variables here, SCL and SRW, which are generally used to
specify the column and row position of a sprite window within a sprite but also serve in this one
instance as the column and row of the target for the rotation. Let’s rotate the window we’ve been
working on and send the result to the right of it - type:

|SCLS :|[PTBL
then press ENTER 5 times and type:
|SCL,72:|SRW ,8:|SPNV

SPNV is the one command which only executes in 4 colour mode because the oblong nature of 16
colour mode pixels makes it pointless. It should also be noted that the height of the window being
spun is rounded down to the nearest multiple of eight pixels.

This covers all the screen window transformations but there are three other screen operations to
mention here. These are concerned with colouring in areas ofthe window. Let's first look at FILL. This
is a slightly unusual FILL utility and uses a slow but memory efficient algorithm to do it's filling. Again
the best way to demonstrate it's use is by example - type:

[SET, 0:[SCLS:|COL, 20 :|JROU, 100 :[HGT, 50 :|LEN, 40 :|INVV
[COL,2 2:|ROW ,104:|HGT,42:|LEN,36:]INVV
LOCATE 13,16 :PRINT"THE FILL COMMAND"

It should be pointed out here that FILL takes no notice of screen windows and will fill until either a
screen edge is metor adifferentcolourfrom that atthe pointat which filling began, is encountered. So
ifthe pixel atthe pointat which filling began were red then only the red area containing that pixel will
be filled. The colour with which the area isto be filled is held in thevariable IK1.To FILLthe window
we have defined we could begin at any point but we'll FILL the background to the sprite and start at
the top left ofthe window. Again we're going to introduce a new variable - XCL, which is the horizontal
position, this time measured in pixels and not bytes. For 4 colour mode, column 32 is made up of
pixels with X-values of 128,129,130 and 131. For 16 colour mode column 32 would be made up of
justtwo pixelswith X-values of 64 and 65. This is because whereas each byte represents 4 pixels in 4
colour mode itrepresents only 2 pixels in 16 colour mode. FILL uses ROW as its vertical co-ordinate
and in both modes itis in the rangeOto 199, as it has been throughout. So to FILL the area all we need
to do is type:

[SET,1 :]IK1,2:|XCL,165:|ROW ,125:|FILL

For those of you that are interested, the rather unusual way that this FILL executes stems from the
algorithm used - 'plot anti-clockwise if you can'. It is worth mentioning here that FILL makes
extensive use of the machine stack. As a general rule, the more complex the object being filled, the
more space required. Ifinsufficient space exists the execution may halt half way through and display
OQUTOF MEMORY.

We now return to acommand that is governed by the window defined in the current SET which in this
instance should still be SET 0. What we’lldo now isto change all the pixels in the window which have
INK number 0 to have INK number 2 (this will colour all the areas that FILL didn’t get to!). We're
introducing another variable, IK2 which is the colour to change to, where IK1 is now used as the
colour to change from. The window is already defined so we can set the variables IK1 and IK2 and
then execute the command which is SETV - Type:

[SET,0:]1K1,0:[1K2,2:|SETV

Itis important to note that this does not have the same effectas changing the colours held in BASIC’s
palette because, instead of the colour that an INK will be displayed in, we are actually changing the
INK number of particular pixels within the window. Executing this command will often reduce the
number of colours displayed in the window and after its execution a window which contained pixels
with all four (or sixteen) colours can only contain three (or fifteen) distinct colours. The exact
operation of this command will become apparent with use.

Finally the last command in this section is one which we briefly encountered atthe start ofthe chapter
-STCV. This will setevery pixel in the window to have the INKnumber held in IK1 which we will set to
2 in this example - type:

[1IK1,2:|STCV

This concludes the introduction to screen operations. You may wish to experiment with the
commands you have encountered so far before moving on to the next section which deals with sprite
operations.

SPRITE OPERATIONS

Amongst all of the commands we have considered so far there have been none which would effecta
sprite in memory. Infact, with two exceptions (FILL and SPNV), all ofthe operations we have seen can
also be carried out on sprites held in memory. This time the result of the operation cannot be seen
until the sprite is displayed by ‘PUTting’ it onto the screen. The sprite operations are similar to the
screen operations so we'll give these commands a briefer treatment than their'SCREEN' equivalents.

The syntax for these commands differs from the previous group in only one respect. Where the
screen commands are suffixed with 'V, the sprite commands are suffixed with ’'S'. Where the screen
window was defined by four variables - COL, ROW, LEN and HGT, the sprite is defined by only one -
SPN, the number ofthe sprite to be operated on. Bear in mind thatthese commands will alter some of
the sprites in memory so after this session you will need to re-load them ifyou think one of the sprites
you wish to use may have been altered. Re-loading during this section, however, may effect the
execution of some of the examples and should be avoided.

You're probably getting fed up with sprites 2 and 6 so now let’s use some different sprites. We'll begin
by clearing the screen and PUTting a sprite near the middle of the top screen row - type:

[SCLS:|SET,0:|COL,60:|ROW ,8:|SPN,3:|PTBL

Note that, although we used PTBL to ‘PUT’ the sprite onto the screen, there are 6 different ways of
'PUTting’ a sprite onto the screen but these will be dealt with in a later section. For now, we'll run
through the sprite operations in a similar order to that of the previous section - type:

[COL,68:]INVS:|PTBL

We have inverted the sprite and PUT it next to the original. Unless we alter the sprite again,
subsequent PUT's will always produce the inverted sprite - type:

|COL, 56 :|PTBL
The sprite is still inverted but we can easily restore it to its former glory by typing:

[INVS
To prove that it has been altered in memory let's have another look at it - type:

|PTBL
Now let’'s use the sprite scrolls to produce a smooth diagonal scroll - type:

INPX,1 : FOR 1% =1 TO 512:|[WSVN:|WSL1 :FOR J%=
A0 TO 6A STEP 8:|COL,IJX:|PTBL:NEXT J% :NEXT 1%

This example combines a vertical and horizontal scroll to produce a diagonal scroll and then
repeatedly PUT's the sprite at4 adjacent screen positions. A similar effect could have been achieved
by scrolling four adjacent screen windows but the result would have been jagged movement.

We can produce a kaleidoscope effect again, this time using a sprite. Type in the following short
program and RUN it

5 7 KALEIDOSCOPE

10 !SCLS:!CLLOs!COL,20:!1SPN,1:!PTBL
20 INPX,l:1ICOL,40

30 FOR 1=1 TO 256

40 'ROM,8 :IPTBL:IMIRS

50 ICOL,44:!'PTBL:!FIPS

60 IROW,24:WPTBL: IMIRS

70 "COL,40:!PTBL:!FIPS

80 IWSVN:IwSL1

90 NEXT 1

Line 10 clears the screen and 'PUTS’ an original copy of the spider sprite to the left of the
kaleidoscope area.

Line 20 NPX is set to +1, i.e upward 1 pixel scroll and COL is set to 40.

Line 30 The LOOP count is set to 256. This will ensure that, if break is not pressed, the sprite will
finish in its original form, for later use.

Line 40 'PUTS' the first sprite and mirrors it about its vertical centre.

Line 50 Places the sprite in the next position and mirrors it about its horizontal centre.

Line 60 'PUTs' the sprite further down the screen and performs the same operation as line 40.

Line 70 As line 50 but places the sprite in the bottom left hand corner.

Line 80 Scrolls the sprite diagonally with wrap.

Line 90 Loops back to line 30.

Before concluding this section itis worth briefly mentioning that sprites can be rotated and FILLed by
'PUTting' them onto the screen,carrying outthe operation and then ‘GETting’ the transformed image
back into the same or another sprite. This is leftas an exercise for the user. Remember you will need a
border around the sprite before FILLing or the INK may leak over the whole screen!

Let's move on now to the third group of operations which also deal with sprites but are slightly more
flexible, albeit cumbersome to use.

10

SPRITE WINDOW OPERATIONS

The facilities in this group arethe same as those available in the previous group with the exception of
Y-expansion, and vertical mirroring. The syntactic difference between this and the former groups is
that commands in this group are suffixed with 'P* for ‘part of sprite' instead of 'S’ for 'sprite’ or 'V' for
'video'.Todefine a sprite window however requires 5 parameters and this group uses the 5variables
SPN,COL,ROW,LEN and HGT. SPN identifies the sprite, COL and ROW locate the window and HGT
and LEN give the window its dimensions. The operations generally operate noticeably slower than
their previous equivalents.

Since the nature of the operationsthemselves has already been covered, we’ll restrictourselves toa
few examples which illustrate the use of sprite windows. Again we’ll start by clearing the screen and
setting up the sprite window ready for the operation - type:

[SET,0:|SPN,3:|COL,2:|[ROW ,8:|LEN,4:|HGT,16
[SET,2:|SPN,3:|COL,40:|ROW ,8

Remember that we are not going to see the result of our handy work until we display the sprite. Type:

FOR IX =1 TO 512:|SET,0:|WPL1 :|SET,1 :|PTBL:NEXT IX

This will scroll a window in the centre of sprite 3 one pixel left. The sprite is repeatedly 'PUT' so that
the changes can be seen.

The other operations work in exactly the same way so there is no point in over-indulging here. Try
some experimentation for yourself and be sure you're happy before moving on to the next section.

SPRITE/SCREEN OPERATIONS

This very important group of commands are used to move data between the screen and memory.
Without these commands it is not possible to display sprites and for this reason PTBL has already
been introduced to illustrate the effect of the previous operations.

There are two directions of movement - from sprite to screen (PUTs) and from screen to sprite (GETS).
Ineach case the data atthe source remains unchanged. Each command has three parameters; SPN,
COL and ROW. SPN holds the number ofthe sprite and COL and ROW hold the screen co-ordinates.
As before, COL isin bytes and ROW is in pixels. The dimensions ofthe screen window being moved,
or moved into, take theirvalue from the sprite dimensions and ifthis window lies partially 'off-screen’
then itwill be adjusted to fit'on-screen' and only part ofthe data will move. Ifawindow lies completely
‘off-screen’ no action will be taken.

All 'PUT' commands (those which move data from a sprite in memory onto the screen) are prefixed
with 'PT'. All ‘GET’commands (those which move data from the screen into a sprite in memory) are
prefixed with 'GT'. There are actually six types of ‘GET’and ‘PUT’which only differ in the way thattheir
source data interacts with their target data. PTBL, for instance, simply replaces all data at the target
with data from the source and all the original data at the target is lost. PTOR, on the other hand,
performs alogical OR' between the source data and the target data and leaves the resultin thetarget.
We will now go through all six operations in detail, with examples where appropriate.

Block Moves - ‘BL’

All block move commands are suffixed with '‘BL'. The effect of a block move is relatively simple to
explain. Whatever data was in the target is completely replaced by whatever was in the source. The
target data is lost, and two copies of the source data are then in existence. This means thatifwe do a
PTBL to the screen, then all data in the screen window that provided the target will be lost, regardless
of the size of the sprite image. Ifa sprite has dimensions 16 by 16 but its data only occupies the central
8 by 8, then when the sprite is block put with PTBL the whole 16 by 16 area is written to and in this
case would leave a 4 by 4 border all around the outside of the image. To see this happen - type:

[SCLS:|SPN,53:|COL,40:]|ROW ,8:|PTBL:|COL,42:|ROW ,16:|SPN,54 :|PTPL

Notice how the bird wipes outdataina rectangular area around itselfand notjust over the area ofthe
bird. Likewise, we can block move data from the screen to a sprite using GTBL - type:

[HGT,25:|LEN,5:]INVV:|GTBL

What we have done is to invert the screen area holding the original sprite data, then 'GOT" itinto the
original sprite, replacing the original data with the inverted data. To see this, type:

[SCLS :|PTBL :[INVS

This clears the screen, PUTsthe sprite (which is now inverted) and finally inverts it back again for
later use. Of course, itwould have been much easierto simply invertthe sprite directly, butthe above
does serve to demonstrate the operation of GTBL.

Logical ORs — OR’

All moves with logical OR are suffixed appropriately enough with OR". The effectof PTOR and GTOR
are not quite so simple to explain, and ifyou are not familiar with boolean algebra and binary numbers
then a short maths lesson could be very beneficial in the long run. Ifyou are already conversant with
the former then skip this next section.

All information in the Amstrad (or any other 8 bit microcomputer for that matter) is stored as a series of
‘bytes’.A byte contains 8 ‘bits' and each bitcan contain a 1or a 0. A byte of sprite or character data in
the Amstrad represents 4 pixels in 4 colour mode or 2 pixels in 16 colour mode. This means that a
pixel in 4 colour mode contains 2 bits and a pixel in 16 colour mode contains 4 bits. Let's summarise
this below; in 4 colour mode:

Pixel State INK Number

00 0
01 1
10 2
1 3
and in 16 colour mode:

Pixel State INK Number

o
2
=
o
=
Swoo~ oo & w o

e
[N
PP oo
Pokr o
N
a s wN

TABLE 1

What happens when two binary numbers are ORed together can be seen in this next example.
Supposing we O R’ together a pixel with INK 10 and a pixel with INK 12.

1010 INK 10
OR 1100 INK 12
= 1110 INK 14
If a bit is set in the first pixel OR the second pixel, then itis set in the result - so:
10R1=1
OOR1=1
10R0=1
OORO =0

Now look at the sum above again and see ifyou know why INK 10 OR INK 12 =INK 14. There is not
room to print a whole table here (there are 256 possibilities!) but be sure you can work through the
four examples below and get the same results.

INK 5 OR INK 8 = INK 13
INK 7 OR INK 9 = INK 158
INK 11 OR INK 4 = INK 15
INK 5 OR INK 13 INK 13

12

Ifyou're wondering what application all this has to graphics then let's look at some examples - type:

|SCLS :|SPN,54:|COL,40:|ROW ,8:|PTBL:|COL,42:]ROW ,16:|SPN,5 3 :|PTOR
In fact the only difference between this example and the previous one is that the second sprite has
been O R’ed into the first instead of ‘block PUT'. Notice thistime that none ofthe first sprite has been
erased by the blank parts of the second sprite because anything O R 'ed with 0 remains unchanged. In
fact, PTOR and GTOR have fewer applications than the other five options but one fairly useful
property is that suitable choices of INK numbers allow data to have display priorities. If, for instance, a
sprite with INK colour 1 overlaps two regions with INK numbers 4 and 3 respectively then the sprite
will be displayed in the former region with INK number 5 but will not show up in the region with INK 3,
thus giving the two regions perspective.

Logical ANDs - 'ND’

All moves with logical AND are suffixed with ‘ND’.The effect of PTND and GTND is best explained by
further reference to table 1. When two pixels are 'AND'ed together only bits which were set in the
source pixel and target pixel will remain set. What happens if we logically 'AND’ a pixel containing
INK 10 with a pixel containing INK 12?

1010 INK 10
AND 1100 INK 12
- 1000 INK 8
If a bit is set in the first pixel AND the second pixel then it is set in the result - so
1AND 1=1
0AND 1=0
1AND 0 =0
0AND 0 =0

Now look atthe sum above again and see ifyou can work out why INK 10 AND INK 12 =INK 8. Below
are another four examples, thistime ofthe logical ‘AND’ operation. Be sure you can agree each result
before moving on.

INK 5 AND INK 8 = INK O
INK 7 AND INK 9 = INK 1
INK 11 AND INK 4 = INK O
INK 5 AND INK 13 = INK 5

Let's look at another example before discussing its application to games writing - type:

|SCLS:|SPN,53:|COL,40:|ROW ,8:|PTBL:|COL,42:|ROW ,16:|SPN,54 :|PTND
Now see if you can explain the result by reference to table 1.

The chiefapplication that logical ANDing is putto is collision detection butthe combined use ofANDs
and ORs can also produce perspective effects as discussed in the section on ORs. Collision
detection is acomplicated business and is given a dedicated section later in this manual, butfor now
let's consider a simple case. Suppose we were writing a game where the ‘good guys’were designed
with the even numbered INKs and the ‘bad guys’ were designed with odd colour INKs. Ifwe set up a
dummy sprite and fill it with INK 1, then GTND an area of the screen with it, then the sprite will be
empty if there were no ‘good guys' but will contain data if there were some 'bad guys’. In a later
section we will discuss how to test a sprite to see if it contains data.

Logical XOR - ‘XR’

All moves with logical XOR are suffixed with 'XR'. XOR stands for exclusive-OR and we'll
demonstrate its operation with reference to tablel.To describe itas simply as possible, ifadjacent
bits in the two pixels are the same, i.e. both 1 or both 0 then the result is 0. Ifadjacent bits in the two
pixels are different, i.e. one is 0 and one is 1, then the result is 1.

1010 INK 10
XOR 1100 INK 12
= 0110 INK 6
If bits are the same the result is 0O, if they are different itis 1 - so:
1X0OR1=0
0 XOR 1=1
1XORO0=1
O0XORO0=0

13

Now lookatthe sum aboveagain and see ifyou can work outwhy INK10XOR INK12 =INK6. Below
are another four examples. Be sure you can agree each result before moving on.

INK 5 XOR INK 8 INK 13
INK 7 XOR INK 9 INK 14
INK 11 XOR INK 4 = INK 15
INK 5 XOR INK 13 INK 8

To see the XOR function in operation type:
|SCLS:|SPN,53:|COL,40:|ROW ,8:|PTBL:|COL,42:]ROW ,16:|SPN,54 :|PTXR

Although the second sprite has scrambled the first sprite you may feel it is somehow more
recognisable than the previous two results. Now we come to the most interesting and indeed useful
property of the XOR - type:

[PTXR

If you have followed the above example correctly you should find that the first sprite has been fully
restored and there is no sign of a second sprite. This is because XOR, like inversion, is reversible.
Now type PTXR again, noting the result. Then type:

|SCLS:|PTXR

The sprite should be displayed as if'PUT’ with a block put. Thisisbecause the screen was.clear and
'XOR'ing with 0 has no effect. Now type:

[PTXR

You should find the sprite has completely disappeared, this second property (a direct result of the
first) means that we can use the XOR operations to recognise patterns. If we put the sprite we're
testing for into a dummy sprite and use GTXR, then scan the dummy sprite; a zero result implies an
exact match. Any other pattern and the dummy would have contained some data. So the XORs have
several applications, the first property of reversibility can be used to non-destructively move sprite
images across screen data (see XMOV, XMVJ, XBNC) and the second property can be used for
pattern recognition and hence collision detection.

This concludes the section on logical data movements but the Amstrad has two other types of PUT
and GET which we consider in the next section.

Putting In Front - ‘IF

The facility to 'PUT" a sprite in front of screen data is usually only associated with hardware sprites.
We felt that this facility was so useful thatithad to be added to the package. For this operation INKO is
attributed with a special property - transparency. This meansthat if we execute a PTIF then the whole
sprite will appear exactly as designed butany empty areas (containing INK 0) will allow the screen
data below to show through. This can be very simply demonstrated with our previous two example
sprites - type:

|SCLS:|SPN,53:|COL,40:|ROW ,8:|PTBL:|[COL,42:|ROW ,28:|SPN,54 :|PTIF
Thistime sprite 54 appears, completely unscrambled, with sprite 53 showing clearly through. In fact,
if you continued to PTIF other sprites on top, the ‘stack’ would grow ‘out of the screen' indefinately.
GTIF works in exactly the same way but this time the screen data takes priority over the sprite data
and of course the result is left in the sprite. We can likewise ‘PUT’ data 'behind' screen data.
Putting Behind - 'BH’

This uses a similar idea to that employed by the 'IF' commands but on this occasion data from the
source is placed behind data atthetargetand is only visible through transparent(INKO) parts ofthe
target - type:

ISCLS :|SPN,5 3:|COL,40:|ROW ,8:|PTBL :|COL,38:|SPN,54
[ROW ,4:|PTBH

Again repeated use of PTBH will ‘stack images’, but this time, 'into the screen’. GTBH works in the
same way as PTBH but this time screen data is 'GOT' behind sprite data and the result is left in the
sprite.

To summarise, we have considered 12 new commands and these are:
PTBL, PTOR, PTND, PTXR, PTIF, PTBH, GTBL, GTOR, GTND, GTXR, GTIF, GTBH

In fact each of these 12 commands has an optional parameter which we will now discuss.

14

Collision Counting with GETs and PUTs

Itwould be useful to know, when we are moving sprite images around, whether or not the image at the
source will collide with the image at the target, regardless of the operation to be carried out. Laser
BASIC provides this facility butitis keptas an option because itsinclusion will slow down command
execution somewhat. A collision means thatapixel which does not have an INK value ofO(i.e. is not
transparent) collides with a pixel which likewise does not have an INK value of 0.

Itsimplementation is fairly straightforward to use. Ifyou wish to execute a PUT oraGET, with collision
detection, then the command is followed by a single parameter which is the address of an integer
BASIC variable (has a suffix o f'%’ or is contained in a DEFINT statement). If a collision occurs the
BASIC variable is incremented by one, and ifitdoes not, its original value remains. Let’s demonstrate
the use with a short BASIC program. 'NEW' any current program then type in:

5 * COLLISION COUNTING

10 XX=0:YX=0:ISCLS:!ISPN,2

20 FOR 1=1 TO 256

30 !ICOL,RNDt76:'ROW,RND*180:IPTXR,9XX
40 IF XX<>Y7. THEN !PTXR:Y7.=XX

50 NEXT |

Line 10 Declares 2 BASIC integer variables, clears the screen and specifies the sprite we are going
to use.

Line 20 Sets up the main loop.

Line 30 Selects random ROW and COL values and then XORs the sprite onto the screen; if
anything is underneath then X% is incremented by one.

Line 40 Checks to see if X% was incremented by comparing itto Y%. If they differ then a collision
was detected and the sprite is PTXRed for the second time, therefore clearing itself out. Y%
is then made equal to X% again ready for the next loop.

Line 50 Loops back to line 20.

Print the value of X% to see how many collisions occurred. Note that if X% were greater than 32767
then a negative number would be displayed. Infact, if exactly 65536 collisions occurred then X% will
hold 0. Let's now go on to consider the two other types of 'GETs' and 'PUTs".

SPRITE WINDOW/SCREEN OPERATIONS

The 12 commands in this group are analogous to the 12 commands previously discussed, but
instead of the movement being between a whole sprite and the screen, the movement is between a
sprite window and the screen. The window is defined by the variables SPN, SCL, SRW, HGT and LEN
in exactly the same way as itwas for the sprite window operations in the previous chapter. Collision
detection and the 6 types of movementare fully supported. Due to the close similarity between these
and sprite/screen operations, only one example is given herewith. Enter the following program (NEW
any previously entered programs first) then type RUN.

5 * SPRITE WINDOW/SCREEN OPERATIONS

10 I!SCLS:FOR 17.=1 TO 4 : PRINT "ABCDEFGHIJKLMN": NEXT 17.
20 !'LEN,5 :!'HGT,32:ISPN,6:!ROW ,0:ISRW ,0

30 !COL,0 :!SCL,0 : IPWBL

40 !COL,5 :!sCL,5 :fPWOR

50 !COL,IO :ISCL,IO :!PWND

60 !COL,15:!SCL,15:!PWXR

70 ICOL,20:iSCL,20:!PWIF

80 !COL,25:1SCL,25:'PWBH

90 LOCATE 1,10

Line 10 Clears the screen and prints an area of text the size of the sprite we are using.

Line 20 The height and length of sprite 6 are set up and its row and sprite-row are set to 0.
Line 30 Puts the first sixth of the sprite onto the screen using PTBL.

Lines 40 to 80 Continue to put the remaining five sixths of the sprite using different operations.
Line 90 Moves the text cursor down.

This concludes the section covering sprite window/screen operations and leaves us only to
consider one other type of movement, sprite to sprite window movement.

15

SPRITE WINDOW/SPRITE OPERATIONS

Again the same 6 operations are covered by this third group of GETsand PUTsas were covered by
the previoustwo groups. Collision detection isalso implemented in exactlythe same way. Thistime,
however, data is moved between a whole sprite (whose number is held in SP2) and a sprite window
contained in a second sprite whose number is held in SP1.The dimensions of the data block being
moved are those of the whole sprite (sprite SP2) and the sprite window is located in sprite SP1 by the
usual sprite window variables SCL and SRW. All commands in this group are prefixed with ‘PM’ or
'GM' as opposed to ‘PW' and 'GW"' or 'PT' and ‘GT'. Again, only one example is really required
because of the great similarity between this and the previous two groups. 'NEW' any existing
program, enter the following lines and type RUN.

5 ' SPRITE/SPRITE WINDOW OPERATIONS

10 ISCLS :iSPN,4 :!'HGT,16::LEN,4::CSPR::SPN,5:ICSPR
20 ISPN,6:iCOL,26:IROW ,S4:!IPTBL:FOR T=1 TO IOO:NEXT T
30 FOR L=1 TO 2

40 FOR N=0TO 6

50 ISRW,0:!SPI,4 :'SP2,6 :ISCL,N*4::GriBL:!SRW ,16:iSPI,5:!1GMBL
60 ISRW,0: !ISPI,5 : IPMBL

70 ISPN,6 : 1 COL,26 :'ROW,84 :!PTBL:FOR T=1 TO IOO:NEXT T

80 ISRW,16 :!'SP1,4 :!'PMBL

90 ISPN,6 : ICOL,26:!ROW ,84:!PTBL:FOR T=1 TO IOO:NEXT T

100 NEXT N
110 NEXT L

Line 10 Clears the screen and creates sprites 5 and 4.

Line 20 Places sprite 6 (the OCEAN logo) on the screen and pauses

Lines 30 and 40 are FOR-NEXT loops.

Line 50 Gets 1/7 ofthetop halfofsprite6into spritedand 1/7 ofthebottom halfinto sprite5using
GMBL.

Line 60 Sprite 5 is now put into sprite 6 where sprite 4's data came from using PMBL.

Line 70 Sprite 6 is reput on the screen.

Line 80 Sprite 4 is put into sprite 6 where sprite 5's data came from using PMBL.

Line 90 Sprite 6 is put on the screen.

Lines 100and 110 loop around.

SPRITE UTILITIES

Before moving onto some of the more exotic features of Laser BASIC we need to look at a group of
commands which deal with the creation, deletion, loading, saving and merging of sprites. We’ll begin
by briefly outlining the way that sprites are stored. This is not essential information and is provided
more for academic interestthan anything else. Ifyou wish you can skip this section and move onto
the commands themselves.

Sprite Organisation

Sprites are organised in two consecutive blocks of memory. The lower block is a table which
contains information about the sprite data itself which is in the high block of memory. There are five
pointers associated with sprite storage.

Pointer Application

MBOT Points to the first free byte above BASIC. By subtracting the last byte used by sprites itis
possible to calculate the free space available for creating new sprites or scrolling buffer
(see FREE).

SPST This pointstothefirstbyte of spritedata which isactuallythefirstbyteafterthe end oftable
data.

STAB This points to the first byte of table data and is actually the lowest memory location used to
store sprites.

SPND This points to the first free byte after the end of sprite space and generally holds &7000.

SMAX Holds the highest sprite number available to the user. Increasing the value using ESPR will
automatically allocate extra table space.

16

Table Data

The first four bytes of table data correspond to sprite 0 and are reserved for system use. The next four
bytes are the sprite 1information, the next four are the sprite 2 information and so on up to the last four
bytes which hold the information for the last sprite whose number is held in SMAX. Thus the size of
the table is determined by SMAX and uses 4x(SMAX+1)bytes. Thus the table size varies from 8 bytes
forjust one sprite up to 1024 bytes for 255 sprites. Thus ifthe user wanted 32 sprites the table would
use 132 bytes and any attemptto create or destroy a sprite with a numbergreater than 32 would result
in an error.

Each sprite entry in the table occupies 4 bytes. The firsttwo bytes hold the address of the sprite data
in the sprite data block. Ifa sprite has been deleted, or has notyet been created, then these two bytes
contain zero. The next two bytes are the width and height of the sprite respectively.

Sprite Data

The sprite data itself is organised serially. That means to say that the top pixel line is followed by the
second pixel line and so on to the end of the sprite. When a new sprite is created, the table moves
down in memory and the new sprite is inserted below the last sprite created. When a sprite is deleted,
all the sprites below itmove up to reclaim the space, the table is also moved upward and the pointers
in the table are adjusted accordingly.

The Utility Commands Themselves

SSPR,el,e2

This command sets up sprite space. To begin with the table is cleared to zeros and SPST points to
SPND (no sprite data exists). The command has two parameters, both of which can be any valid
BASIC expression. The first parameter, el,tells the system how many sprites to reserve table space
for. This can have any value between 1 and 255 and can be altered at a later stage. The second
parameter, e2, tellsthe system where to put sprite space. Infacte2 should contain the value of the first
byte above sprite space, which will then build downward. When you load Laser BASIC this value is
HEX 7000. This puts sprites directly under the Laser BASIC code and there is never really any need to
changethis so SSPR will seldom, ifever, be executed unlessthe userwishestoclearall spritesfrom
memory.

DSPR

This command will delete the sprite whosenumber is held in SPN. Ifthe sprite does notalready exist
then the error message "** SPN DOESN'T EXIST **" will be displayed. Memory contracts upwards
to recover the deleted bytes. If you wish to store a non-relocatable machine code subroutine in a
sprite then it should be contained in one of the first sprites created. Ifa sprite isdeleted then all sprites
created chronologically after will be relocated. To delete sprite 7 (if it exists) type:

ISPN,7 :|DSPR

ESPR

This command is provided so that the table size can be altered at any stage. If the table is being
extended (SMAX increased) then the table will grow downward and the sprites held in memory will be
unaffected. If, however, the table is being contracted, (SMAX reduced) then all sprites currently
created with a sprite number greater than the new SMAX will be deleted. Thus ESPR can beused as a
sort of block delete. Use this command with caution! ESPR uses SPN to hold the new SMAX.Toalter
the value of SMAX to become 100 type:

[SPN,100:|ESPR
CSPR

This command creates a sprite in memory. The four bytes of sprite information are entered into the
table and the whole table is then moved down in memory to accommodate the newly created sprite.
At this stage itcontains no meaningful data. A 'GET' command is required to load the sprite with an
image. If the sprite we are trying to create already exists, then ** SPN ALREADY EXISTS ** will be
displayed. Ifan attempt is made to create a sprite with a number greater than the current SMAX then
** SPNTOO HIGH ** will be displayed. CSPR uses three parameters; the number of the sprite being
created, the width of the sprite in bytes and the height of the sprite in pixels. These are held in SPN,
LEN and HGT respectively, so to create sprite 15 with a height of 64 pixels(8 characters) and a width
of 16 (8 characters in 4 colour mode, 4 characters in 16 colour mode) we would type:

17

|SPN,15:|HGT,64:|LEN,16:|CSPR
In this example our new sprite would use HGTXLEN=64x16=1024 bytes.

IMPORTANT NOTE:

Be sure that every time you adjust the top of BASIC with the MEMORY command that you tell the
system you have done so. To do this you must use MSET,el where el is HIMEM+1. If we were
changing the top of BASIC to be 20000 decimal, we would type:

MEMORY 20000:|MSET,20001
The system has now been informed ofthe changeand the FREE command can beused to check that
enough room isactually available to create a new sprite and a simple testtocheck ifour last example
(creating a 64x16 sprite) would have worked would have been the following:

X%=0:|FREE,3X%:IF X%<64*16 THEN PRINT "NO ROOM"

If an attempt is made to create a sprite which is too large then **OUT OF MEMORY** will be
displayed and no action taken.

Buffer Space

The free space between the top of BASIC and the bottom of sprites is alsoused by other Laser BASIC
commands and great care should also be exercised to ensure that there is sufficient free space to
execute them. Below are the commands which require buffer space together with an indication of
how much they need.

WSVN These are the vertical scrolling commands. Each one will require: NPX
WPVN times the width of the area being scrolled: bytes. So to scroll a
WVVN sprite 12 bytes wide, in either direction, by 8 pixels will require
96 bytes. To scroll a screen window 40 bytes wide, by 5 pixels, would
require 200 bytes.

We've probably dwelt long enough on memory management so let’'s move on to consider the rest of
the sprite utility commands.

RSPR,el

This command will relocate sprite space in its entirety. That meansto say itwill move the table and the
sprite data as well as adjusting all entries in the table and the sprite space pointers. In fact this
command will very rarely be used because relocating upward from the default position would
over-write Laser BASIC's system variables and relocating downward would reduce the amount of
free space. Itdoes, however, have some advanced applications which are beyond the scope of this
section. Ithas only one parameter, el,which tellsthe system the size and direction of the relocation. A
positive value will relocate sprite space to a higher address and a negative value will relocate sprite
space toa lower address. Suppose we wished to reserve 256 bytes fora machine code subroutine to
be loaded under Laser BASIC at &6EFF, we would use the following:

|RSPR,-256

PSPR,@V$

Thiscommand saves the current sprites onto tape or disk. Ituses one parameter only and this is used
to pass the filename. The filename is stored in a BASIC string variable and so the ‘@' must precede it
oran error will be generated. The filename itself must be typed in upper case, and must notexceed 8
characters in length and of these, the last three characters must be "SPR". Infact Laser BASIC stores
the sprites in three files. The first will contain the system variables STAB, SPST, SPND and SMAX.
The filename will be changed by Laser BASIC so thatthe “SPR” on the end of the filename becomes
"SYS”.The second file will containthetable andthistime thefilename isaltered sothatthe lastthree
characters become "TAB". Finally, the sprite data itself is saved and this time the filename used isthe
filename originally passed to the command, i.e. ending with “SPR". If, for instance, we wished to save
the current sprites to. tape or disk with filename "TESTSPR", then we would use the following:

A$="TESTSPR" :|PSPR,3A$

This would save three files: “TESTSYS", TESTTAB" and “TESTSPR". These are all, in fact, saved as
binary files and do not use any special format.

18

GSPR,@V$

This command loads the three files saved using the PSPR command. Again it uses only one
parameter, the filename, and the same restrictions apply. You can’taccidentally load another binary
file (unless italso ends in "SPR") because the filename given mustend in “SPR" (or “SPR.BAK"). This
restriction may seem an annoyance but if you were able to accidentally load another binary file the
consequences would be serious. The three files are loaded and the system pointers setto the values
loaded in (so the system is organised in exactly the same way as itwas when the sprites were saved)
which meansthat sprites start and finish where they did when you saved them. Be careful that you
haveenough roomtoloadaparticularspritefileor**OUT OF MEMORY™** will bedisplayedandyour
current sprites corrupted. To load the file 'TESTSPR" use:

A$ ="TESTSPR":|GSPR,aA$

MSPR,@V$

This command will Merge a named file of sprites with the sprites already held in memory. The sprite
space currently held in memory will expand downwards to accommodate the merged sprites. The
system variables are loaded and examined first. At this stage the loaded table is compared with the
residenttable to ensure that two sprites with the same number will not be created. Ifa sprite exists in
both the resident and loaded table then execution terminates with an error ** SPRITE ALREADY
EXISTS**.If an attemptis made to Merge a sprite with a number greater than the resident SMAX then
the system will report an error **SPN TOO HIGH **. Once it has been established that both tables
contain distinct sprites they are physically Merged and the new sprite data itself is appended to the
end of the old sprite data with the appropriate adjustment of pointers. There are two things to be
carefully noted. Firstly, ifthe combined sprite files exceed the space available, the top of BASIC will be
overwritten and secondly, ifaloading erroroccurs between thetables being merged and the sprites
being loaded then you will have to clear sprite space and startall over again, so make sure you have
copies of both sprite files safely saved on tape or disk!! If you wished to Merge a file named
'TESTSPR” with the sprites currently in memory then you would type:

A$="TESTSPR" :|MSPR,3A$

Incidentally, the Merge facility can be used to force sprites to load to any address you require.
Suppose you wished to load a file of sprites to HEX 6000 and the maximum sprite number in the file to
be merged is 32 (itis assumed here that you do not wish to preserve your resident sprites), then type:

|SSPR,32,&6000:A$="TESTSPR" :|MSPR,3A$

Occasionally you will not be able to merge two sets of sprites because of conflicting allocations of
sprite numbers, the next two commands have been provided to circumvent this problem.

RNUM

This command has two parameters which are held in SP1 and SP2. SP1 is setto hold the number of
the sprite to be renumbered and SP2 is set to hold the new number that the sprite will be allocated.
The old sprite is deleted and the new sprite is created. Infactthe operation takes place entirely within
thetable and sprite data is completely unaffected. Errors will be generated ifSP1 does notexist, or if
sprite SP2 already exists, or ifrenumbering would cause a sprite to be created with a number greater
than SMAX.

ADNM

This is a particularly useful command when used in conjunction with the Merge facility. Itallows an
offset to be added to the numbers of all the sprites so far created. Infact the offset can be negative so
that previously created sprites can be renumbered in a decreasing sense. SPN is used to hold the

offset. Supposing 12 sprites exist and are numbered 5 to 16. To renumber these sprites so that they
are numbered 20 to 31, type:

|SPN,15:]ADNM

SMAX is unaffected by this command as are all the system pointers. Suppose now that we wish to
return the previously renumbered sprite numbers back to their original values, i.e. reduce them by 15.
We have a problem because we cannot allocate a negative number to SPN. All we do in factis to add
the 2's complement of 15 which is 256-15. To do this - type:

[SPN, 256-1 5 :]ADNM

19

The fact that SPN is treated as a 2's complement number in this case may cause confusion so let's
just consider it a little further. In this instance SPN is assumed to hold a value in the range -128 to
+127. So if weassign 128 to SPN itistreated as holding -128. W hatall this boils down to is that the
largest positive increment we can add is 127, and if we want to use a negative increment, we subtract
it from 256 in the aforeseen manner.

ISPR,@V1,@V2,@V3,@V4

This command is used in various applications to interrogate sprite and system details. Before
execution, SPN is loaded with the number of a sprite to be interrogated. Ifthe sprite does not exist,
SPN will be setto 0 and no meaningful information will be conveyed. If, however, the sprite whose
number is held in SPN is found to exist then the following information will be returned:

The BASIC integer variable V1 will contain STAB

The BASIC integer variable V2 will contain SPST

The BASIC integer variable V3 will contain SPND

The BASIC integer variable V4 will contain the address of the
actual serial sprite data.

In addition to this, HGT and LEN will be set to hold the dimensions of the interrogated sprite. Be
careful notto forgetthe '@ 's in frontofthefour BASIC integervariables in the parameter list. Ifany of
the four variables has not been previously declared then an "Improper Argument” error will be
generated.

5 ' EXAMPLE GF SPRITE INTERROGATION

10 INPUT;" SPRITE NUMBER";SX:PRINT

20 V17C=0:V2X=0:V37.=0: V4X=0: H7.=0:L7.=0

30 ISPN, S7.: 11 SPR,3V17.,3V27., S)V37., 3V47.

40 IF V47.=0 THEN PRINT "SPRITE ";S7.;" DOES NOT EXIST":GOTO 110

50 PRINT"STAB =";VIX
60 PRINT"SPST =";V27.
70 PRINT"SPND =";V3X

80 PRINT"ADDRESS="; V47.

90 'HGTQ, 3HX: PRINT"HEIGHT
100 'LENQ,S>L7.:PRINT"LENGTH
110 PRINT

120 GOTO IO

"HT.
"L X

FREE,@V1

The other sprite utility commands have specialised applications which will be dealt with in later
sections, butthere is one more command which is of immediate interest in this section - FREE. This is
similar to the BASIC equivalent FRE which is a function that returns the amount of free space in the
BASIC area. FREE returns the amount of free space between the top of BASIC and the bottom of
sprites. We've already discussed the operations which utilise this area for workspace (see CSPR)
and itis wise to keep an eye on the value thatthis command returns. Note that the value given is only
accurate if the system variable MBOT has been kept up to date (using MSET) each time the BASIC
MEMORY command is used. Again, the BASIC variable used to hold the result must have been
declared prior to the execution of this command. To find out how much space is free you could use:

| FREE,aX2:PRINT XX
This concludes the section covering sprite utilities.
Laser BASIC's Dedicated Variables

You have probably noticed by now that Laser BASIC uses a rather unusual regime for handling its
parameters. It uses 17 different variables in all and there are 16 different sets of them. The chief
reason forthis approach is to reduce unnecessary expression evaluation, which in general takes up
more processor time than the command itself. More often than notonly a few parameters are altered
between executions and there is little point in re-calculating unnecessarily. This method also saves
space in the source file and meansthat the graphics routines themselves can access their data very
rapidly.

20

The full set of variables and their descriptions are given in the section “LASER BASIC EXTENSION"
under the heading “PARAMETER RELATED COMMANDS". All variable names comprise three
characters and are checked for ‘RANGE’ errors on each assignment. Many of the variables have
multiple applications and this meansthat range checking is not as tight as it might be. HGT and LEN,
for example, are generally used to specify window dimensions, but also double up as increments in
the MOVE commands and must therefore be allowed to hold negative numbers on occasions.

We have already seen numerous examples of variable assignments, we'll now look at how to
interrogate the variables.Just as there are 17 assignments, there are also 17 interrogations and each
one takes the same form - the '‘BAR' followed by the three characters of the variable name, suffixed
with 'Q" (for 'query') and followed by one parameter, which must be the address of a previously
declared BASIC integer variable. To interrogate and print the dimensions of a screen window, you
could type:

|COLQ, aC% :|ROWQ, 3C% :|LENQ, 3L% :|HGTQ, 3H% : PR INT C%,R%,L%,H%

Note that if in the above example, any of the variables C%, R%, L% or H% were undeclared, then an
"Improper Argument” error would be generated.

Inaddition to assigning values to variables and interrogating theirvalues, there are five other related
commands which are designed to save space and speed up program execution.

EXXV

Each time a Laser BASIC command is executed it selects the parameters it requires from one of the
16 variable sets. The current SET is dictated by the value in the variable; SET. Ifyou are utilising the
Amstrad’'s EVERY and AFTER commands, then a problem can arise. When the routine you are
executing under interrupt is entered, the current value in SET is indeterminate. This means that it
must be preserved on entering the routine and restored on exit. This could typically be achieved with
the following;

1000 |SETQ,3XX:REM PRESERVE CURRENT SET
1010 |SET,Y% .ccooonreeirnnns

1100 |SET,XX:REMRESTORESET
1110 RETURN

This involves three commands, each of which performs an evaluation and search of the variable area
and which is relatively time consuming. To circumvent this problem, Laser BASIC uses an
‘alternative' SET variable. Before proceeding any further, let's see how this works with an example.
Type in the following short program:

5 ' EXftMPLE OF EXXV

10 !SCLS:!SET,0:'HGT,64:ILEN,8 :iCOL,40:!ROW ,8
20 'EXXV:IISET,1:!HGT,32:!LEN,16:!COL,48:!R0OW,8
30 EVERY 20,0 GOSUB 50

40 !'INVV:GOTO 40

50 mMEXXV:IINVVIIEXXV:RETURN

Line 10 Clears the screen and sets up a window using SET 0.

Line 20 EXXV makes SET 0 the alternate set. SET 1is then made the current set and a window is
defined using SET 1.

Line 30 The EVERY GOSUB is set up.

Line 40 This just repeatedly executes an INVV which will invert the window defined in SET 1

Line 50 This is the subroutine that will execute under interrupt. It exchanges the ‘current’ and
‘alternate' SET variables, inverts the window defined in SET 0, restores the ‘current’ and
'alternate' SET variables and RETURNS.

EXXV was provided to be used with EVERY and AFTER butcan also save time and memory in normal
applications, particularly where two SETs are being repeatedly exchanged.

21

SWPS

Laser BASIC provides 12 different modes of sprite movementand in each case, four frame animation
is provided. The way that this is achieved is to use a sequence of four sprites whose numbers are
held in SP1,SP2, SP3 and SP4. Every time a Move is made the numbers are rotated, so SP1 becomes
SP2, SP2 becomes SP3, SP3 becomes SP4 and SP4 becomes SP1.This means that the cycle is
continuously repeated in the order SP1,SP2, SP3, SP4,SP1,SP2..and so on. Occasionally it may be
required to make the sequence run in reverse, i.e. SP4, SP3, SP2, SP1, SP4, SP3 .. and so on. The
SWPS command effectively achieves this by simply exchanging SP2 and SP4. The sequence will run
in reverse from this point and can of course be re-reversed at any stage. Incidentally, the 'bounce
moves’ automatically carry out on SWPS every time a bounce occurs and are described in a later
chapter.

ASTV

This command assigns the data in a sprite, to the current variable SET. Not only does this save a lot of
space in a BASIC program, butitallows parameters to be set up in a fraction of the time required to do
it the 'old fashioned' way. Italso effectively increases the number of variable sets and is therefore
particularly useful in tracking sprite applications. The command uses only two parameters. The
current SET and SPN which is set to hold the number of the sprite containing the variable SET data
and the sprite containing the data must be created with a height of 1 and a width of 20, or a range error
will occur. The data can be entered into the sprite directly by using ISPR to find the address and then
POKEing data from data statements. Itis obviously more effective to use the sprite generator program
to do this, as this will save source code space inthe BASIC program. Most assignments use 8 or more
bytes, so to assign 6 parameters would take about 50 bytes and quite a lot of processor time. Ifthe
data were pre-stored in a sprite then only 20 bytes would be used and less time taken than would be
required for a single assignment. If, for example, we have stored in sprite 32 the parameters we
require and want to allocate these to SET 9, then we would use:

[SET,9:|SPN,32:|ASTV
AVTS

Thiscommand carries outthe same operation as the previous ASTV command except thatdata flows
in the opposite direction, i.e. from the variable SET to the sprite. Again thiscan be used to extend the
number of variable SETs and, suitably applied, will compact and speed up BASIC programs. As
before there are only two parameters, the current set and the destination sprite number. Again, the
sprite must have been created with a height of 1 and a width of 20.

ESAV

This is a variation on the previous two commands and allows the current variable SET to be
exchanged with the data in the specified sprite. The same two parameters are used and again the
sprite must have a height of 1 and a width of 20.

To summarise, itis well worth gaining familiarity with the use of the EXXV, ASTV, AVTS and ESAV
commands because their efficient use can notonly speed up your program execution but can also
save a great deal of BASIC program space. It may therefore be worth spending some time
experimenting with them before moving on to the next section.

22

MOVE COMMANDS IN DETAIL

Let's move on now to some of the more interesting commands. The commands.which we are
introducing in this chapter will probably turn outto feature more prominantly in your games than any
others so far, so it is very important to master them thoroughly.

We should begin by considering the four ways that Laser BASIC can produce sprite movement, we’ll
begin with the least sophisticated and then work up to the more complex schemes as we go.

Block Over-write

In this scheme, the sprite is moved by simply over-writing itself. This means that the sprite does not
move non-destructively and this method cannot be employed if there is any data in the path of the
sprite which shouldn’t be destroyed. In situations where a sprite is not constrained to move non-
destructively, then this type of movement should always be used. Not only is this method at least
twice as fast as any other (frequently as much as ten times faster!), but it produces very smooth
flicker-free movementanywhere on the screen with no real need to synchronise with frame-flyback.
The most popularcommercial games use this method extensively as itis often the case that only the
main character (usually joystick controlled) needs to move non-destructively. This method does not
effectively supportcollision detection, but again, most of the applicationsto which the method is put
do not reauire it

The only precaution the user must take is to ensure that the sprite has a blank (or appropriately
coloured) border around the perimeter, so thatitover-writes itself fully and doesn't leave data behind.
The border must be at least as big as the increments by which the sprite is moving.

Let's look at an example program. 'NEW' any program in memory and be sure that you have the
sample sprites in memory before typing and running this example.

5 ° EXAMPLE OF BLOCK OVER-WRITE

10 ISCLS

20 ISPN,8: ICOL,40: IROW,O
30 IHGT,1

40 ILEN,O

50 ISPI,B:!SP2,B:!SP3,8:1SP4,8
60 FOR 1=0 TO 183

70 WMoV
80 FOR W=1 TO 50 :NEXT W
90 NEXT |

Lines 10 and 20 Clear the screen and specify a sprite and its starting position.

Lines 30 and 40 Height is setto +1, therefore the sprite will move down by 1 pixel every time WMOV
is executed and LEN is set to 0, i.e. no horizontal movement.

Line 50 The variables SP1, SP2, SP3 and SP4 are set up with sprite 8, i.e. no animation.

Line 60 The main loop.

Line 70 The WMOV.

Line 80 Since WMOV is very fast, a delay loop is set up.

Line 90 Loops back to line 60.

Exclusive-OR

This is the most popular method for non-destructively moving sprites around the screen (where the
micro in question doesn't have hardware sprites) and provides a very distinctive ‘feel’ to a game.
Those of you who are familiar with the Spectrum will have seen this type of movement in quite a few
games, although you may not have realised whatyou were actually witnessing. Ifyou are familiar with
the pitfalls move on to the next section. We'll illustrate the effectin our next example and slow itdown
for you to see it clearly. First we’ll move a small sprite around the screen, synchronised to
frame-flyback.

23

5 *

Line
Line

EXAMPLE OF EXCLUSIVE-OR
ISCLS
ISPI1,8:!1SP2,8:!SP3,8:1SP4,8:iSPN,1
FOR 1=1 TO 100

ICOL,RND*76: SRON,RND*f84:1PTIF

NEXT |
!ICOL,-10:'ROW,50:!H6T,1i ILEN,1
IXMOV,512,1

10 Clears the screen.
20 Sets up all the sprite variables.

Lines 30 to 50 puts 100 sprites at random positions on the screen.

Line

Line
The

60 Sets the starting position we are going to XMOV and sets the height and length which are
set for diagonal movement.
70 XMOV is executed 512 times, with frame-flyback.

sprite seems to move 'through' the data, neither behind nor in front. The movement is very

smooth and quite pleasing to the eye. Now let's run the same program butthistime we'll slow itdown
and see what happened as we moved 'through’ the data.

5
10
20
30
40
50
60
70
80
90
100
110
120

Line
Line

EXAMPLE OF EXCLUSIVE-OR (SLOW)
Q7.=0
1SCLS
ISPN,I:FOR 1=1 TO 100
ICOL,RND*77:IROW ,RND*184:IPTIF:NEXT |
LOCATE 7,1:PRINT ” ":LOCATE 8,I:PRINT *“ "
ICOL,0:IROW,50:1SPN,8:IPTBL
IHGT,1:1LEN,1

FOR 1=1 TO 260

IXMOV,1,1

FOR W=1 TO 50:NEXT W

mCOLQ, S>QX: iF Q7.=81 THEN ICOL,-8:IROW ,50

NEXT |

10 The integer variable Q% is declared.
20 Clears the screen.

Lines 30 and 40 PUTs sprite 1 at 100 random positions.

Line

50 Clears a space for the sprite.

Lines 60 and 70 Set up starting positions and directions for sprite 8.

Line
Line
Line
Line

Line

80 Starts main loop.

90 Performs 1 XMOV with frame-flyback synchronisation.

100 Sets up a 'sub-loop' that slows things down.

110 Checks to see if sprite 8 has reached the edge of the screen and if so puts iton the other
side of the screen.

120 Loops back to 80.

Quite a mess, isn’'t it? Surprisingly, we perceive this quite differently so long as it happens quickly
enough. In fact this method of movement has several drawbacks which we'll try and illustrate with a
couple of examples. First of all, let’s run the example again and this time we’ll go flat out instead of
synchronising to frame-flyback.

100
1o

EXAMPLE OF EXCLUSIVE-OR
WITHOUT FRAME FLY-BACK
SYCHRONISATION
Q7.=0
ISCLS
ISPN,I:FOR 1=1 TO 100:!COL,RND*77
IROW,RND*184:!IPTIF:NEXT |
LOCATE 7,1:PRINT " ":LOCATE 8,I:PRINT " "
ICOL,0:!ROW,50:!SPN,8:!PTBL
IHGT,1:!'LEN,1
FOR 1=1 TO 260

1 XMOV

1ICOLQ,3Q7.:IF Q7.=81 THEN !COL,-8:!ROW,50
NEXT | ”

Itflickers bad!y - so whatwentwrong7The problem with thisand the nexttwo methodswe'regoingto
introduceisthatwe're caught between thedevil and thedeep blue sea. On theone hand, we have to
waitforthe'dot' (which producesthe pictureon the monitororT.V) to beoutoftheway sothatwe can
move without being caught and on the other hand we have to do everything fast enough for 'smooth
movement' to be perceived. In the last example we didn't wait for the 'dot’. The actual move itself is
carried out in two phases, the first is to XOR out the previous frame, and the second is to XOR in the
new frame. Ifthe dot arrives between these two operations (and there’s a fair chance it will if we run
flat out), then the sprite ‘disappears’ before our very eyes. We can demonstrate this effect more
clearly by moving a larger sprite, with frame-flyback synchronisation. Type in and run this example.

5 ' EXAMPLE OF MOVING LARGE SPRITE

10 ISCLS

20 ISPN,10:!COL,40:!'ROW,200:!SP1,10:1SP2,10:!SP3,I0:ISP4,10
30 !'PTXR

40 'HGT,—1:!'LEN,O

50 !XMO0V,512,1

Thistime you will see that we acheive smooth continuous movementover part of the screen, lose part
of the sprite in others, and completely lose the sprite in others. So what causes this? We can't slow
this one down to show you in slow motion because this effect wouldn'thappen in slow motion. What
is actually happening is that because we've synchronised to frame-flyback the sprite removal and
replacementcycle is synchronised to the 'dot'. The sprite is being removed as the 'dot’ arrives and it
simply disappears. This restriction has prompted some games designers to:

a) Restrict the movement of large sprites to 'safe’ areas of the screen.

b) Ensure that sprites which do traverse the whole screen are relatively small.

c) Pause between moves to ensure the 'dot' arrives and animate to disguise jerkiness.
d) Use a more complex (and usually dedicated) scheme.

Of these, option c) is far and away the most useful to us, since most applications require animation
anyway. The following example shows how to produce very acceptable movement using XOR
(exclusive - OR) movement.

5 * EXAMPLE OF ACCEPTABLE MOVEMENT

6 * USING EXCLUSIVE—OR

10 !SCLS

20 !SPN,12: !COL,72: 'ROW, 182: !SPI,12: ISP2,12: ISP3,12: ISP4,12
30 !PTXR

40 IH6T,0:!'LEN,-1

50 FOR 1=1 TO 4

60 IXMO0V,80,1

70 ICOL,72:iPTXR

80 ILEN,-I

90 NEXT |

Line 10 Clears the screen.
Line 20 Specifies sprite 12 as the sprite we are going to XMOV and sets its starting position. Notice

that SP1, SP2, SP3 and SP4 have the same value so there is no animation.

Line 30 Places the sprite on the screen using XOR.
Line 40 Sets up the direction of the sprite, moving left slowly.
Line 50 Main loop.
Line 60 XMOVs the sprite across the screen.
Line 70 Resets starting column and 're-PUTs' it.
Line 80 The horizontal velocity of the sprite is assigned to the loop variable I
Line 90 Loops back to 50.

“In-Front' Moving

Although the exclusive-OR movement described in the previous section does produce quite
acceptable movement, those of you who have seen hardware sprite based graphics will appreciate
the advantage oftrue non-destructive movement. Unfortunately the Amstrad does nothave hardware
sprites but we can simulate some of theircharacteristics with the 'In-Front' and 'Behind' move types.

25

There isno needtodelveinto theworkingsofthis method, suffice itto saythatitusesatechniqueakin
tothatused by film makerswho wish to superimpose'flying saucers' over London. Forthismethodto
work, however, we need to use specially prepared (MASKed) sprites. The sprites must be created
with twice the width of the image that we wish to display. Those parts of the image which are to be
'transparent’ must use INK 0. The image must be wholly contained in the left hand half of the sprite.
Once you have created a sprite in this form then all you need to do is use the MASK command to
convertitinto a MASKed sprite. Ifthis sprite is displayed using any of the normal PUTs or GETs then
the data appears disorganised. Don't worry about this because there is a set of commands which
deal exclusively with MASKed sprites. To all intents and purposes a MASKed sprite is treated as
being halfits physical sizebythecommandswhichdeal withthem.Anyattemptto MASKasprite with
an ‘odd’ width will resultina "CAN'T MASK” error, so only use 'even’ width sprites. The image can, of
course, have an odd width. Masking a previously MASKed sprite will destroy the data.

This type of movement suffers the same timing constraints as does exclusive-ORing butthere is one
further restriction on its use, not imposed by exclusive-ORing. Each time a MASKed sprite is placed
on the screen, the data that is over-written is simultaneously lifted into the sprite for later
replacement. This meansthat the background mustn’tevolve during the movementand restricts this
mode of movement to stationary screen data. So the sprite being moved 'In-Front' must not be
over-written byanyothermoving object. Infact this ruleappliesto movement'Behind'aswell. Below
is an example of 'In-Front’ movement, let the program run to completion since pressing break may

corrupt the sprite. If you wish to re-RUN the program delete line 40 or you will mask a previously
masked sprite.

5 ’ EXAMPLE OF IN-FRONT MOVING

10 ISCLS

20 ISPN,I:FOR 1=1 TO 200:!COL,RND*77
30 'ROW,RND*184:!IPTIF:NEXT |

40 I!SPN,13:!MASK

50 ISPI,13:1SsP2,13 :ISP3,13:1SP4,13
60 !COL,72: 'ROW, 100: 'HGT,0 :.'LEN,-1

70 FSWP
80 FOR 1=1 TO 3
90 'FMO0V,236,1
100 NEXT |

Lines 10, 20 and 30 Clears the screen and puts sprite 1 at random positions 200 times.
Line 40 Masks sprite 13.

Line 50 Sets all four frames to the same sprite number, i.e no animation.

Line 60 Sets up starting position and direction.

Line 70 ‘Front swaps' sprite 13 onto the screen.

Line 80 Loop 3 times.

Line 90 'FMOVs' the sprite the full height of the screen, with frame-flyback synchronisation.
Linel00 Loopshback.

‘Behind’ Movement

This uses the same idea as the ‘In-Front’ move with the only difference being that the sprite moves
behind any other data that it moves over. Again the sprite needs to be MASKed in the manner
prescribed in the previous section and the same constraints on movement are encountered. You
must be sure that the sprite isn’t over-written by any other moving sprites whilst it is itself moving.

The MASKing structure is in factaltered by 'behind' movement and itis necessary to reconstruct the
original MASK before a particular sprite that has moved 'behind' can subsequently move'in-front’. A
command is provided to do this - RMSK. The following example moves a sprite around the screen,
both behind and in-front of screen data and particular note should be paid to re-masking (using
RMSK) between movement behind and movement in-front of screen data.

5 ' EXAMPLE OF REMASKING

10 ISCLS

20 ISPN,2:FOR 1=1 TO 100:!COL,RND*77
30 'ROM,RND>184:IPTIF:NEXT |

40 ISPN,13

50 ISPI1,13:!SP2,13:!1SP3,13:1SP4,13
60 'ROW,100:!'HGT,0:!LEN,-1

70 FOR N=1 TO 5

26

80 1COL,72:IFSWP
90 iFMOV, 81,1

100 1COL,72:-1BPUT
110 IBMOV, 81,1
120 TRMSK

130 NEXT N

Line 10 Clears the screen.

Lines 20 and 30 Randomly place sprite 2 on the screen.

Line 40 Sets SPN for remasking.

Line 50 Sets SP1, SP2, SP3 and SP4 to 13. No animation.

Line 60 Sets the value to ROW and the direction of movement in HGT and LEN.
Line 70 is the loop.

Line 80 Sets the start COL value and places the sprite on screen using | FSWP.
Line 90 Moves the sprite In-front of data using | FMOV.

Linel00 SetsthestartCOLvalueandplacesthespriteonscreenusing | BMOV.
Line 110 Moves the sprite behind data using | BMOV.

Line 120 Remasks the sprite.

Linel30 Loopstoline70.

Now that we've looked at the various methods of movement available with Laser BASIC, let's have a
look at some ofthe different move types in more detail and see how they are actually used in practice.
Bear in mind what has been said about the advantages and disadvantages of the various methods
and always use the simplest scheme you can. If you look at commercial games you may not be
surprised to find that they are f'equently designed with all this in mind. A typical platform game, for
instance, will use block over-A rite for almost all of the movement, and the backdrops are carefully
designed to accommodate this. A sprite which climbs a ladder needn't use XOR if it's designed with
the ladder as part of its image!

The Linear MOVE Commands

These commands support all four methods of movement but we'll begin by looking at WMOYV which
uses block over-write. The linear move commands use 8 graphics variables and 2 or 3 optional
parameters.

WMOV

COL The column to move from, measured in bytes.

ROW The row to move from, measured in pixels.

LEN The increment by which to move horizontally, measured in bytes.
HGT The increment by which to move vertically, measured in pixels.

SP1 The number of the sprite to be moved, in this case block over written.
SP2 The number of the sprite to replace the sprite which is to be moved.
SP3 The number of the sprite which will replace SP2.

SP4 The number of the sprite which will replace SP3.

There are a few points to note:

1. Positive values for LEN will cause movement to the right and negative values will cause
movement to the left.

2. Positive values for HGT will cause movement toward the bottom of the screen and negative
values will cause movement toward the top of the screen.

3. SP1,SP2, SP3 and SP4 hold the sprite numbers of the four frames of the animation. They can
hold any numbers you wish and do not need to run sequentially. They could all hold the same
number if the sprite were not required to animate.

4. When WMOV, or any of the other MOVE commands forthat matter, is executed, itis assumed
that SP1 has been previously PUT to the screen, in the case of WMOV itis not necessary for
SP1 to be on screen but for the other three commands in the group(XMOV, BMOV, FMOV) itis
necessary. The first sprite to be placed on screen by WMOV will be SP2.

5. Because WMOV used block over-write, the collision detection option is not meaningful since
a collision will usually be detected with the previous frame that is being over-written.

6. Remember that when a sprite is 'WMOVed' it requires a border around it which is at least as
big as the increments of movement or the sprite will leave a trail behind it

The first example shows a sprite being 'WMOVed' without a border - note the trail left behind.

27

3 ' EXAMPLE QF BLOCK OVER-WRITE MOVE
10 iSCLS: !COL,0: !ROW,100

20 iSPN,14:!SPI,14: !SP2,14: ISP3,14: !1SP4,14: {LEN,1: :HGT,0

30 iWMOV,256,!

Inthis second example we create a larger sprite and place this smaller one (which we wish to WMOV)

inside it - the trail is now removed.

5 ' EXAMPLE OF BLOCK OVER-WRITE MOVE 11
10 iSCLS
20 !COL,2:'ROW ,8:!SPN,14:!PTBL:!SPN,15:IDSPR:!HGT,18:!LEN,12:!ICOL,0:IROW ,6:!SPN,

15:iCSPR:IGTBL

30 ISPN,15:!SP1,15:!SP2,15:!1SP3,15:1=P4,15

40 {LEN,1: IHGT,0

50 iWMOV,512,1

Line 10 Clears the screen.

Line 20 Puts sprite 14 on the screen then creates sprite 15 (slightly larger than 14), then gets the
screen image of sprite 14 into sprite 15.

Line 30 Specifies movement variables.

Line 40 Sets up the direction the sprite will move in.

Line 50 WMOV sprite 15, 512 times with frame-flyback synchronisation.

The WMOV command, like all other MOVE commands, can be executed in a machine code loop, with
or without collision detection and frame-flyback synchronisation. To execute WMOYV in a machine
code loop we merely follow the command with two parameters. The first is the number of times we
wish the command to execute and the second tells the system whether to synchronise with
frame-flyback or not. In fact block over-write operations do not really need to synchronise with
frame-flyback because they don't sufferfrom the same flicker problemsas other methods. In this next
example we illustrate movement with and without frame-flyback synchronisation and also illustrate
animation.

5 ' EXAMPLE QF BLOCK OVER-WRITE

6 ' MOVEMENT WITH ANIMATION

10 !SCLS

20 ISPN,17:!LEN,0 :'HGT,:iSPI,17:I1SP2,18:!1SP3,19:ISP4,20:1C0L,40

30 !'ROW,0 :FOR L=1 TO 200

40 IWMOV,1,1

50 FOR 1=1 TO 60:NEXT |

60 NEXT L
70 'ROW,0 :FOR L=1 TO 200
80 I WMoV
90 FOR 1=1 TO 60:NEXT |
100 NEXT L

Line 10 Clear the screen and set up starting positions.

Line 20 Sets up sprite number, direction and order of animation using SP1,SP2, SP3 and SP4.
Line 30 Sets up first main loop.

Line 40 WMOV with frame-flyback.

Line 50 A small wait loop to stop the sprite animating too fast to see.

Line 60 Loops back to 30.

Line 70 Sets up second main loop.

Line 80 WMOV without frame-flyback.

Line 90 Another small pause loop.

Linel00 Loopsbackto70.

XMOV

XMOV uses the same 8 graphicsvariablesas WMOV (sodo FMOV and BMOV) and like all the MOVE
commands can be followed by up to three parameters. Again there are a few points worth noting.

1. XMOV assumes that sprite SP1 has aleady been XORed onto the screen atthe current COL
and ROW positions. Failure to do this will leave a copy of SP1 at that position.
There is in fact no need to XOR SP1 if movement is to begin from an off-screen position.
Collision detection can be gainfully used by XMOV.

4. IFXMOYV is being repeatedly executed with frame-flyback synchronisation, the upper section
of the screen may not permit flicker-free movement for large sprites. In practice, the larger the
sprite, the deeper the 'no-go' band.

In this first example we XMOV a sprite from the centre of the screen to the bottom left (and wrap

around) without first PUTting SP1 - note that a copy of SP1 is left behind.

28

5 ° EXAMPLE OF XMOV

10 ISCLS

20 !COL,40:!'RDW,100

30 !SPI,2 :!SP2,2 fSP3,2s:SP4,2
40 'HGT,—=2 :!'LEN,1

50 IXMOV,218,1

Linel0 Clearsthescreen.

Line 20 Sets up starting position.

Line 30 Sets up sprite numbers (no animation).

Line 40 Sets up direction.

Line 50 XMOV sprite 2, 218 times with frame-flyback synchronisation.

We now repeat the example but this time initialise the XMOV by using PTXR to PUT sprite SP1
(actually held in SPN) at the centre before moving.

5 ° EXAMPLE OF XMOV 11

10 ISCLS

20 !COL,40:!ROW,I00

30 ISPN,2 :!PTXR

40 !'SPI1,2 :!SP2,2: ISP3,2: ISP4,2
50 'HGT,-2:ILEN,1

60 iXMO0V,218,I

Before moving on to our next example, it's worth briefly mentioning the screen ‘wrap-around’
employed by all linear move commands. The screen is 80 bytes wide and 200 pixels high but sprites
can be thought of as moving in a space which is 256 bytes (3 and a bit screens) wide and 256 pixels
high.

Ifa sprite’s path crosses an edge of the ‘virtual screen’,itwill wrap around until iteventually arrives on
the real screen and can be seen again. This 'wrapping' occurs in any direction.

Ifwe starta sprite 'XMOVing' from avirtual region we do not need to 'launch’ itwith a PTXR. This next
example demonstrates this point.

5 ' EXAMPLE OF XMOV 111

10 ISCLS
20 ICOL,-8: IROW,l00
30 iSPI,2 :fsP2,2 :ISP3,2:1SP4,2

40 'HGT,0 :!'LEN,1
50 IXM0V,218,1

Let’s turn now to collision detection. Inall the examples up to this point we have either moved with no
parameters, or with 2 parameters (machine code loops), let's look now at an example which
demonstrates collision detection.

5 ” EXAMPLE OF COLLISION DETECTION
6 > WITHOUT A MACHINE CODE LOOP

10 X7.=0

20 ISCLS

30 ISPN,1 :FOR 1=1 TO 40:!COL,RND*77:1ROW,RND*184:!'PTIF:NEXT 1
40 !COL,-B:!ROW, 100

50 ISPI,2 :1SpP2,2 :ISP3,2:1SP4,2
60 I'HGT,0 :I!LEN,1

70 FOR 1=1 TO 512

80 IXMOV, 3X7 .

90 IF X7.>3 THEN SOUND 1,40,5:X7.=0
100 NEXT 1

29

Line 10 Declares X%, which is to be used in collision detection.

Line 20 Clears the screen.

Line 30 Places some data on the screen.

Line 40 Makes the start position of the sprite just to the left of the screen i.e -8.

Line 50 Sets up sprite numbers.

Line 60 Sets direction.

Line 70 Start of main loop.

Line 80 XMOV, with X% as the collision detection counter.

Line 90 Checks if X% is different and if so makes a short beep and resets X% back to 0.
Line 100 Loops back to 70.

Collision detection is provided for by passing the address ofa BASIC variable (hence the all important
'@" in front of the variable name) so that the move routine can increment the variable if a detection is
made. XMOV,@ X% would move once, and ifa collision occurred, increment X%. XMOV,@X%,500,1
would move 500 times (with frame-flyback synchronisation) and increment X% every time a collision
wasdetected(inthiscaseupto 500times).Iltisveryimportantnottoforgetthe'@ 'infrontoftheX%or
the system may well crash. The BASIC variable used for collision detection must be an integer
variable, i.e. it must be followed by a "%* or have been declared to be integer in a DEFINT statement. If
the variable being used has not yet been declared then an 'improper argument' error will occur. To
overcome this, just put in a statement such as X%=0, before the execution of the command.

FMOV

FMOV is in fact identical to XMOV in every respect except that movement is in-front of screen data
ratherthan by exclusive-ORing. Use ofthe 'in-front' operation does require a few pointsto be raised.

1. All the sprites used by this type of move (and the FSWP which initialises the movement) must
be MASKed before movement can begin. If any of these sprites has been used in 'behind’
movement then they will need to be re-masked with the RMSK command. Executing the RMSK
command cannot do any harm so if in doubt remask!

2. FMOV assumes that sprite SP1 has already been placed on the screen using the FSWP
command (unless movement is beginning from an off-screen position). IfSP1 was not in fact
placed there using FSWP, then sprite SP1 will be irrecoverably corrupted. For this reason itis
a good idea to keep a copy of all your masked sprites, in other sprites so that you can
re-construct corrupted sprites using the 'PM' or 'GM' commands.

3. When you have finished FMOVing a sprite it must be removed from the screen by executing a
further FSWP, or must be moved 'off-screen’. Failure to do this may also resultin a sprite being
corrupted.

Inthe next example we start with four un-masked sprites that are going to form the fourframes of an
animated sequence, which are then masked ready for movement. If we accidentally corrupt one of
these MASKed sprites then we can repeat the procedure. The following short program demonstrates
the full use of the FMOV command.

5 ” EXAMPLE OF FMOV

10 ISCLS

20 FOR 1=21 TO 24 ISPN, 1 - IMASK:NEXT 1

30 FOR 1=1 TO 50 ISPN,1: ICOL,RND*80: 1ROW,RND*200: IPTBL:NEXT 1
40 #SPN,21:iSPI1,21: 1SP2,22:1SP3,23:1SP4,24

50 1COL,40:1ROW,0 : IFSWP

60 'HGT,1 :-ILEN,O

70 FOR 1=1 TO 4BO

80 IFMOV, 1,1

90 FOR W=1 TO 50:NEXT W

100 NEXT 1

Linel0 Clearsthescreen.

Line 20 Masks sprites 21 to 24.

Line 30 Puts data on the screen to show that you are actually moving in-front.

Line 40 Sets up sprite numbers for animation.

Line 50 Sets up starting position and FSWPs.

Line 60 Defines direction and the number of pixels in that direction you are going to move in.
Line 70 Main loop.

Line 80 FMOV once with frame-flyback synchronisation.

Line 90 Sets up a delay loop so you can see the animation.

Linel00 Backto70.

30

BMOV

The BMOV command is used in exactly the same way as the FMOV command with only a few notable
changes.

1 Whereas FMOV requires the first frame to be initially placed on the screen with the FSWP
command and then at the end of the move sequence requires the last frame placed to be
removed with another FSWP, BMOV requires two distinct commands to be used. The first
frame is placed on screen using BPUT and the final frame is removed using BGET. Ifthe first
frame is ‘off-screen’ then BPUT is not required and if the final frame is 'off-screen’ then the
BGET is not required.

2. When sprites have been used with BPUT, BMOV or BGET they will need to be re-masked,
using RMSK before they can be utilised by FSWP and FMOV.

Joystick/Keyboard MOVE Commands

These commands support all four types of movement, use 9 graphics variables and are executed
with up to 3 optional parameters. They are very similar to the linear move commands in most
respects, but their movement is governed by a user selectable joystick or key row.

These commands use the same 8 graphics variables as their predecessors but with one extra
variable which is necessary to select the required joystick or key row. The extra variableused is KEY
and is assigned values, and interrogated in the normal way. Joystick O is selected by setting KEY to
hold avalue in the range 72 to 79 and joystick 1is selected by setting KEY to hold a value in the range
48 to 55. If you do not have joysticks fitted (or if you're not using them) then you can use keys to
manoeuvre your sprite.

Table 2 shows which key combinations correspond to which KEY values. Keys in round brackets
correspond to keys in the numeric key pad (iffitted).UP, DOWN, LEFT and RIGHT correspond to the
cursor keys.

VALUE IN KEY UP KEY DOWN KEY LEFT KEY RIGHT KEY
0 uP RIGHT DOWN ©
8 LEFT copPy) ®)

16 CLR [ENTER]
24 t @ P
32 0 9 0 I
40 8 7 u Y
48 6 5 R T
56 4 3 E w
64 1 2 ESC Q
TABLE 2

The animation cycle is only advanced if a key is pressed (or the joystick activated). The cycle is
advanced byoneframe regardlessoftheincrementin HGT and LEN,the numberofkeyspressed,or
the direction of movement. Below are a series of examples which illustrate what can be achieved with
these commands. The first example demonstrates movement using the joystick and should be
skipped if you do not own a joystick.

5 ' EXAMPLE OF MOVIN6 A SPRITE USING

6 * JOYSTICK O

10 ISCLS

20 !COL,40: iROW,100

30 !SPN,17:!SP1,17 :'SP2,18:!SP3,19:1SP4,20

40 !PTXR
50 'HGT,1 :!'LEN,1
60 -IKEY,72

70 'WMVJ,1,1
80 FOR 1=1 TO 50:NEXT 1
90 GOTO 60

31

Line 10 Clears the screen.

Line 20 Sets up the COL and ROW position for sprite 17

Line 30 Sets up SPN and SP1 to SP4 (the 4 sprites in the animation sequence).
Line 40 Exclusive-OR’s sprite 17 onto the screen.

Line50 SetsHGTandLENtol.

Line 60 Sets KEY to 72.

Line 70 Moves and animates the sprites using WMVJ

Line 80 is a delay loop.

Line 90 Loops to line 60.

The next example which is similar to the one above shows how movement and animation can be
controlled from the keyboard (see table 2).

KEY is setto 40 which means the ‘8' key moves and animates sprites up, the '7' key moves them down,
the ‘U’ key moves them left and the T key moves them right.

5 ' EXAMPLE OF MOVING A SPRITE USING
6 ” THE KEYBOARD

10 !SCLS

20 !COL,40:'ROU,100

30 ISPN,17iiSPI,17 :!SP2,18:!SP3,19:iSP4,20
40 'PTXR

50 'HGT,1 :'LEN,1

60 !'KEY>40

70 'wMVv], 1,1

80 FOR 1=1 TO 50:NEXT |

90 GOTO 60

You may have found that using the 'Y' key to move right and the 'LT key to move left a bit difficult to
master as the 'Y' key is on the left of the 'LT key. You can however, reverse all directions specified in
table2byputting negative values in HGT and LEN.Theexamplebelow isthe sameastheoneabove
except HGT and LEN are now setto -1 such thatthe 'Y' key now moves left, the 'U' key moves right,the
‘7" key moves up and the '8' key moves down.

5 ' EXAMPLE OF MOVING A SPRITE USING

6 ° THE KEYBOARD I1

to 1601 ¢

20 ICOL,40:IROW,100

30 ISPN,17:!SPI,17 :!'SP2,18:!SP3,19:1SP4,20

40 IPTXR
50 IHGT,-2 :!LEN,-1
60 I!KEY,40

70 1TWMVJ, 1, 1
80 FOR 1=1 TO 50:NEXT I
90 O0TO 60

The 'Bouncing" MOVE Commands

Itmay not be immediately apparent why this particular group of MOVEs have been included in Laser
BASIC. As shall be seen, they have wide application in games writing, and platform games in
particular. Again, these commands support all the move types associated with the previous two
groups and use 9 graphics variables. Infact they use the same 9 variables as were employed by the
keyboard/joystick moves but for this application KEY is used to hold the number of a special sprite
which contains the bounce window parameters.

Bounce Windows

A bounce window is defined by the four variables COL, ROW, HGT and LEN. The window is set up
and stored in a sprite before the execution of the bounce commands themselves. The command
which performs this operation is BWST (bounce window SET). The window thus created has its top
left defined by COL and ROW, and its dimensions defined by HGT and LEN. Sprites do not bounce
‘inside’ this window, what actually happens is that their COL and ROW values are constrained to lie
within the ranges COL to COL+LEN and ROW to ROW+LEN. So HGT and LEN really define the
freedom that the sprite enjoys rather than providing some physical border.

Another point worth noting is that the collision detection feature of the first two move types is
replaced by a bounce detection option but is invoked in exactly the same way, i.e. using 1 or 3
following parameters. One final point to note isthat each time a bounce occurs theframe sequence is
reversed. A simultaneous bounce on two perpendicular edges will cause two reversals and the net
result is that the frame sequence continues unaltered.

32

If the motion begins outside the winaow, tnen the sprite will move linearly until it attempts to pass
through any part of the window at which pointitis 'captured' and will continue to bounce within the
window constraints.

Application to Platform Games

The linear moves will notanimate through the frame sequence unless either HGT or LEN is non-zero.
In other words they have to move to animate. Using the bounce commands a sprite can be bounced
up and down by as little as one pixel. If the alternate frames are offset by 1 pixel, then stationary
animation can be achieved as in the next example.

5 ' EXAMPLE OF STATIONARY ANIMATION

6 ' USING NBNG

10 ISCLS

20 ISPN,18s!NPX,1 :I1SSVN :ISPN,20:!SSVN

30 !SPN,15:iDSPR :!HGT,I:!LEN,4 :ICSPR

40 !SPN,15:!HGT,2:!ILEN,1:!COL,39:!ROW,100:!BWST

50 !KEY,15:!COL,39:!ROW ,100:!HGT,1:!LEN,0:!SPI[,19:!SP2,20:!SP3,17:1SP4,18

60 !WBNC,1,1

70 FOR 1=1 TO 100:NEXT |

80 GOTO 60

Line 10 Clears the screen.

Line 20 Scrolls sprites 18 and 20 up by 1 pixel (remember if you re-run this program those sprites
will be scrolled again).

Line 30 Creates a bounce data sprite.

Line 40 Sets up the bounce sprite.

Line 50 Sets up the position of the sprite and values of SP1 to SP4.

Line 60 Executes a single bounce.

Line 70 This is a delay loop.

Line 80 Loops around to line 60.

Ifwe analyse atypical screen from any of the popular platform games then itbecomes apparent that a
lot ofthe motion can be produced using vertical or horizontal bouncing. Atalatertime you could run
the Laser BASIC demo. One screen of the demo shows a platform type game in which 7 bounce
windows have been set up. Sprites which include a rotating eyeball, a toilet and a lift are seen to
bounce very smoothly.

Once you have finished this example session you could break into the demo and new the program by
typing “NEW" . Laser BASIC and the sprites will still be in memory. So if you type in the following
program all 7 sprites will be set bouncing about the screen.

5 - EXAMPLE OF BOUNCE WINDOWS

10 FOR 1=102 TO 108

20 ISET,1-102

30 ISPN,I1:1ASTV

40 NEXT 1

50 A*="WBNCAWBNCBWBNCDWENCEWBNCFWBNCG#"
60 YISET,3A$

70 !IRUN 4

Line 10 this isa FOR-NEXT loop that will incrementfrom 102 to 108.

Line 20 Sets up the value of 1-102 in the variable SET

Line 30 Uses ASTV to set up the variable set 1-102 with values stored in data sprite L
Line4d0 LoopstolO0.

Line 50 this is the string that contains the 7 WBNC commands to be run under interrupt.
Line 60 Compiles the string A$ into the background table.

Line 70 Runs the background bounce program at every 4th interrupt.

This concludes the chapter on MOVE commands.

nuw>

The BILD command is provided to enable the compact storage of screen backdrops. Although itwas
included with platform games in mind, itshould prove useful in just about any game format. As well as
enabling data compression it will produce a backdrop very quickly indeed. Essentially the idea is
very simple, the screen information is stored in a ‘bit matrix' which is held in a sprite. Each bit that is
setcorresponds to a sprite being 'PUT' and each bit that is not setcorresponds to an empty area with
the dimensions of the sprite which would have been 'PUT. The command uses only five parameters.

33

COL

ROW

KEY

SPN

SP1

Inou

is used to specify the column atwhich building is to begin. COL can hold a negative value and
in fact this feature can be used to move through the ‘map’.

is used to specify the row at which building is to begin and ROW can also hold a negative
value.

is used to specify the type of operation that BILD will use to 'PUT' the data to the screen. Four
types of operation are supported and these are now summarised:

Value in KEY Operation
0 Block over-write
1 Exclusive-OR
2 PUT in front of current data
3 PUT behind current data

holds the number of the sprite which contains the bit map. Note that there are no constraints
on the dimension of this sprite so enormous backdrops can be stored which are many
screens high and wide.

holds the number ofthe sprite which will be used to build the backdrop. A '1"in the bit map will
cause this sprite to be 'PUT" onto the screen (with one of the operations dictated by the value in
KEY) and a '0" will cause a gap to be left with the dimensions of the sprite which would have
been 'PUT'. Note that a gap is left rather than a blank area being created. Infact INVV can be
used, together with a blank sprite to cause blank areas to be cleared.

rfirst example we're going to produce a 'P' using sprite 31 as our building block. The data sprite

30 uses only 8 bytes to produce an 8x8 matrix. Sprite 31 has width 10 bytes (1/8th of the screen width)
and a height of 25 pixels (1/8th of the screen height) - so the full screen will be utilised.

5
10
20
30
40
50
60
70
80

EXAMPLE OF BILD

!SPN,30:'HGT,8 :!LEN,1:!CSPR

X7.=0: Y7.=0

'ISPR,0Y7.,0Y7.,0Y7.,0X7.

FOR [=X7. TO X7.+7:READ A:POKE I,A:NEXT |

ISCLS

!ICOL,0:'ROW ,0:'HGT,200:!'LEN,80:iKEY,0:ISPN,30:!SPI,31:!BILD
GOTO 70

DATA 252,102,102,124,96,96,240,0

Linel0 CreatesadataspriteforBILD

Line
Line
Line
Line
Line
Line
Line

Inou
time
clear

20 Initialises X% and Y%.

30 Uses ISPR to find the address of the data sprite.

40 Reads a data statement at line 80 and pokes the data into the BILD sprite.

50 Clears the screen.

60 Executes BILD which reads the data from the data sprite and puts sprite 31 onto the screen.

70 is a trapped loop.

80 is the data statement (remember once the BILD data sprite has been created lines
10,20,30,40, and 80 would no longer be required).

r second example we're going to produce a 'P' again using sprite 30 as our data sprite but this
we're going to invert sprite 30 and use sprite 32 (an empty sprite) to ensure that the gaps are
ed of any garbage. We could of course have used SCLS or CLSV before building but we're not

always going to build over the whole screen and we often wish to leave areas of the screen
unaffected.

5 * EXAMPLE OF BILD 11

10 X7.=0:Y7.=0

20 ISPN,32:ICLSS

30 !SPN, 30: !'ISPR,S>Y7.,3Y7.,0Y7.,3X7.

40 FOR I=X7. TO X7.+7:READ A:POKE I,A:NEXT |

50 ISPN,30:!INVS

60 !COL,0: 'ROW,0: 'HGT,200: !'!LEN,80: !KEY,0: ISPN,30: !SPI,32: !BILD
70 !SPN,30:!INVS

80 !COL,0:'ROW ,0:!'HGT,200:!'LEN,80:!KEY,0:!SPN,30:!SPI,31:!BILD
90 GOTO 90

100 DATA 252,102,102,124,96,96,240,0

34

Line 10 Initialises the variables X% and Y%.

Line 20 Clears building sprite 32 to INK O using CLSS

Line 30 Finds the address of sprite 30.

Line 40 POKEs the data in the data statement at line 100 into data sprite 30.

Line 50 Inverts the data sprite so all the space around the P will become the data that will be read by
BILD.

Line 60 Uses BILD to put all the spaces (sprite 32) on the screen.

Line 70 Inverts the data sprite (resetting the data).

Line 80 Uses BILD to put the P on the screen.

Line 90 is a trapped loop.

Line 100 is the data statement containing the data of the P.

Inourthird example we're going to produce a 'Q' butthistime, instead of using a second blank sprite
we're going to utilise sprite 31 by clearing itand then ‘GETting’ it back again.

5 ' EXAMPLE OF BILD 111

10 X*/.=0:Y7.=0

20 !SPN,30: 'l SPR, SY7,3YX, 3Y7., SSX7.

30 FOR 1=X7. TO X%+7:READ A:POKE I,A:NEXT |

40 !COL,0 :iROM,0 :iHGT,200:!'LEN,80:!'KEY,0 :!SPN,30:!SPI,31:iBILD
50 !SPN,31:!CLSS ISPN,30 :!'INVS

60 ICOL,0 :!'ROW,0 :!'HGT,200:!'LEN,80:!KEY,0 :!SPN,30:!SPI,31:IBILD
.70 !'SPN,31: ICOL,10: IROW,25 :fHGT,25:!LEN,10:!GTBL

80 GOTO 80

90 DATA 56,108,198,198,218,204,118,0

Line 10 Initialises the variables X% and Y%.

Line 20 Finds the address of sprite 30.

Line 30 POKEs the data in the data statement at line 90 into data sprite 30.

Line 40 Uses BILD to put the Q on the screen.

Line 50 Clears the brick sprite (sprite 31) to INK 0 using CLSS and inverts the data sprite.
Line 60 Uses BILD to put the spaces around the Q using the cleared brick sprite.

Line 70 GETs the brick from the screen back into sprite 31.

Line 80 is a trapped loop.

Line 90 is the data statement containing the data of the Q.

Collision Detection and Pattern Recognition

We have already seen how collision detection operates with the GETs, PUTs and MOVEs. One of the
drawbacks of this method isthat itdoes slow down execution somewhat. Toincrease the flexibility of
the package we have also included another command which will 'SCAN' and area of screen or sprite
for pixel data and increment a BASIC integer variable if any data (pixels not set to INK 0) are
encountered. There are 3 commands in the group:

SCNV,@V1 Scans the window defined by COL, ROW, HGT and LEN until data is found. Once
data is found, the integer variable V1 is incremented and no further execution
takes place. Note thatVl must be integer.

SCNS,@V1 Scans the sprite defined by SPN. Again execution terminates once data has
been found and the integer variable V1 is incremented.

SCNP,@V1 Scans the sprite window defined by SPN, ROW, COL, HGT and LEN. Execution
terminates once data has been found and the integer variableV1 is incremented.

These commands can be used in their own right but are generally used in conjunction with logical
GETsand PUTsand dummy sprites to detect collision with specific objects etc.

Inourfirst example we set a sprite bouncing in an empty window and check the top left of the window
to see if the sprite passes through it.

5 7 EXAMPLE OF SCNV

io :scLS

20 'coL,9 :Wow,48: HOT, 120: LEN,66: LINW
30 ICOL,10:IROW ,50:!HGT,115:iLEN,64:1INVV
40 X7.=0

50 iSPN,15:!DSPR :(IHGT,1 :ILEN,4 :CSPR
60 ICOL,10:'ROW ,50:IHGT,100:ILEN,60

35

70 BwsT

00 ISET,10::COL,IO :iROW ,50:iIHGT,16:ILEN,8

90 ISET,2 :'KEY,15:!SPI,8 :@iSP2,8 :!ISP3,8::SP4,8:!HGT,2::LEN,1
100 !SPN,8 :!COL,30:!ROW ,50:!PTXR

110 !SET,2 :!XBNC,1,1

120 !SET,10:ISCNV,3X7.

130 IF X7.>6 THEN GOSUB 150

140 GOTO 110

150 SOUND 1,30,25

160 LOCATE II,24:PRINT "S prite is in the corner":FOR A=1 TO 1000:NEXT A
170 LOCATE 11,24:PRINT *

180 X7.=0

190 RETURN

Line 10 Clears the screen.

Line 20 Inverts a window at least 2 pixels larger than the window we are going to use.

Line 30 Defines a smaller window and inverts it, therefore leaving a red border.

Line 40 The collision detection variable X% is defined.

Line 50 Sprite 15 is made into a bounce window data sprite.

Line 60 The dimensions of the window are loaded into the appropriate variables.

Line 70 The above data is PUT into sprite 15.

Line 80 The SET is assigned a number and information. Set 10 will be used to hold the window we
are scanning.

Line 90 Set2 contains the information for the bouncing sprite. Notice the key value being assigned
to 15.

Line 100 Since we are 'XBNC'ing we first have to PTXR sprite 8.

Line 110 The actual bounce command with frame-flyback synchronisation.

Line 120 The scanning ofthe window held in set 10.

Line 130 Tests to see if X% was incremented.

Line 140 Loops back to line 110. This program has to be stopped,
using the break key.

Lines 150, 160 and 170 If collision is detected then a short sound is emitted and an appropriate
message displayed for a short time before being cleared.

Lines 180and 190 X% is reset back to 0 and a return is made back to the main loop.

Pattern Recognition

Occasionally, the detection of the presence of data is insufficient and the object needs to be
identified. Not surprisingly this is a more difficult problem and can be tackled in several ways. Iftwo
identical images are XORed together then the resultis zero, i.e. all INK 0. Inourfirstexample we scan
the whole screen foroccurences of upper case letter 'A’ (note thatcolour must match as well). When
the letter is found it is converted to lower case. Note the use of a dummy sprite to carry out the
comparison.

5 ' EXAMPLE OF PATTERN RECOGNITION
10 X7.=0

20 ISCLS

30 ISPN,12: FOR 1=1 TO 50:!COL,RND*70:IROW ,RND*174 :'PTIF:NEXT |
40 FOR 1=1 TO 20:LOCATE RND*38+I,RND*23+:PRINT "A":NEXT |

50 'IHGT,8:ILEN,2

60 FOR R=0 TO 200 STEP 8

70 FOR C=0 TO 80 STEP 2

80 ICOL,C : IROW,R

90 ISPN,33:!!PTXR::SPN,34:!GTBL:!SPN,33:IPTXR
100 ISPN,34:ISCNS,3x7.

110 IF X7.=0 THEN GOSUB 150

120 X7.=0

130 NEXT C:NEXT R

140 END

150 !SPN,35:SOUND 1,40,10:!PTBL:X7.=0:RETURN

Lines 10 to 50 The detection variable is declared and the screen is cleared. Then data is randomly
putalloverthe screen,asaretheletter'A's.Then HGT and LENare settothevalues weare
going to use to scan i.e. 1 character.

Lines 55 and 60 The rows are incremented after a whole column has been scanned.

Lines 80 and 90 The COL and ROW are set up and sprite 33 is then exclusively ORed onto the

36

characterweare scanning,thus ifthecharacterisan ‘A’ afterXORing itonto the screen we
should be left with a blank space, sprite 34 is then filled with this information.

Line 100 Sprite 34 is scanned. Remember if sprite 34 is empty then the data was an 'A'.
Line 110 If no data was detected then GOSUB line 150.

Line

120 X% is reset.

Line 130 The loop goes back to line 60.
Line 140 END.
Line 150 Sprite 35 is a lower case 'a’, it is put on the screen and X% is reset and the subroutine

returns.

Bear in mind that we do not necessarily need to compare the whole character because occasionally
the object we're searching for contains some unique distinguishing feature which we can utilise to
save a full scan. Let's repeat the previous example and use a subsection of the 'A' character as the
object to be identified. Also bear in mind that this example is made a lot simpler by the fact that ‘A’ is
always displayed on character boundaries.

100
110
120
130
140
150
160

EXAMPLE OF PATTERN RECOGNITION 1I1
XX=0
ISPN,34:IDSPR:!HGT,3:!LEN,1:ICSPR
ISCLS
ISPN,12: FOR 1=1 TO 50:!COL,RND*70:iROW ,RND*174:!IPTIF:NEXT |
FOR 1=1 TO 20:LOCATE RND*3B+[,RND*23+:PRINT "A":NEXT |
IHGT,8:ILEN,2
FOR R=0 TO 192 STEP 8
FOR C=0 TO 78 STEP 2
ICOL,C :(IROW,R
ISPN,33:!SCL,0:ISRW ,0:!'HGT,3:ILEN,2:!PW XR:ISPN,34:!GWBL:!SPN,33:IPWXR
:SPN,34:!SCNS,3x7.
IF X7.=0 THEN GOSUB 160
X7.=0
NEXT C:NEXT R
END
ISPN,35:SOUND 1,40,10:!PTBL:X7.=0:RETURN

Linel0 X%isdeclared.

Line 20 Sprite 34 is deleted and created with height 3 pixels and width 1 byte.

Line 30 The screen is cleared and sprites are randomly putoverthe screen, as arethe letter'A’s.
Lines 100and 110 Instead ofgetting the whole character into sprites33 and 34 only thetop3 pixels

are used, this speeds up the scanning greatly.

The problem is also complicated when the object we're looking for is ‘in-front of extraneous data.
When this is the case we have to mask out all the extraneous data using a logical ‘AND’ with the
object we're testing and then use an XOR to see if the whole object is there. The following example
illustrates this.

110
120
130

EXAMPLE QF PATTERN RECOGNITION 111
ISCLS
!SPN,34:!DSPR:IHGT,8:!LEN,2:!ICSPR:ICLSS
FOR N=1 TO 400 STEP 4:PLOT I,N:-DRAW 650,N,2:NEXT N
FOR 1=1 TO 20: IROW,NT(RND*24>*8: ICOL,INT(RND<40)t2: '=PN,33: IPTIF: NEXT |
FOR C=0 TO 78 STEP 2
FOR R=0 TO 192 STEP 8
X7.=0
iCOL,C :IROW,R JINW O CTINV YV
ISPI1,34: ISP2,33: ISCL,0: !ISRW,0: IGMBL: ISPN,34: IGTND: IGMXR: ISCNS,3X7.
IF X7.=0THEN GOSUB 130
NEXT R:NEXT C
END
ISPN,35:SOUND 1,40,10:!PTBL:RETURN

Linel0 Clearsthescreen.

Line 20 Creates sprite 34.

Line 30 Draws lines on the screen on which the ‘A’s will be placed ‘in-front’.

Line 40 Puts 20 ‘A's randomly on the screen.

Lines 50 and 60 are the FOR-NEXT loops to produce a total scan of the screen.

Line 70 Sets X% to 0.

Line 80 SetsupCOLand ROWand INVERTStheareaofthescreen being scanned(soyoucan see

what area is being scanned).

37

Line 90 Gets the data at COL and ROW into memory using GMBL and then this data is GTND'ed
and GTXR'ed. Sprite 34 is scanned for data.

Line 100 Checks to see if any data exists, if none, the A has been recognised and the subroutine is
called at line 30.

Linel10 Loopsback.

Line 120 ENDs the program.

Line 130 isa subroutine that produces a BEEP and puts a lower case 'a' to signal thatthe A has been
recognised.

Occasionally this test will fail because an object contained all the data we were testing for and more.
The next trivial example illustrates this pitfall.

5 ' EXAMPLE OF SCNS 11

10 ISCLS ISPN,34:ICLSS

20 ISPN,12: FOR 1=1 TO 50:!COL,RNDt70:!ROW ,RND*174:IPTIF:NEXT |

30 FOR 1=1 TO 10: 'ROW,INT(RND*24> *8: {COL,INT(RND*40)12: ISPN,33: !PTIF:NEXT
40 FOR N=1 TO 20: LOCATE <RNDS39>+|,<RND*20>+:PRINT CHR*<143>:NEXT N

50 FOR C=0 TO 78 STEP 2

60 FOR R=0 TO 192 STEP 8

70 X7.=0

80 ICOL,C (IROW,R :'INW :!lINW

90 ISPI1,34:iSP2,33:!SCL,0: ISRW,0: !GMBL: !ISPN,34: IGTND: IGMXR: ISCNS,3X7.
100 IF X7.=0 THEN GOSUB 130

110 NEXT R:NEXT C

120 END

130 iSPN,35:SOUND 1,40,10:!PTBL:RETURN

Line 10 Clears the screen.

Line 20 Puts 50 'car' sprites randomly on the screen.

Line 30 Puts 10 'A’s on the screen.

Line 40 Puts 20 random yellow blocks on the screen. This block contains all the neccesary data we
are testing for. Hence the scan routine is tricked into putting a lower case ‘a’,

Lines 50 and 60 are the FOR-NEXT loops that calculate the ROW and COL values.

Line 70 Sets X% to 0.

Line 80 Sets ROW and COL and inverts the part of the screen currently being examined.

Line 90 Scans for an 'A’.

Line 100 Ifan'A’,orin this example the yellow block, exists then the subroutine atline 130 is called.

Line 110 Loops back.

Line 120 ENDs the program.

Line 130 is the subroutine that registers that the A has been recognised.

Note that if the object we're testing for is 'behind' data we cannot test for it without using some very
elaborate scheme dedicated to the specific task.

The pattern recognition methods we have considered so far might be referred to as ‘exact’ methods.
This means to say that if two objects are XORed together with a zero result then they are definitely
identical. We're now going to look at some 'approximate’ methods which are relatively quick and
simple to implement but are indicative rather than conclusive and should therefore be used with a
certain amount of trepidation. We'll now introduce three new commands:

SUMV,@V1 This command will produce the arithmetic sum of all the data in the screen
window defined by the four variabales COL, ROW, LEN and HGT. The result is
left in the BASIC integer variable

V1.

SUMS,@V1 This command will produce the sum of all the data in the sprite whose number is
held in SPN and leave the result in the BASIC integer variable V1.

SUMP,@V1 This command will produce the sum of all the data in the sprite window defined
by SPN, ROW, COL, HGT and LEN. The resultis leftin the BASIC integer variable
V1.

There are a few points to note concerning the use of this command.

1. The resultis to be stored in a 16 bitvariable so ifitexceeds 65536 itwill begin counting again
from 0. Inother words, the result is MOD (65536). This means that if the true sum were 65538 it
would leave 2 as the result. For this reason it is possible for two distinct objects to be
indescernable.

38

2. As well as the 'ambiguity’ introduced by 1. a further limitation stems from the fact that
re-ordering the data in the object does not affect the sum. For this reason, two objects may
appear to be totally dissimilar and produce exactly the same sum. The following trans-
formations can be carried out on an object without affecting the sum of its data:

Scrolls (with wrap) vertically, scrolls (with wrap) left or right by 1 or 2 whole bytes and
vertical mirroring.

It is relatively easy, however, to design distinct objects with differing sums and the chance of two
unconnected objects having the same 16 bit sum are remote. More importantly, itis easy to check for
an 'ambiguity' and this should be standard practice.

The following examples illustrate the use and some of the pitfalls of these commands:

5 ' EXAMPLE OF SUMS AND SUMV
to :scLS

20 SX=INT(RND*4)+17

30 fCOL,0:'ROW ,0:!SPN,SX:IPTBL
40 TZ=0

50 IHGT,25s iLEN,8: ISUMV, 3T7.
60 FOR N=17 TO 20

70 I'SPN, N: ISUMS, 3S7.

80 IF S7.=T7. THEN !COL,10:!PTBL
90 NEXT N

I00 LOCATE 10,10

Line 10 Clears the screen.

Line 20 Picks a sprite from 4 at random.

Line 30 Puts that sprite at the top left of the screen.

Line 40 Declares the variable T%.

Line 50 Scans a window around the sprite using SUMV and stores the result in T%.

Lines 60 to90 compare the sum values of sprites 17 to 20 with the value attained in line 50. Ifa match
is found that sprite is placed to the right of the original sprite.

Linel00 Movesthecursordown.

The example below is exactly the same as the one above except the sprite on the screen is FIPVed
before being scanned. SUMYV is still able to recognise itas a non-FIPVed sprite image.

5 ° EXAMPLE OF SUMS AND SUMV II

10 ISCLS

20 SX=INT(RNDt4)+17

30 1COL, 0: 'ROW, 0: ISPN,S7.: !PTBL

40 TK=O0

50 IHGT,25: 'LEN,8: IFIPV: ISUMV,3T7.
60 FOR N=17 TO 20

70 ISPN,N: ISUMS, 357.

80 IF S7.=T7. THEN !COL,10:!PTBL
90 NEXT N

100 LOCATE 10,10

Quite often we require to test whether an object belongsto a set of possible objects. We can of course
do this by comparing the result in V1 returned by the SUM commands with a pre-defined array of
candidates, but since this exercise involves executing some relatively slow BASIC and since itis so
often required, we have extended the SUM commands to deal with this problem at machine code
speeds. As well as speeding up your programs, this approach also compacts it considerably. The
syntax is as follows:

SUMV,el,e2, ... en,3V1
SUMS,el,e2, ... en,3V1
SUMP,el,e2, ... en,3VI

The execution of the command is very similar to the previously described SUM with one parameter,
butinstead of the result being placed in V1,the list of expressions before @V1 are tested against the
result for a match. Ifno match is found V1 is assigned zero. Ifa match is found then the position in the
list of the first expression to match the result is assigned to V1.The following examples illustrate the
use of these commands.

39

5 ' EXAMPLE OF SUMS AND SUMV 111
10 iSCLS

20 S177.=0: !SPN, 17: 'SUMS,3S177.
30 S18X=0: !SPN, 18: i SUMS, SS187.
40 S197.=0: '5PN, 19: !SUMS,S>S197.
50 S20X=0:!SPN,20: 'SUMS, 35207.
60 SX=INT(RNDt4)+17

70 !COL,0:'ROW,0:!SPN,SX:!IPTBL
80 T7.=0

90 IHGT,25: 'LEN,8: ISUMV,S177.,S187.,S197.,S20X, 0T7.
100 !COL, 10: !'SPN, 16+T7.: !PTBL

110 LOCATE 10,10

Line 10 Clears the screen.

Lines 20 to 50 Store the sums of sprite data in appropriate variables.

Line 60 Picks a random sprite out of 4 possible choices.

Line 70 Puts that sprite on the screen.

Line 80 Declares the variable T%.

Line 90 Scansthe window using SUMV and stores in T% which ofthe 4 values has been matched
(T% will return a 0 if no match is found).

Line 100 Putsthe matched sprite (16 +T%) on the screen.

Thisconcludesthe section on collision detection and pattern recognition. These are fairly advanced
programming techniques and will probably require a fair amount of practice to gain familiarisation.
We have given some examples of the uses these commands can be putto but with some thought it
should be clear that much more sophisticated schemes can be developed with practice.

High Resolution Movement

There are a number of algorithms available for storing and 'PUTting' sprites onto the screen. The
fastest methods suffer from the limitations of 'byte resolution'. This means that the smallest step a
sprite can take in the horizontal direction is 1 byte (4 pixels in 4 colour mode and 2 pixels in 16 colour
mode). This can be overcome by designing sprites in 'intermediate' orientations and sequentially
placing them in between increments of COL. Inthe following example we set up a copy of sprite 17 in
sprite 18, scroll itinto an intermediate position and then sequentially 'PUT" it,incrementing COL every
2 'PUT's.

5 ' EXAMPLE OF HIRESOLUTION MOVEMENT

10 ISCLS

20 !SPN,17:!COL,0:!'ROW,0:!IPTBL

30 ISPN,18:!DSPR:!H6T,20:!LEN,8:!CSPR:IGTBL:ISSR1

40 >SCLS
50 FOR 1=0 TO 80
60 ICOL,I

70 ISPN,17:!PTBL
80 !COL,lI:!SPN,18:!PTBL
90 NEXT i

Linel0 Thescreeniscleared.

Line20 Spritel7isputonthescreen.

Line 30 Sprite 18 becomes a copy of sprite 17 (using GTBL) then sprite 18 is scrolled right by 1
pixel.

Line 40 The screen is cleared again.

Lines 50 to 90 Sprites 17 and 18 are put one after another every loop.

This is all very well but we can’t use this technique with the 'MOVE' commands because the
X-increment has to be a constant. Infact the same result can be achieved by putting Laser BASIC into
hi-resolution mode. The command that does this is CLHI (CLLO returns Laser BASIC to normal
resolution mode).

In high resolution mode the screen is treated as being 160 columns wide. The value in COLisdivided
by two and if there's a remainder (i.e. COL holds an 'odd' as opposed to an ‘even’ value) then 1 is
added to the sprite number. So we can move sprite X across the screen with 1/2 byte resolution (2
pixels jn 4 colour mode, 1 pixel in 16 colour mode) by making sprite X+1 contain the same image as
sprite X but offset toward the right by 1/2 byte. In fact, there is a command which does this - HRSP.

40

The only variable used by HRSP is SPN. What HRSP actually does is to create a second sprite with
sprite number one greater than that in SPN (an error is given if this sprite number has already been
allocated), copies the sprite SPN into sprite SPN+1 and then scrolls sprite SPN+1 to the rightby 1/2 a
byte. In the following examples we show how to use HRSP, CLHI and CLLO with the MOVE
commands.

5 ' EXAMPLE OF HRSP
10 ISCLS

20 !CLHI

30 ISPN,18:!IDSPR

40 !SPN, 17: 'HRSP

50 !SPN,17:'SP1,17:!SP2,17:!SP3,17:1SP4,17:!'HGT,0:!'LEN,1:!COL,-20:IRO0OW ,80
60 !XMO0V,230,1

70 GOTO 60

Line 10 Clears the screen.

Line 20 Sets the software into HIRES MODE.
Line30 Deletestheoldspritel8.

Line 40 Executes HRSP on sprite 17.

Line 50 Sets up the parameters for | XMOV.

Line 60 Exclusive-OR's sprite 17 onto the screen.
Line 70 XMOV's the sprite.

Line 80 Loops to line 70.

Itis important to note that only the 'GT', 'PT', 'GW', ‘PW"'and 'MOVE' commands will be affected by the
use of CLHI. Screen windows utilised by all other commands still treatthe screen as 80 column wide
regardless. The following example illustrates this.

5 ' EXAMPLE OF CLHI

10 ISCLS

20 ICLHI

30 !'SET,1 :'SPIl,17 :!SP2,17 :!ISP3,17:'!SP4,17:IHGT,0:!LEN,1

40 I!SPN,17:1COL,-20: ,/RQW, 180: IPTXR

50 FOR X=1 TO 160

60 ISET,1: I XMOV,1,1

7p ISET,2:!COL,RND4160:IROW ,RND4135:IHGT,RND*60:ILEN,RND*30:!IKI,RND*4:ISTCV
80 NEXT X

VO ICLLO

Line 10 Clears the screen.

Line 20 Sets the hardware into HIRES MODE.

Line 30 Sets up the parameters for | XMOV.

Line 40 Exclusive-OR's sprite 17 onto the screen.

Line 50 is a loop.

Line 60 XMOVes the sprite accross the screen.

Line 70 Creates a random window of a random INK value using STCV.
Line 80 Loops to line 50.

Background Execution of Laser BASIC Commands

One of the most powerful features of Locomotive BASIC is its ability to execute subroutines under
interrupt using the EVERY and AFTER commands. Although these will prove extremely useful in
games writingtheydo sufferfrom one limitation. BASICdoes notexecute its subroutinetheinstantit
receives the appropriate interrupt, instead it completes execution of the current BASIC command.
This introduces an element ofuncertainty as to the whereabouts ofthe 'dot' which scans the screen
50 times a second and builds up the picture you see on the monitor. This slight randomness can
cause flicker.To get around this problem, Laser BASIC has its own interrupt mechanism which will
execute the instant the interrupt is received. This type of execution is referred to as background
execution because routines running in this way will continue to run whatever else the machine is
doing. You can even type in your next program with routines merrily running in background.
Background programs are automatically terminated by GSPR, MSPR and PSPR but MUST be
terminated before accessing tape or disk from locomotive BASIC. There are 3commands associated
with background execution - ISET, IRUN and IEND.

ISET,@A$

This command tells Laser BASIC which extended commandsare to be executed in background and
which SETs of variables are to be used by each command. The information is passed ina stnn”™and_
has the following format:

"command,set,command,set....#" a1

In fact there are no spaces or other delimeters within the string and the sets are represented by the
letters A ' to 'P'. All characters MUST be typed in upper case. If, for example, we wanted to scroll a
window defined by SET 0 and move a sprite within the parameters in SET 10, we would use the
following:

A$ ="WVR 1AXMOVK# " - | ISET, 3A$

Laser BASIC now knows what will be executed but we still haven’'tset the program running - to do this
we use the IRUN command.

IRUN,el

This is similar to locomotive BASIC's EVERY command. Inthis case, however, only one parameter is
required, a BASIC expressions which sets the frequency of execution. The expression can have any
value from 0 to 65535 and sets the number of interrupts which will be allowed in between successive
executions. A value of 0 means that execution will occur on every interrupt, a value of 1 meansevery
other interrupt and so on. There are a few points to note.

1. Laser BASIC acknowledges an interruptevery time frame-flyback occurs (which is every 50th
of a second) so the maximum execution rate is 50 times a second (corresponding to IRUN,0).

2. Ifyou select an execution rate of 0 (IRUN,0) and the background routine requires more thata
50th of a second to execute then control will not return from the background routine. Whilst
this is often the desired effect, the only way to exit is to press the ESC key.

3. Ifyou select an execution rate of 1 or more then the interval of a 50th of a second or more will'
always be allowed between subsequent executions regardless of the time taken to execute
the background routine.

4. Ifa Laser BASIC error (displayed within paired asterisks) occurs in either the foreground or the
background program then the background program is terminated. Pressing the “ESC" key
during the execution of the background program will also cause it to terminate.

IEND

This command will terminate execution of a background program. Neither ISET nor IRUN should be
executed while a background program is running.

Background Commands

Not all Laser BASIC commands can be executed in background. None of the commands which
require following parameters can be executed in background and those commands which have
optional following parameters can only be executed without their optional parameters. The latter
does not normally cause any difficulty and collision detection is implemented by using tracking
sprites which are described ina later section. Commands which can be executed under interruptare
detailed under ‘CLASS OPTIONS’.

SOUND

Laser BASIC has only one command concerned with sound effects and music; this command is
PLAY. As we shall see however, there are an additional 20 ‘instructions’ which are used with the
PLAY command and correspond to the facilities offered by the machines operating system. Sound is
dealt with in more or less the same way as tracking sprites, ‘tunes' are stored in sprites. There are 20
control codes, and each code may be followed by one or more ‘data’ bytes. Without doubt, the best
way to get to grips with sound is to use the sound generator program which is included in this
package.

The Sound Generator Program

To load and RUN the sound program:

Load Laser BASIC then load "SNDGEN" using:

Tape: Wind the tape to the start of the sound generator and type RUN” (see tape map).

Disk: InsertdiskandtypeRUN"SNDGEN

A menu will appear on the screen. We will now deal with each option in turn.

Note: Ensure the keyboard is set to upper case before RUNning.
(If not press CAPS SHIFT).

42

Option 1 - ENTER SOUND PROGRAM

To select this option, type 'T'followed by ENTER. You will first be prompted with "ENTERTARGET
SPRITE”.This should be any number in the range 1to 255 (a range error will occur otherwise). Ifthe
spritealreadyexiststhen you aregiven theoption to useit. Ifyou electto useit(byhitting "Y")then you
can begin program entry. Ifyou elect notto use it (by hitting "N") then you are returned to the “ENTER
TARGET SPRITE" prompt. Ifthe sprite didn't exist then you are given the option "CREATE IT (Y/N)". If
you hit "N" then you are returned to the “ENTER TARGET SPRITE" prompt. If, however, you hit “Y",
then you are asked to enter the sprite dimensions HGT and LEN. Be generous - ifyou create a sprite
thatis much larger than your needsthen you can always ‘crunch' itat some later stage. Ifits too small
then you are stuck! If you try to create a sprite that requires more memory than is available then
"INSUFFICIENT MEMORY" will appear and you are invited to re-enter HGT and LEN. The amount of
memory available for the program will then be HGTXLEN-4. The ‘crunching’ process itself requires
memory so don't be 'over-generous'!

Once the target sprite is set up you are ready to begin program entry. You will be prompted with
“ENTER INSTRUCTION”.To enter an instruction, type itin and then hit ENTER. There now follows a
list of legal instruction and details of their requirements. Before going into the instructions
themselves, it is worth mentioning that the mnemonics for each instruction are a little long winded
and once you are familiar with them you may wish to truncate them. The mnemonics are listed in the
data statements in lines 1000 to 1040 of the sound generator program. Don’tchange the order of the
instructions, but feel free to edit them and make a customised copy. The LIST tune command will also
recognise the new instruction names. Let's now look at the instructions themselves.

SOUND”

Almost all sound programs will contain the ‘SOUND’ or ‘WAIT-SOUND’ instruction. Itis normally
entered as the first instruction of the program, so that the ‘CALL’ instructions can be used (to save
program space). If the first instruction is nota ‘SOUND’ or 'WAIT-SOUND" and any of the ‘CALL’
instructionsare executed then "ILLEGALTRACKER CODE" will be generated at run-time. Infactthe
'SOUND' command is not often used (see 'WAIT-SOUND") because ifitfails to add a ‘SOUND’tothe
queuethen execution continuesatthe nextinstruction. Ifa’'tune’is being entered then this is seldom
desirable because the note will be lost. The ‘SOUND’and ‘WAIT-SOUND' commands will issue the
following prompts:

"CHANNEL STATUS" is first displayed, followed by:

“CHANNEL A (Y/N)" If you wish the sound to be issued to channel A, type "Y",
else type “N".

“CHANNEL B (Y/N)" Ifyou wish the sound to be issued to channel B as well as, or
instead of, channel A, type "Y", else type “N".

"CHANNEL C (Y/N)" Ifyou wish the sound to be issued to channel C as well as, or
instead of, channels A and/or B, type “Y", else type "N".

"RENDEZVOUS WITH A" If you wish the sound to rendezvous with a sound on
channel A, type "Y", else type "N”.

“RENDEZVOUS WITH B" If you wish the sound to rendezvous with a sound on
channel B, type “Y", else type “N”.

"RENDEZVOUS WITH C" If you wish the sound to rendezvous with a sound on
channel C, type “Y", else type "N”.

“HOLD (Y/N)” Ifyou wish the sound to wait atthe head ofthe queue until it
is specifically released, type “Y”, else type "N".

FLUSH (Y/N)" Ifyou wish the sound to flush out all the other sounds in the
queue before it type “Y", else type "N".

"ENTER AMPLITUDE You should enter a number in the range 0 to 15 which

ENVELOPE NUMBER™ will select the amplitude envelope to be used by the sound.

TypingOwill causethevolumeto remainconstantthrough-
outthe sound, Ifyou selectan envelope number in the range
1to 15 then you will need to set it up using "AMP-ENV"
before executing the sound (or set it up from BASIC
remembering that “RUN" will destroy it).

43

“ENTER TONE This is a number in the range 1 to 15 and selects the
ENVELOPE NUMBER" tone envelope which should be used. Again the envelope
will need to be set up before execution using “TONE-ENV"

(or set up from BASIC and avoiding "RUN").

“ENTER TONE PERIOD" This is a number in the range 0 to 4095 and sets the 'PITCH'
of the note (which may be altered by the tone envelope). A
high value causes a low note and a low value causes a high
note. The tone periods which correspond to actual 'notes’
are given in the BASIC manual accompanying your

machine.

“ENTER NOISE PERIOD" This is a number in the range 0 to 31. A value of zero is
generally used for 'tunes' and corresponds to
‘no-noise’.

"ENTER INITIALVOLUME" This is a number in the range 0 to 15 and correspondsto the

volume that the note will start to play at (this may be altered
by the amplitude envelope). Generally, when an amplitude
envelope is employed this will be zero.

“ENTER DURATION" This is any number in the range -32768 to 32767. If a
positive value is entered then it is taken as the absolute
duration ofthenote in 100thsofasecond, whereanegative
value is entered itis taken to be the number of the times that
the amplitude envelope should be repeated.

“WAIT-SOUND”

This instruction is identical to "SOUND" in every respect, exceptthat if the queue is found to be full
then the program counter is left pointing to the current instruction (which couldn't be executed
because the queue was full) and control returns from the PLAY command. The parameters are
entered in the manner previously described for “SOUND". "WAIT-SOUND" is almost always used
where 'tunes' are concerned.

“RESET”

This instruction has no parameters, so itissues no prompts. The effectof 'RESET" isto clear all sound
queues and terminate any sounds currently being executed. Itis normally the first instruction to be
executed by most tunes.

“RELEASE”
This allows individually 'held' sounds to be RELEASEd. There are three prompts:

“CHANNEL A (Y/N)" If you wish to release the sound held in channel A type “Y",
else type “N".

"CHANNEL B (Y/N)" Ifyou wish to release the sound held in channel B, as well
as, or instead of, channel A, type "Y", else type “N".

“CHANNEL C (Y/N)" Ifyou wish to release the sound held in channel C, as well
as, or instead of, channel A and/or channel B, type “Y", else
type “N".

“HOLD”

Hold has no parameters and so there are no prompts. The effect is to halt all sounds immediately
without flushing the queues, so that they can be re-started by 'CONTINUE".

“CONTINUE”

Again, this instruction has no parameters and issues no prompts. Its effect is to re-start all sounds
which were frozen by '"HOLD".

“AMP-ENV”

This instruction has avariable number of parameters (dependant upon the number of sections in the
envelope) and envelopes can be hardware or software (see your BASIC manual for full details). The
following prompts are issued:

4

“ENTER AMPLITUDE

"NUMBER OF SECTIONS"

“SOFTWARE ENVELOPE

"ENTER STEP COUNT"

“ENTER STEP SIZE"

"ENTER PAUSE TIME”

or if a hardware envelope was selected:

"ENTER ENVELOPE SHAPE"

"ENTER ENVELOPE PERIOD"

"TONE-ENV”

This instruction is similar to “AMP-ENV™"
the number of sections in the envelope)

“ENTER TONE
ENVELOPE NUMBER"

“NUMBER OF SECTIONS"

"ENTER STEP COUNT"

"ENTER STEP SIZE"

"ENTER PAUSE TIME"

“RE-RUN”

This will cause control to jump to the

This should be a number in the range 1 to 15 and selects
ENVELOPE NUMBER"theenvelope which isto bedefined.

This should be a number in the range 1to 5 and selects the
number of section which will need to be entered. Each
section will be prompted as follows:

Typing "Y" will cause the next three prompts, typing (Y/N)"
“N” will cause the two prompts after these, instead.

This is a number in the range 1 to 127 (see your BASIC
manual).

This is a number in the range 127 to -128 (see your BASIC
manual).

This is a number in the range 0 to 255 (see your BASIC
manual).

This is a number in the range 8 to 15 and selects one of the
eight possible hardware envelopes (see your BASIC
manual).

This is a number in the range 0 to 65535 (see your BASIC
manual).

inthatithas a variable number of parameters (dependanton
and the following prompts are issued:

This should be a number in the range 1to 15 and selects
the envelope to be defined.

This should be a number in the range -5 to 5 (but not 0) and
selects the number of sections which will need to be
entered. A negative value indicates a repeating envelope.
Each section will be prompted as follows:

This is a number in the range 0 to 239 (see your BASIC
manual).

This is a number in the range 127 to -128 (see your BASIC
manual).

This is a number in the range 0 to 255 (see your BASIC
manual).

first instructions in the program (usually a 'SOUND" or

'WAIT-SOUND"). This instruction is seldom used in ‘tunes’ because the first few instructions are

usually only executed once but a sou

nd effect will normally end with a 'STOP' followed by a

'RE-RUN'.'RE-RUN" has no parameters.

“JUMP”

This instruction is more flexible than 'RE
program. Only one prompt is issued:

“ENTER PC VALUE"

-RUN'because control can be transferred to any part of the

The number is in the range 1to 65535. In order to calculate
the PC value it is often necessary to enter a dummy value
such as 1, then when the whole program has been entered,
'LIST' (option 5) and note the PC value. The true value can
then be entered using 'DOKE VALUE' (option 15) or
OVERWRITE AT PC' (option 2). Tunes are normally
terminated by a jump to the first'CALL' in the program, ready
to re-play the 'tune'.

45

RE-LIM”

The 'PLAY'command itselfis mostoften executed underinterrupt(see ISET, IRUN, IEND). Quiteoften
there are a number of other commands executing under interrupt and if these are graphics
commands they will probably be required to be invoked much more frequently than the ‘PLAY’
command. In order to save processortime the 'PLAY'command has a limitwhich allows itto execute
on selected interrupts. Ifthe limitis O it will executeon every invocation, ifitis 1 then itwill executeon
everyother invocation, ifitis2then itwillexecuteon every third invocation and soon.'RE-LIM" allows
you to change this limitfrom within the program and also to resetthe programs own internal counter.
Ifyou set'count’ to equal 'limit'then the program will executeon thevery nextinvocation, otherwise it
will wait until ‘count' equals 'limit’ and then execute. After any execution 'count' is automatically
re-set to 0. This instruction therefore, has two parameters, entered with one prompt:

"ENTER COUNT,LIMIT" Both numbers should be within the range 0 to 255 and
should be typed with a comma between them before

pressing ENTER.

“CALL-CHANNEL”

This instruction enables the user to change the channel status in the 'SOUND"' or 'WAIT-SOUND'
data block atthe start of the program without executing the 'SOUND' or ‘WAIT-SOUND". Itis normally
used to change the rendezvous requirements before adding a particular sound to the queue. Inorder
to make a tune which uses more than one channel, and hence more than one program (hence more
than one sprite!) to start all three channels simultaneously, itis common to set the first sound in each
program to rendezvous with the other two. As soon as this first note is executed however, the three
harmonies seldom continue to rendezvous and so after the first ‘'CALL-TONE-PERIOD’ or 'CALL-
TONE-DURATION’ the rendezvous’ are normally re-set so that all three channels can play
independently. This technique will be apparent in the example tunes, supplied with this package.
This instruction has only one data byte buteach bitis individually significant so there are 8 prompts,
one for each bit. These prompts are discussed in detail under the previously described “SOUND"
instruction but are listed below for summary.

CHANNEL A (Y/N)
CHANNEL B (Y/N)
CHANNEL C (Y/N)

RENDEZVOUS WITH A (Y/N)
RENDEZVOUS WITH B (Y/N)
RENDEZVOUS WITH C (Y/N)
HOLD (Y/N)
FLUSH (Y/N)

"CALL-AMP-ENV”

This instruction enables the user to change the amplitude envelope number in the SOUND’ or
'WAIT-SOUND’ data block at the start of the program without executing the 'SOUND’ or 'WAIT-
SOUND" instruction itself. Only one prompt is issued, this is for the envelope number - see
'SOUND7'WAIT-SOUND".

"CALL-TONE-ENV”

This instruction is identical to 'CALL-AMP-ENV'exceptthatthe tone envelope number is altered -see
'SOUND7'WAIT-SOUND".

“CALL-TONE-PERIOD”

This instruction enables the user tochange the tone period (which controls the pitch) in the 'SOUND'
or 'WAIT-SOUND"' data block at the start of the program. This instruction will then execute the
'SOUND' or ‘WAIT-SOUND'. Ifthefirst instruction isactually ‘WAIT-SOUND'as opposed to 'SOUND",
and if the queue is full, then the program counter remains pointing at the 'CALL-TONE-PERIOD
instruction and control returns from the 'PLAY' command. In practice, this and 'CALL-TONE-
DURATION' are the instructions usually used to add sounds to the queue and ‘SOUND’ and
'WAIT-SOUND" are rarely executed directly. Only one parameter is prompted for and this is the
"TONE-PERIOD" which is a number in the range 0 to 4095.

“CALL-NOISE-PERIOD”

This instruction enables the user to change the noise period in the 'SOUND"' or 'WAIT-SOUND' data
block at the start of the program without executing the 'SOUND’ or 'WAIT-SOUND" instruction itself.
Only one prompt is issued - see 'SOUND' or 'WAIT-SOUND".

“CALL-INITIAL-AMP”

This instruction enables the user to change the initial amplitude in the 'SOUND"' or 'WAIT-SOUND'
data block at the start of the program without executing the ‘SOUND’ or 'WAIT-SOUND' instruction
jtself. Only one promptis issued and this is for the initial amplitude - see 'SOUND’or 'WAIT-SOUND".

“CALL-DURATION”

This instruction enables the user to change the duration in the 'SOUND"' or 'WAIT-SOUND" data block
atthe start of the program without executing the ‘SOUND’ or 'WAIT-SOUND" instruction itself. Only
one prompt is issued and this is for the duration - see 'SOUND" or 'WAIT-SOUND".

“CALL-TONE-DURATION”

This instruction enables the user to change both the tone period and the duration in one instruction,
thus saving 1 byte(and sometime) when bothofthesequantitiesvarysimultaneously, which isoften
the case. As in ‘CALL-TONE-PERIOD’,the new values are substituted into the data block and then
the 'SOUND" or ‘WAIT-SOUND' instruction is executed. In the latter case, a full queue will cause the
'PLAY’command to be exited with the program counter still pointing atthe 'CALL-TONE-DURATION'
instruction. There are two prompts, the first is for the duration and the second is for the tone period
-see 'SOUND' or 'WAIT-SOUND".

“STOP”

This will cause program execution to cease and the 'PLAY' command to be exited with the program
counter pointing at the next instruction after the ‘STOP’. There are no parameters.

“DONE”

This does not generate any code in the sound program but instead simply terminates program entry
and returns to the menu.

“EXIT”

This is the same as 'DONE' except thata byte is placed in the program which tells the'LIST' command
that the end of the program has been reached. Program execution should never reach this point in
the program or the system will terminate with "**ILLEGAL TRACKER CODE**"

General Notes:

a) Ifthe sprite you have created to contain the tune is full, then the “END OF SPACE" message
will be issued, do not attempt to enter any more data. The data will have been added.

b) Ifthe data you are trying to put into the sprite will not fit, then the "NO ROOM" message will be
issued. Ifthis is the case then the data has not been added.

c) Ifyou incorrectly ENTER any of the instructions then the "ILLEGAL INSTRUCTION" message
will be issued. All you need to do isre-enterthe instruction correctly as no data will have been
written to the sprite.

d> Similarly, if you accidentally enter a parameter which is out of range, the "OUT OF RANGE"
error message will be issued and you will be prompted to re-enter the data.

e) Ifyou are running othertasks under interrupt, you mayfind thatyourtune or sound effect runs
more slowly. Only experimentation will establish the adjustment required to the duration but
the pitches (set by the tone periods) will be unaffected.

Option 2 - OVERWRITE AT PC

From time to time you may find, when you 'LIST' your program, that you have incorrectly entered the
program or missed out an instruction (see Option 4 - INSERT AT PC). Ifthis is so, you can overwrite
your mistake with this option. Remember to exit this option with a O ONE’and notan 'EXIT, which will
leave a marker in the middle of your program (unless you're overwriting the last instruction). This
facility can also be used to add instructions to the end of a previously entered program. This option
will issue the following prompts:

"ENTER TARGET SPRITE” This is a number in the range 1 to 255 and must be a
previously defined sprite. Ifthe sprite does notexist the "NO
SUCH SPRITE" message will be displayed and control will
return to the menu. Ifthe sprite did existthen the following

prompt will continue:

This should be a value between 1 and 65535, but if it is
higher than the sprite size allows then a "NO ROOM’
message will be generated as soon as any attempt is made
to enter an instruction.

"ENTER PC VALUE"

Ifthe PC value is within range then instructions are entered in exactly the same way as they were with
Optionl.See'EXIT and ‘DONE’.Inorderto establish the PC valueataparticular partofthe program
see Option 5 - LIST.

Option 3 - DELETE AT PC

This option enables the user to delete a chunk of program and move the remaining program back
over the recovered memory, thus contracting the whole program by the amountremoved. This option
will issue three prompts:

"ENTER TARGET SPRITE” The prompt should be responded to in the same way as the
same prompt in the previously described Option 2 -

OVERWRITE AT PC.

“ENTER PC VALUE" Again this prompt should be responded to in the same way

as the previously described Option 2 - OVERWRITE AT PC.

"HOW MANY BYTES" This should be a number in the range 1to 65535 and is the
number of bytes to be deleted from (and including) the

selected PC value.

This option may take several seconds to execute and again the relevant PC value is obtained by
using Option 5 - LIST.

Option 4 - INSERT AT PC

This option enables the user to make space fora chunk of program and moves the rest ofthe program
(including the instructions at the selected PC) upward in memory to make room.Take careto ensure
that sufficient memory is available or the end of your program may be lost. This option issues the
same three prompts as Option 3 - DELETE AT PC, and they should be responded to in the same
manner. The space allocated is initially filled with zeros.

Option 5 - LIST TUNE
This option enables the userto ‘LIST a previously entered sound program to the screen or printer. An
example listing is given at the end of this section. This option issues four prompts:

"PRINTER (Y/N)" Typing "Y” will send output to the printer only, typing "N"

will send output to the screen only.

“ENTER TARGET SPRITE" The number of the sprite containing the program to be listed

(see Option 2).
"ENTER PC VALUE"
"NUMBER OF BYTES"

The PC value at which to start listing (see Option 2).

The length of code to list. Ifthis is longer than the sprite itself
then listing will automatically terminate at the end of the
sprite. Listing will also terminate ifa marker (see 'DONE") is
encountered.

48

Care should be taken to ensure that listing begins at a legal instruction, or the output may be
Qﬂaningless. Ifan instruction with an illegal code is encountered then "ILLEGAL INSTRUCTION" is
printed and listing continuesatthe nextbyte. Listing can be halted and recommenced using “ESC" in
the same way as normal BASIC listings. Listings are issued in the following format:

Column 1

Thisis the absolute address (in HEX) of the current instruction. This will only change ifthe sprites are
deleted, relocated or merged, but bear in mind that itcan change and always check ifyou’re unsure.
Column 2

Thisis the actual byte that is contained in the current address (in decimal).

Column 3

This is the program counter value (in decimal) and it is this number that is used by most options to
indicate position in the program.

Column 4

This contains either the current instruction, or the current data which belongs to the current
instruction.

Option 6 - SAVE TUNES

Thisoption is provided to enable the user to save the current sprites to tape ordisk. Only one prompt
is issued:

"ENTERFILENAMETO
SAVE UNDER™"

The filename should be 8 characters or less in length,
and of these, the last three must be "SPR"™ to indicate a
sprite file.

Option 7 - LOAD TUNES

This option is provided to enable the user to load a previously saved file of sprites from tape or disk. If
an erroroccurs during this option (orany other for that matter), simply type “RUN”.Only one promptis
issued:

“ENTER FILE TO LOAD-
NOTE:

Again the filename must conform to sprite file format.

To load the demo tunes (which are saved directly after the sound generator program on the tape
version) use the filename "MUSICSPR".

Option 8 - MERGE TUNES

This option is provided to enable the user to merge previously saved file of sprites from tape or disk.
Again there is only one prompt which asks for the file to merge.

Option 9 - PLAY TUNES

Thisoption enables the user to hear his handiwork. Since there are 3 channels, there are up to three
programs which may run together. Often, the rendezvous requirements mean that all three tunes
must be played together. This option will play the tunes under interrupt. There are a number of
prompts:

“HOW MANY TUNES" This is a number in the range 1to 3 and specifies how many
tunes are played together, in the case of all 3 example
programs, the tune is held in three sprites, one for each
channel. None of these will play independantly because of
the rendezvous requirements. For each of the sprites there

are 3 prompts:

“ENTER SPRITE NUMBER" This is a number in the range 1to 255 and is the number of

the sprite holding the program we wish to play.

“ENTER PC TO START AT" This is the program counter value at which execution

should start for the particular sprite.

"ENTER LIMIT" This controls the frequency with which execution is
attempted as previously described.

49

Incidentally, the lines of BASIC which setthe tune running may be useful in your own program and are
at 2960 to 2990.

Playing the Examples

There are 3 example tunes which are recorded on the tape directly after the sound generator
program or saved on disK under the filename "MUSICSPR". Use option 7 to load the example tunes.

Tune 1 This is the music which accompanies the “CHASE" screen in the Laser BASIC demo. It
plays on all three channels and the data is stored in sprites 90,91 and 92. All three are
initialised with a “PC to start at” of 11 and a “Limit" of 1.

Tune 2 This is the music which accompanies the "platform game screen" in the Laser BASIC
demo. Italso plays on all three channels but uses sprites 60,61 and 62. Again all three are
initialised with a “PC to start at” of 11 and a “Limit” of 5 or less.

Tune 3 This is the music which accompanies the "hunchback" screen in the Laser BASIC demo.
Again all three channels are used and thistime sprites 93,94 and 95 contain the data. As
with tunes 1 and 2 the "PC to start at" is 11 and the "Limit" 5 or less.

Option 10 - STOP TUNE

This simply stops the tune or sound effect from running under interrupt and returnsto the main menu.
No prompts are issued. Tunes can also be halted by pressing "ESC".

Option 11 - ALTER SPRITE MAX

The sound generator program does not alter the maximum sprite number when itis 'RUN" and all
sprites currently in memory are preserved. If, however, you wish to reset the maximum sprite number
then option 11 will do this. Only one prompt is issued which asks f6r the new sprite max. Remember
that any currently existing sprites with numbers greater than the new sprite max will be lost.

Option 12 - CRUNCH TUNE

This can be a very useful facility but should be used with caution because of its irreversible nature. As
was previously mentioned, itis advisable to work with sprites thatare a lot larger than the anticipated
requirement because mistakes can easily be made when estimating the exact requirement. The only
way to transfer data out of a sprite that has been created too small is to break out of the program and
do it by hand, i.e. find the starting address using ISPR, create a new sprite and then transfer using
PEEKs and POKEs - not recommended. The sound generator program leaves ample memory for
sprites and there should seldom be a shortage of sprite space unless you are merging a file of
graphics sprites. Remember thatthe crunching operation itself will create a new sprite ofthe required
size, before deleting the old one, and so sufficient memory must be available to allow this. There must
also be atleast one sprite number which has not been used. Ifinsufficient memory is available for the
transferthen “INSUFFICIENT ROOM" is reported, ifall sprite numbers have been allocated then “NO
FREE SPRITE” is reported. Ifthe first free sprite number found is greater than the sprite max then the
transfer cannot be completed. The operation issues a number of prompts:

"ENTER TARGET SPRITE" This is a number in the range 1to 255 and is the number of
the sprite to be 'crunched'.

"ENTER PC VALUE" Thisisthevalueoftheprogram counteratthelastbyteused
by the sound program. Be careful - the last instruction may
be 2 or more bytes long and ifyou are unsure, add a couple
of bytes for safety. Ineach of the example programs the last
instruction is a 'JUMP' (3 byte instruction) so we want the
program counter value (column 3 of the listing) at the
'JUMP" instruction itself, +2. This will point atthe last byte.

If the 'crunch’ was successful then the new height and width are displayed. Pressing any key will
return to the menu. This option can take a fair time to execute.

50

Option 13 - CLEAR ALL TUNES

This option allows the user to clear all existing sprites from memory and re-set the maximum sprite
number. There are two prompts:

"CLEAR SPRITES (Y/N)" This is provided just in case you have selected option 13
(unlucky for some!) by mistake. If that is the case then just
type "N" to return to the menu. To continue with the clearing
type "Y" and you will be prompted with:

“ENTER NEW SMAX” You should now enter the new maximum sprite number
which should be a number in the range 1 to 255.

Option 14 - POKE BYTE

This option should be used with great caution and is really an alternative to Option 2 - OVERWRITE
AT PC. The 'LIST' option can be used to find the absolute address (column 1) you wish to POKE. Be
sure that this address has not changed since you last checked it. There are two prompts:

“ENTER ADDRESS TO POKE" This will be a number in the range 1to 7000 HEX. Remember
that the address given in column 1 of the listing is a HEX
address and therefore requires an ampersand (“&") to be
put in front of it, if it is to be entered as a HEX number.

“ENTER BYTE" This is the value you wish to POKE into the address. Itis
always a good idea to list the program again after carrying
out this option to be sure you have not made an error. The
byte must be in the range 0 to 255.

Option 15 - DOKE VALUE

This odd sounding option is the 16 bit equivalent of ‘'POKE BYTE'. There are two prompts:

“ENTER ADDRESS TO DOKE” Again this is the address to modify. The least significant
byte will go into this location and the most significant byte
will go into the next location.

"ENTER VALUE" This is the 16 bit value which will be DOKEd at the address
given.This can be in the range -32768 to 65535.

Option 16 - DELETE TUNE

This option simply allows you to delete an individual sprite and has only two prompts:

"SPRITE TO DELETE" This should be the number of the sprite to be deleted and
should be in the range 1 to 255 (or the maximum sprite
number).

"DELETE (Y/N)" This is provided so thatyou can abort if you've typed in the

wrong sprite number. To abortjust hit “N”,to proceed and
delete type "Y".

Using Sound in your Programs

Once you have created your tunes/sound effects using the sound generator program itis relatively
simple to incorporate them in your BASIC program. Infact there is only one command related to the
use of sound, but it has two different operations depending on the number of parameters supplied.

PLAY,el,e2

If the 'PLAY' command has 2 parameters then its action is as follows. The sprite whose number is
held in the variable KEY has its program counter setto el, its count set to zero and its limit set to e2.
No instructions within the sound program are executed.

PLAY

Ifthe "PLAY” command has no parameters then its action is as follows. The program within the sprite
whose number is held in KEY is executed from its current program counter.

51

Example

Suppose we have atune which is contained within 3 sprites numbered 50,51 and 58. Suppose each
one is to be executed with a starting PC of 11 (i.e. there isa 'SOUND' or 'WAIT-SOUND" instruction at
the beginning ofthe program) and a limit of 5. Inorderto setthem running under interrupt using SETs
1,2 and 4 we would use:

10 SET, 1:KEY,50: PLAY,11,5:A$="PLAYB"
20SET,2:KEY,51:PLAY,11,5:A$=A$+"PLAYC"
30SET,4: KEY,58: PLAY,11,5:A$=A$+"PLAYE#"
40 I1SET,3A%: | IRUN /5

General Notes on the Use of Sound

1. The 'RUN' command causes a 'RESET' of the sound chip, so ifyou are playing a tune under
interrupt then RUNning a program will have unpredictable results.

2. Ifyou are playing a tune then the first instruction should almost invariably be ‘WAIT-SOUND"

3. Ifyou are playing a tune that uses more than one channel, then itis usually best to write the

separate parts of the tune in separate sprites (this avoids continual CALL-CHANNELS).

4. If you are writing a tune in more than one sprite then the first instruction to be executed in the
first sprite (as opposed to the first instruction of the program) should be a 'RESET'. This is
normally followed by all the envelope definitions and then a'CALL-CHANNEL' (in each sprite)
to ensure that the tunes start together.

5. Where 3 sprites are involved the first note in channel A should rendezvous with B and C, the
first note in chanel B should rendezvous with A and C and the first note in channel C should
rendezvous with A and B. After the execution of the first 'SOUND’ or 'WAIT-SOUND" the
rendezvous requirements normally change.

6. If a tune does not start simultaneously on all 3 channels then a dummy envelope with zero
volume is normally used to cause the delay whilst still rendezvousing all 3 at the start.

7. Where a tune is to be played repeatedly the last instruction is normally a 'JUMP' back to the
'CALL-CHANNEL' that sets up the rendezvous with the other harmonies. There is no need to
re-execute the 'RESET' or envelope definitions.

A typical 3-channel tune may have the following format:

Sprite 1

pPC Inst ruct ion

1 WAIT-SOUND

11 RESET

12 AMP-ENV

30 TONE-ENV

38 CALL-CHANNEL (set up rendezvous wi th Band C)
40 CALL-TONE-DURATION (pLay first note)

45 CALL-CHANNEL (remove rendezvous requirements)
47 CALL-TONE-DURATION (the rest of the tune)

N JUMP ("JUMP® bac k to "CALL-CHANNEL 1at 38)

This would be set up with a PLAY,11,LIMIT

Sprites 2 and 3

These would take the same form as sprite 1 except that they must not contain a 'RESET'. Again they
would be set up to execute from a PC of 11.

Ifa dummy amplitude envelope of zero volume is to be used to control delayed starts then itwould be
inserted before the 'CALL-CHANNEL"' (shown ata PC of 38 in sprite 1) and would normally be defined
in sprite 1. In fact there is no reason why all envelope definitions couldn’'t be set up in sprite 1.

52

THE PLATFORM GAME MUSIC

. _ AP * [

AN LT
grEl foIf pri=
vijn = L
PN MATH T T p - -

THE HUNCHBACK MUSIC

CHANNEL A
6C55 1
6C57 1
6C58 0
6C59 126
6C58 0
6C5C 15
6C5D 23
6C5F 2
6C60 6
6C61 1
6C62 5
6C63 1
6C64 0
6C65 1
6C66 1
6C67 0
6C68 10
6C69 1
6C6A 241
6C6B 1
6C6C 12
6C6D 1
6C6E 1
6C6F 12
6C70 255
6C71 1
6C72 6
6C73 2
6C74 5
6C75 1
6C76 15
6C77 1
6C78 1
6C79 0
6C7A 10
6C7B 1
6C7C 241
6C7D 1
6C7E 15
6C7F 1
6C80 1
6C81 15
6C82 255
6C83 1
6C84 11
6C86 14
6C87 126
6C89 14
6C8A 126
6C8C 14
6C8D 83
6C8F 11
6C91 14
6C92 83
6C94 14
6C95 204

THE

WAIT-SOUND
ISSUE_ON_A
AMPLITUDE ENVELOPE=
TONE ENVELOPE

TONE PERIOD

NOISE PERIOD
INITIAL VOLUME
DURATION

\
AMPLITUDE ENVELOPE=
NO OF SECTIONS
STEP COUNT
STEP SIZE
PAUSE TIME
STEP COUNT
STEP SIZE
PAUSE TIME
STEP COUNT
STEP SIZE
PAUSE TIME
STEP COUNT
STEP SIZE
PAUSE TIME
STEP COUNT
STEP SIZE
PAUSE TIME
AMP-ENV
AMPLITUDE ENVELOPE=
NO OF SECTIONS
STEP COUNT
STEP SIZE
PAUSE TIME
STEP COUNT
STEP SIZE
PAUSE TIME
STEP COUNT
STEP SIZE
PAUSE TIME
STEP COUNT
STEP SIZE
PAUSE TIME
STEP COUNT
STEP SIZE
PAUSE TIME
CALL-CHANNEL
ISSUE_ON A
RENDEZVOUS WITH A
RENDEZVOUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE_ON A
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD

PLATFORM GAME

15

NRPRPRPRPRPNR RO L, OOl
B~ o
—

638
638
851

851
716

54

14
204
1
14

1

97
100
102

103
105

CALL-TONE-PERIOD
TONE PERIOD 716
CALL-TONE-PERIOD

TONE PERIOD 851
CALL-TONE-PERIOD

TONE PERIOD 851
CALL-CHANNEL
ISSUE_ON A
RENDEZVQUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD 638
CALL-TONE-PERIOD

TONE PERIOD 851
CALL-TONE-PERIOD

TONE PERIOD 851
CALL-CHANNEL

ISSUE_ON A
CALL-TONE-PERIOD

TONE PERIOD =716
CALL-CHANNEL

ISSUE _ON A
RENDEZVOUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD =
CALL-CHANNEL

ISSUE_ ON_A
CALL-TONE-PERIOD
TONE PERIOD =
CALL-CHANNEL

ISSUE ON A
RENDEZVOUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD =
CALL-TONE-PERIOD
TONE PERIOD =
CALL-TONE-PERIOD
TONE PERIOD =
CALL-TONE-PERIOD
TONE PERIOD =
CALL-CHANNEL

ISSUE ON A
CALL-TONE-PERIOD
TONE PERIOD =
CALL-TONE-PERIOD
TONE PERIOD =
CALL-TONE-PERIOD
TONE PERIOD =
CALL-TONE-PERIOD
TONE PERIOD =
CALL-TONE-PERIOD
TONE PERIOD =
CALL-CHANNEL
ISSUE_ON A
RENDEZVOUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD

716

851

851
638
638
851

851
716
716
851
851

= 956

14
1
14

126
1

185
188

190
191
193

218
219
221
222

CALL-TONE—PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON_A
CALL-TONE—PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE _ON A
RENDEZVOUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON A
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE _ON A
RENDEZVOUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON A
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON A
RENDEZVQUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON A
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD

956
638

638
536
536
638
638

956
956
638
638

536

536

638

638
638
638
851

851
716
716
851
851

6D34

55

14
11
14

126
1

224

273
274
276

278
279
281

CALL-CHANNEL
ISSUE_ON A
RENDEZVQUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON A
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON A
RENDEZVOUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON A
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON A
RENDEZVOUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON_A
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON A
RENDEZVOUS WITH B
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-CHANNEL
ISSUE ON A
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD

851
851
568

568
478
478
568
568

956
956
638
638

536

536

638

638
638
638
851

851
716

CHANNEL B

6E44

1

|

CALL—TONE—PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD

JUMP
PC ADDRESS

WAIT-SOUND
ISSUE_ON B
RENDEZVOUS WITH A
RENDEZVOUS WITH C

AMPLITUDE ENVELOPE=

TONE ENVELOPE
TONE PERIOD
NOISE PERIOD
INITIAL VOLUME
DURATION
CALL-CHANNEL
ISSUE ON B
RENDEZVOUS WITH A
RENDEZVOUS WITH C
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-RERIOD

716
851
851
638
638
851
851
716
716
851
851
48

pNOoOOoONON

284
284
253
284
284
213
284
213
213
284
284

56

6EBD

CHANNEL C

6DAC

1

1

OOy UT AW

TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD

JUMP
PC ADDRESS

WAIT-SOUND
ISSUE ON C
RENDEZVOUS WITH A
RENDEZVOUS WITH B

AMPLITUDE ENVELOPE=

TONE ENVELOPE
TONE PERIOD
NOISE PERIOD
INITIAL VOLUME
DURATION

253
213
213
190
213
213
159
213
159
213
284
284
253
190
190
169
213
213
159
213
159
213
284
284
253
11

NOOoOEON

11

11

CALL-CHANNEL
ISSUE ON C
RENDEZVOUS WITH A
RENDEZVOUS WITH B
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-NOISE-PERIOD
NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL—NC.SE-PERIOD
NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-NOISE-PERIOD
NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-NOISE-PERIOD
NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-NOISE-PERIOD
NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-NOISE-PERIOD
NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-NOISE-PERIOD
NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD

179
179

159

179
179
213
179
213
213
179
179

159

134
134

119

134
134
159
134
159
213
179
179

159

57

6E3D 11

CALL-NOISE-PERIOD

NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-NOISE-PERIOD
NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-NOISE-PERIOD
NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-NOISE-PERIOD
NOISE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-NOISE-PERIOD
NOISE PERIOD
JUMP

PC ADDRESS

THE HUNCHBACK'SCREEN

CHANNEL A
68DF 1 1 WAIT-SOUND 691F 2 65
ISSUE_ON A 6920 6 66
6BE1 1 3 AMPLITUDE ENVELOPE= 1 6921 3 67
68E2 1 4 TONE ENVELOPE =1 6922 2 68
68E3 90 5 TONE PERIOD =602
68E5 0 7 NOISE PERIOD =0 6923 138 69
68E6 0 8 INITIAL VOLUME =0 6924 142 170
68E7 20 9 DURATION =20 6926 1 72
68E9 2 11 RESET 6927 0 73
68EA 6 12 AMP-ENV 6928 20 74
68EB 1 13 AMPLITUDE ENVELOPE= 1 6929 11 75
68EC 5 14 NO OF SECTIONS =5
68ED 2 15 STEP COUNT =2
68EE 5 16 STEP SIZE =5
68EF 1 17 PAUSE TIME =1 6928 18 77
6BFO 1 18 STEP COUNT =1 692C 100 78
68F1 5 19 STEP SIZE =5 692E 56 80
68F2 1 20 PAUSE TIME =1 6930 11 82
68F3 1 21 STEP COUNT =1
68F4 0 22 STEP SIZE =0 6932 18 84
68F5 5 23 PAUSE TIME =5 6933 20 85
68F6 10 24 STEP COUNT =10 6935 56 87
68F7 255 25 STEP SIZE = 255 6937 18 89
68F8 1 26 PAUSE TIME =1 6938 100 90
68F9 5 27 STEP COUNT = 693A 183 92
68FA 255 28 STEP SIZE = 255 693C 18 94
68FB 10 29 PAUSE TIME =10 693D 20 95
68FC 6 30 AMP-ENV 693F 188 97
68FD 2 31 AMPLITUDE ENVELOPE= 2 6941 18 99
68FE 5 32 NO OF SECTIONS =5 6942 100 100
68FF 2 33 STEP COUNT =2 6944 83 102
6900 5 34 STEP SIZE =5 6946 18 104
6901 1 35 PAUSE TIME =1 6947 20 105
6902 1 36 STEP COUNT =1 6949 83 107
6903 5 37 STEP SIZE =5 6948 18 109
6904 1 38 PAUSE TIME =1 694C 60 110
6905 1 39 STEP COUNT =1 694E 123 112
6906 0 40 STEP SIZE =0 6950 18 114
6907 5 41 PAUSE TIME =5 6951 20 115
6908 4 42 STEP COUNT =4 6953 246 117
6909 255 43 STEP SIZE = 255 6955 14 119
690A 1 44 PAUSE TIME =1 6956 164 120
690B 3 45 STEP COUNT =3 6958 14 122
690C 254 46 STEP SIZE = 254 6959 90 123
690D 5 47 PAUSE TIME =5 6958 18 125
690E 6 48 AMP-ENV 695C 100 126
690F 4 49 AMPLITUDE ENVELOPE= 4 695E 56 128
6910 1 50 NO OF SECTIONS =1 6960 18 130
6911 1 51 STEP COUNT =1 6961 20 131
6912 0 52 STEP SIZE =0 6963 56 133
6913 100 53 PAUSE TIME = 100 6965 18 135
6914 7 54 TONE-ENV 6966 100 136
6915 255 55 TONE ENVELOPE = 255 6968 188 138
6916 3 56 NO OF SECTIONS =3 696A 18 140
6917 2 57 STEP COUNT =2 6968 20 141
6918 2 58 STEP SIZE =2 696D 188 143
6919 2 59 PAUSE TIME =2 696F 18 145
691A 4 60 STEP COUNT =4 6970 100 146
691B 254 61 STEP SIZE = 254 6972 83 148
691C 2 62 PAUSE TIME =2 6974 18 150
691D 2 63 STEP COUNT =2 6975 20 151
691E 2 64 STEP SIZE =2 6977 83 153

58

PAUSE TIME
AMP-ENV

2

AMPLITUDE ENVELOPE= 3

NO OF SECTIONS
HARDWARE ENVELOPE
ENVELOPE SHAPE
ENVELOPE PERIOD
STEP COUNT

STEP SIZE

PAUSE TIME
CALL-CHANNEL

ISSUE ON A
RENDEZVOUS WITH B
RENDEZVOUS WITH C
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-CHANNEL

ISSUE ON A
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL—TONE-PERIOD
TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD

2
138
1422
1

0
20

100
568

20
568

100
956
956

100
851

20
851

60
379

20
758

676
602

100
568

20
568

100
956

20
956

100
851

20
851

CALL-TONE-PERI0D
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD

CALL- TONE PERIOD
TONE PERIOD

CALL- TONE DURATION
DURATION =
TONE PERIOD =568
CALL-TONE-DURATION
DURATION =20
TONE PERIOD =
CALL-TONE-DURATION
DURATION =
TONE PERIOD =956
CALL-TONE-DURATION
DURATION =20
TONE PERIOD =
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION =20
TONE PERIOD =851
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION =20
TONE PERIOD =
CALL-TONE-DURATION
DURATION =60
TONE PERIOD =568
CALL-TONE-PERIOD

TONE PERIOD =638
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION =20
TONE PERIOD
CALL-TONE-DURATION
DURATION =40
TONE PERIOD =956
CALL-TONE-DURATION
DURATION —20
TONE PERIOD
CALL-TONE-DURATION
DURATION —40
TONE PERIOD
CALL-TONE-DURATION
DURATION =20
TONE PERIOD =379
CALL-TONE-DURATION
DURATION =
TONE PERIOD =956
CALL-TONE-DURATION
DURATION =60
TONE PERIOD =568
CALL-TONE-DURATION
DURATION

TONE PERIOD

JUMP
PC ADDRESS

=379
=758
=716
=676
=638

=851

=379

=80
=379

=175

59

CHANNEL B

67F2
67F4

1
2

142
0

0
60
1

OO UTAW

=

WAIT-SOUND

ISSUE_ ON B

AMPLITUDE ENVELOPE= 2
TONE ENVELOPE 1
TONE PERIOD 142
NOISE PERIOD 0
INITIAL VOLUME 0
DURATION 60
CALL-CHANNEL

ISSUE ON B

RENDEZVQUS WITH A
RENDEZVOUS WITH C
CALL-AMP-ENV
AMPLITUDE ENVELOPE= 4
CALL-TONE-DURATION

DURATION 40
TONE PERIOD 119
CALL-CHANNEL

ISSUE ON B

CALL-AMP-ENV
AMPLITUDE ENVELOPE= 2
CALL-TONE-DURATION

DURATION 20
TONE PERIOD 119
CALL-TONE-DURATION
DURATION 60
TONE PERIOD 142
CALL-TONE-DURATION
DURATION 40
TONE PERIOD 159
CALL-TONE-DURATION
DURATION 20
TONE PERIOD 190
CALL-TONE-DURATION
DURATION 40
TONE PERIOD 213
CALL-TONE-DURATION
DURATION 20
TONE PERIOD 239
CALL-TONE-DURATION
DURATION 60
TONE PERIOD 213
CALL-TONE-DURATION
DURATION 40
TONE PERIOD 213
CALL-TONE-DURATION
DURATION 20
TONE PERIOD 239
CALL-TONE-DURATION
DURATION 40
TONE PERIOD 213
CALL-TONE-DURATION
DURATION 120
TONE PERIOD 190
CALL-TONE-DURATION
DURATION 20
TONE PERIOD 119

6845

18

CALL—TONE-DURATION
DURATION

TONE PERIOD
CALL—TONE-DURATION
DURATION

TONE PERIOD
CALL—TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

60
142

40
159

20
190

40
213

20
239

40
213

20
239

40
213

180
190

20
80

60
95

40
106

20
127

40
142

20
159

60
142

142

40
142

80
127

60
142

159

40
190

20

CHANNEL C

6FOF

6F11
6F12

60

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD

JUMP
PC ADDRESS

WAIT-SOUND

ISSUE ON C
AMPLITUDE ENVELOPE=
TONE ENVELOPE *
TONE PERIOD

NOISE PERIOD
INITIAL VOLUME
DURATION
CALL-AMP-ENV
AMPLITUDE ENVELOPE=
CALL-CHANNEL

ISSUE ON C
RENDEZVOUS WITH A
RENDEZVOUS WITH B
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-AMP-ENV
AMPLITUDE ENVELOPE=
CALL-CHANNEL

EONC
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURAT!ON

213

40
239

20
284

40
213

20
190

40
237

60
284

80
150

11

60

60
71

40
80

20
95

40
106

DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION

20
119

60
106

40
106

20
119

40
106

120
95

20
60

60
71

40
80

20
95

40
106

20
119

40
106

20
119

40
106

180
95

20
60

60
71

40
80

20
95

40
106

20
119

DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-PERIOD
TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD
CALL-TONE-DURATION
DURATI ON

TONE PERIOD
CALL-TONE-DURATION
DURATION

TONE PERIOD

JUMP

PC ADDRESS

60
106

40
106

20
119

40
106

80
95

60
71

80

40
95

20
106

40
119

20
142

40
106

20
95

40
119

60
142

80
119

1

TRACKING SPRITES

Sound handling and tracking sprites are the two most difficult to use facilities of Laser BASIC and we
do notrecommend tackling them until you have gained a fairly good familiarisation with the package.
Tracking sprites in particular haveonly modestcrash protection and itis usuallyverydifficultfor usto
provide answers to technical queries arising from their use or misuse. Having said all that, if you do
spend the time and effort then the results can be very satisfying indeed. Inthisfinal part of "GETTING
STARTED" we’'ll look at a few examples of the use of tracking sprites.

A tracking sprite , in this context, is a sprite which contains a program that is used to control the
movement of a graphics sprite or sprites. The internal format is described in the section “The Laser
BASIC commands in detail". Since tracking sprites are normally used to move sprites around
predetermined tracks it is normally required to start by physically putting a sprite onto the screen in
the same way as PTXR for example, is normally used before XMOV or XBNC. This is normally carried
out with the TPUT command which as well as physically placing the image onto the screen also
initialises some of the trackers internal parameters. The tracker maintains its own record of where it
last placed a sprite and which sprite it last placed as well as what type of ‘PUT’ it is using and
whereabouts within itself it is executing. All of these parameters can be set up with POKE's but itis
probably easier to set them up with a TPUT.

In this first example we’ll set up a very simple tracking sprite that just bounces a sprite around a
predefined window and loops within itself. Type "NEW" to clear the current program and then enter
and RUN the following:

5 ' EXAMPLE QF TRACKING SPRITES

10 X7.=0:Y7.=0: ISPN,40: IISPR, 3X7.,3X7.,3X7.,3Y7.

20 DATA 2,0,4,4,181,162,0,0

30 FOR 17.=Y7.45 TO Y7.+12 :READ X7..POKE 17.,X7.sNEXT 17

40 ISET,4:!KEY,51:ISPN,51 :ICOL,0 :IROW,75::HGT,50:ILEN,80::BW ST
50 IHGT,4:ILEN,2 :ICOL,40 ::RDW ,100:!SP1,46::SP2,47:I1SP3,48:iSP 4,49
60 ISET,0sICOL,40:!ROW,100:!KEY,40 :ISPI,46:1SCLS :ITPUT,1

70 !'TMO0V,1000,1

Sprite 46 should appear at column 15, row 25.

Line 10 Initialises X% and Y% and then interrogates sprite 40 to find its starting address which is
assigned to Y%. Sprite 40 is 13 bytes in length.

Line 20 Data for the sprite tracking program.

Line 30 POKEs in the tracking sprite program. The first five bytes of sprite 40 are utilised by the
tracker program itself and the data has the following significance:

1st byte =2 This is the move type - XOR

2nd byte =0 This is the first byte of the program and tells the tracker that the next byte
is to be a control code.

3rd byte =4 This code tells the tracker that the next byte will be a SET number and the
next two bytes after that, the address of a Laser BASIC command.

4th byte =4 This is the SET, which is SET 4.

5th byte =181 These two bytes are the execution address of

6th byte = 162 the Laser BASIC command XBNC and were obtained using ADDR (see
the section on compiler related commands).

7th byte =0 This again tells the tracker to expect a control code.

8th byte =0 This control code tells the tracker to execute the first instruction. Since
there is only one other instruction (the ‘XBNC’)this meansthatthe tracker
will loop back and execute an 'XBNC' on every invocation.

Line 40 Since the XBNC command uses data in SET 4 itis required to assign the necessary values
to all the relevant variables. We're going to start the track at column 15 and row 25 with
sprite 46 so these and all the othervariables as well as a bounce window are set up in this
line and line 50.

Line 60 This line sets the column and row to launch at, sets the tracker number in KEY, tells the
tracker that the first sprite to be put will be 46 and then launches the sprite with aTPUT. The
“1" following the TPUT tells the tracker that the first instruction to execute has a program
counter value of 1 i.e the first instruction after the 'type’ byte.

62

This program sets up the tracking sprite and launches itto tne screen, what we need to do now is to
execute the track itself so lets add a line at 60 which will execute the track in a machine code loop.
Don't clear the program in memory but just type:

70| TMOV,1000,1
This will execute 1000 times with flyback synchronisation. To execute just type "RUN".

Let's move on now to a second example. This time we'll move a sprite around the screen under
joystick or keyboard control and set collision detection on. Clear the last example by typing "NEW"
then enter the following:

5 ' EXAMPLE OF TRACKING SPRITES Il

10 X7.=0:Y7.=0: !'SPN,41: IISPR, 3X7.,3X7.,3X7.,3Y7.

20 DATA 206,50,2,8,0,0

30 ISET,0

40 FOR 17.=Y7.+5 TO Y7.+10:READ X7..POKE 7. X7.:NEXT 17.
50 ICOL,15:IRO0OW ,25:'1KEY ,41:!SPI,50:!ITPUT,1

60 A*="TMOVA#": IISET,3A*:'IRUN,0

70 GOTO 70

Line 10 Initialises X% and V% then assigns the start address of sprite 41 to V%.
Line 20 This contains the data for the tracking sprite program and which has the following
significance:

1st byte =206 This is the move type byte. The first two bits select the type of movement
which is 2 for exclusive-OR movement. The third bit tells the system
whether or not the sprite isjoystick/ keyboard controlled. Inthis case itis,
so bit three is set so this adds 4. Bits 4 to 6 tell the system the joystick or
keyrow, in this case the joystick so this adds 72 (If you do not have a
joystickyou could use48 6 =up5 =downR =leftT =right). Finally bit7is
set because collision is on which adds 128. Therefore:
Total =2 +4 +72 + 128 =206
or2+4 +48 + 128 =182
2nd byte =50 This is the number of the sprite we're moving.
3rd byte =2 Size of X-increment.
4th byte =8 Size of V-increment.
5th byte =0 Control code coming next.
6th byte =0 Run from start.
Line 30 Selects set 0.
Line 40 POKEs the data into the tracking sprite.
Line 50 Launches the sprite at column 15, row 25.
Line 60 Sets the tracker running under interrupts using SET 0.
Line 70 Endless loop to prevent return to command mode. In command mode the keys
codes/joystick control codes would be printed to the screen.

In our third example we're going to set up two tracking sprites, one which will move in a clockwise
square and one which will move in an anticlockwise square.

10 ' EXAMPLE OF TRACKING SPRITES 111

20 DEFINT A-Z

30 ISCLS

40 UP=248:DN=8:LT=254:RT=2

50 X7=0:Y7.=0

60 ISPN,42: i ISPR,3X7.,3X7.,3X7.,3Y7.:POKE Y7.+5,2: Y7.=Y7.4+6
70 C=0:R=0:S=52

80 C=RT:R=0:FOR N=1 TO17:GOSUB 250:NEXT N

90 C=0:R=DN:FOR N=1 TO9 :GOSUB 250:NEXT N

100 C=LT:R=0:FOR N=1TO 17:GOosuB 250:NEXTN

110 C=0:R=UP:FOR N=1 TO9 :GOSUB 250:NEXT N

120 C=0:R=0:5S=0:G0SUB 250

130 ISPN,43: !'ISPR,3X7.,3X7.,3X7,3Y7.:POKE Y7.45,2:Y7.=Y7.+6
140 C=0:R=0:S=52

150 C=0"R=DN:FOR N=1 TO 9 :GOSUB 250:NEXT N

160 C=RT:R=0:FOR N=1 TO 17:GOSUB 250:NEXT N

170 C=0:R=UP:FOR N=1 TO 9 :GOSUB 250:NEXT N

180 C=LT:R=0:FOR N=1 TO 17:GOSUB 250:NEXT N

190 C=0:R=0:S=0:G0OSUB 250

63

191 LOCATE 1,18:FOR N=1 TO 4:PRINT" LASER BASIC FROM OCEAN |.Q .":NEXT N
200 !SET,0:!COL,0 ::ROW ,100:!KEY,42::SP1,52::TPUT,1

210 !TMOV,520,1

220 !SET,0:!COL,40: IROW, 100: {KEY,43: !SPI,52: /TPUT, 1

230 iTMOV,520,I

240 END

250 POKE YX,S:Y7.=Y7.+1: POKE Y'/.,C:Y7.=Y7.+1: POKE V/.,R:Y7.=YV.+1: RETURN

Line 20
Line 30
Line 40

Line 50
Line 60

Line 70
Line 80
Line 90
Line 100
Line 110
Line 120

Line 130

Line 191
Line 200
Line 210
Line'220
Line 230
Line 250

Declares all variables to be integer.

Clears the screen.

Sets up four constants which correspond to the X and Y increments for up and down, left
and right. Note that 248 is -8 and 254 is -1.

Initialises X% and Y%.

Interrogates sprite 42 (the tracker) to find its start address then POKEs the move type byte
with 2 (exclusive-OR movement). The data pointer (Y%) isthen incremented to point to the
first program byte.

Initialises C (X increment), R (Y increment) and S (sprite number).

POKEs 17 instructions into the tracker which moves it 17 characters to the right.

POKEs 9 instructions into the tracker which moves it 9 characters downwards.

As line 80 but movement is left.

As line 90 but movement is upward.

POKEs 3 bytes (only the first 2 are used) which tells the tracker to loop back to the start of
the tracker program.

This line, together with 140,150,160,170,180 and 190 do the same thing as lines 70 to 120
but this time an anticlockewise track is generated.

Prints some text onto the screen.

Launches the first tracker.

Executes the whole track 10 times.

Launches the second tracker.

Executes the second track 10 times.

Subroutine which POKEs the data into the tracker. The first byte is the sprite number, the
second is the X-increment and the third is the Y-increment.

The final example in this section combines trackers from the previous three examples so you will
need to execute those examples before attempting this one.

5 ' EXAMPLE OF TRACKING SPRITES IV

10 ISET.,4

20 IKEY,51:/HGT,4:ILEN,2 :ICOL,0 :IROW ,75:ISP|,46:iSP2,47:iSP3,48:1SP 4,49
30 ISET,0

40 1SCLS

50 X7.=

0:Y7.=0

60 ISPN,44: lISPR,5>X7.,3X'.,3X7.,3Y7.

70 FDR N=0 TO 18: READ A:POKE Y7.+N,A:NEXT N

80 ISPN,45: I ISPR,3X7.,3X7.,3X7.,3Y7..TGT=Y"'/.+3

90 FOR N=0 TO 6 :READ A:POKE Y7.+N,A:NEXT N

100 !SPN.42: IISPR,3X7.,3X7.,3X7.,S>Y7.

110 POKE Y7.+162,0:POKE Y7+163,IPOKE Y7+164,43

120 !SPN.43: 1ISPR,3X7.,3X7.,3XX,3Y7.

130 POKE YY7.+162,0: POKE Y/7+163, lPOKE Y7.M64,42

140 ISPN,44:ICPUT

150 ISPN,45

160 iCM OV, I I:IF PEEK(TGT)<>0 THEN PRINT CHR*<7):LOCATE 1,1
170 GOTO 160

180 DATA 40,0,75,46,1,0,41,15,25,50,1,0,42,0,100,52,1,0,0
190 DATA 42,0,41,0,40,0,0

Linel0
Line 20
Line 30
Line 40
Line 50
Line 60
Line 70

Line 80

SelectsSET4.

Sets the information in SET 4 which will be used by the bouncing sprite in tracker 40.
Selects SET 0.

Clears the screen.

initialises X% and Y%.

Interrogates sprite 44 and assigns the start address to Y%.

POKEs the 19 bytes of data that will launch the 3 trackers. There are six bytes for each
sprite to be launched (see CPUT) and one delimiter.

Interrogates sprite 45 and assigns the start address to Y%. The address of the second

64

Line

Line
Line

Line
Line

Line
Line
Line

Line
Line
Line

This

90

100
110

120
130

140
150
160

170
180
190

sprite's collision detection address (see CMOV) is assigned to TGT.

POKEs the 7 bytes of data that will control the 3 trackers. There are two bytes for each
sprite to be controlled and a delimiter (see CMOV).

Interrogates sprite 42 and assigns the value to Y%.

Adjuststhe end oftracker 42 sothat instead of simply looping round, control jumps to the
start of tracker 43.

Interrogates sprite 43 and assigns the value to Y%.

Adjusts the end of tracker 43 so that instead of simply looping round, control jumps to the
start of tracker 42. Thus control will loop around 42 and 43.

Launches the 3 trackers.

Selects sprite 45 (to execute the CMOV).

Executes the controller and then checks to see ifthe joystick controlled sprite collided with
any other screen image, if so then a sound is made.

Loops back to 160.

Data for the CPUT.

Data for the CMOV.

concludes the section on Tracker sprites and the "GETTING STARTED" example programs.

65

LASER BASIC EXTENDED COMMANDS IN DETAIL

SPRITE UTILITIES

Command
SSPR,el,e2

Parameters
el

e2

Example:

Command
DSPR

Parameter
SPN

Command
ESPR

Parameter
SPN

Command
CSPR

Parameter

SPN
HGT
LEN

NOTE:

Command
RSPR,el

Action

Sets up sprites. This command needs to be executed before any sprite
operations can be carried out. The firstexpression, el,tells the system what the
maximum sprite number is, and hence, how much table space to allocate. The
table will allocate 4 bytes for each sprite and 4 bytes for sprite 0. The second
expression, e2, tells the system the address of sprite space, and the table and
sprites will expand downwards from that address. Any existing sprites are
destroyed.

Use

BASIC expression which gives the maximum sprite number which the user can
utilise. Ifasprite number is used with a valuegreater than el,then ** SPN TOO
HIGH ** will be displayed. If the value of the expression is 0 then ** SPN OF
ZERO ** will bedisplayed. In both cases, no action will betaken. Infactel must
be in the range 1 to 255.

This BASIC expression tells the system the lowest protected byte of memory.
Sprites will build down from the first byte below that address.

SSPR,7,&7000 will make the maximum sprite number 7, and the top of sprites
equal to 6FFF hex.
Action

Delete the sprite whose number is held in SPN. The sprite table entry is cleared,
the sprite data deleted and sprite space is contracted upwards. Ifthe sprite was
not previously defined then ** SPN DOESN'T EXIST ** will be displayed.

Use

Number of sprite to be deleted.

Action

Increase/decrease maximum sprite number and expand/contract sprite space.
Ifthe new maximum is lowerthan the old maximum then all existing sprites with
numbers greater than the new sprite maximum are deleted.

Use

New maximum sprite number.

Action

Create a sprite with the number held in SPN and dimensions held in HGT and
LEN. Sprite space extends down. Ifthe sprite already exists then ** SPN EXISTS
** will be displayed.

Use

Number of sprite to be created.
HGT in pixels of new sprite.
Width in bytes of the new sprite.

Each byte will be 4 pixels wide in 4 colour mode and 2 pixels wide in 16 colour
mode.
Action

Relocate sprite space by the signed increment, given by the BASIC expression
el. A positive value will move sprites to higher memory, and a negative
expression will move sprites to a lower address. This command will very rarely
be used.

66

Parameters
el

Command
PSPR,@V$

Parameters
@Vvs

Example:

Command
GSPR,@QV$

Parameter
@Vvs$

Example:

Command
MSPR,@V$

Parameter
@Vv$
Note:

Command
RNUM

Parameters

SP1
SP2

Use

BASIC expression which gives the size and direction of the relocation.

Action

Puts sprites to tape or disk. The filename must be held in a string variable and
must be in the form "NAMESPR” . In fact three files are saved. The first file
contains the system variables SMAX, STAB, SPST and SPND which contain the
maximum sprite number, start of table, start of sprite data and end of sprite data
respectively. If"SPR” is not found as the last 3 characters of the filename then **
ILLEGAL FILENAME ** is displayed. Filenames must be typed in upper case.

Use

The address of the 3 byte descriptor for the filename under which the three files
"NAMESYS”,"NAMETAB" and “NAMESPR" are to be saved.

A$="TESTSPR" followed by PSPR,@A$ will create three files:
“TESTSYS" The current system variables

"TESTTAB" The sprite table

'TESTSPR" The actual sprite data

Action

Gets sprites from tape or disk. The filename is again held in a string and the last 3
characters must be "SPR" or the last 7 chracters mustbe "SPR.BAK".The three
files are loaded and the sprites are positioned where they were saved from.
Filenames must be typed in upper case. Tape prompts are suppressed.

Use
The address of the 3 byte descriptor for the filename of the files to load.

A$="TESTSPR" followed by GSPR,@A$ will load the three files:
“TESTSYS”,“TESTTAB" and "TESTSPR".

Action

Merge sprites from tape or disk. The filename specifier is the same as that
employed by PSPR and GSPR. The table of the file being loaded is merged with
the residentfile. Ifhowever, a sprite being loaded has an existing sprite number,
then an error is generated and no further action is taken. If this happens the
filename will be ofthe form “NAMETAB" and will need to be reassigned before a
second attempt.

If the tables are successfully merged and the highest sprite number being
loaded is less than or equal to the current maximum sprite number then the
sprite data is loaded and sprite space expanded downward to accomodate the
new sprites. MSPR can be used to effectively load sprites into an address other
than that from which they were saved. Filenames must be typed in upper case.
Tape prompts are suppressed.

Use

The address of the 3 byte file descriptor for the sprite to be merged.

If the ** OUT OF MEMORY ** error is generated you will need to re-set
MEMORY (Amstrad BASIC) and perform an MSET, to a lower address. This
applies to GSPR and MSPR.

Action

Renumber sprite SP1 (ifitexists) to become sprite SP2 (ifitdoesn'talready exist).
SP1 ceases to exist.

Use

Sprite to be renumbered.
New sprite number.

67

Command
ADNM

Parameter
SPN

Command

Action

Increment all existing sprite numbers by the value held in SPN. Errors will be
generated if this would cause a current sprite to exceed the maximum sprite
number. The value in SPN must be positive and non-zero.

Use

Holds the value by which all current sprite numbers are to be incremented.

Action

ISPR,@V1,@V2,@V3,@V4 Interrogate sprite detaiis. The following variables are assigned the

Command
MASK

Parameter
SPN

Command
RMSK

Command

DMSK

Parameter
SPN

Command
HRSP

respective system information:

V1 Start of sprite table (lowest address utilised by sprites).

V2 Start of sprite data.

V3 End of sprites (highest address utilised by sprites).

V4 Address of the data of the sprite whose number is held in SPN.

In addition to the above, HGT and LEN are setto the dimensions of the
sprite whose number is held in SPN. Ifthe sprite is found not to exist
then no error message is generated, butinstead SPN is setto zero and
the BASIC and grapnics variables are left unchanged.

Action

Create a masked sprite from an unmasked sprite. The move commands FMOV
and BMOV will allow sprites to move non-destructively in Front of, or Behind,
screen data. This is notan exclusive-OR operation butinstead provides the user
with a facility similar to that afforded by hardware sprites. The technique
employed involves generating a negative mask of pixel data and creating a
sprite with alternating data and mask bytes. This means that the width of the
displayed sprite is half the physical size of the sprite. Thus any sprite to be
masked must have an even physical width or ** CANT MASK ** will be
displayed. Prior to masking, the data to be displayed, should occupy only the left
hand half of the sprite.

Masked sprites should only be used with the commands FMOV, BMOV, FMVJ,
BMVJ, FBNC, BBNC, FSWP, BPUT, BGET, RMSK, DMSK, MASK or utilised as
tracking sprites.

Use

The number of the sprite to be masked.

Action

Re-create a masked sprite from a sprite which has previously been masked but
needs re-masking. This would be the case if a sprite had been moved behind
screen data and was then required to move in front of screen data.

Action

De-mask a previously masked sprite and re-create the pixel data in the left hand
half. The right hand half will be cleared.

Use

The number of the sprite to be de-masked.

Action

Create hi-res sprite pair. When the software is put into 160 column mode, the
column resolution can be effectively halved. This is achieved by dividing the
column value by 2 and adding the remainder(1 or0) to the sprite numberand this
is carried out automatically after execution of CLHI and continues until the
system is returned to 80 column mode using CLLO. The action of HRSP then, is
to produce a new sprite, with sprite number, 1 greater than the specified sprite.
This new sprite is identical to the specified sprite but the data is scrolled by a half
byte (2 pixels in 4 colour mode or 1 pixel in 16 colour mode). If sprite SPN+1
already exists then an error results.

68

IMPORTANT NOTE:

MASK, RMSK, DMSK and HRSP test the mode flag before execution. Ifthe operation is to be carried
out on 4 colour data then ONHI MUST be executed before any of the former. If the operation is to be
carried out on 16 colour data then ONLO MUST be executed before any of the former.

Parameter
SPN

NOTE:

Command
FREE,@V1

Parameter

V1

Command
MSET,el

Parameter

el

Use

The number of the sprite to be paired.

The sprite to be paired should not contain any data in the rightmost half column
as this will be wrapped into the leftmost

half column of the target sprite.

Action

Test the amount of free sprite space and assign the resultto V1.This command
is provided to interrogate the amount of free space available for sprites, and
returns the result into the variable V1.

Use

The amount of free sprite space is returned to the BASIC integer variable V1.

Action

Set MBOT. This tells the system the lowest free byte available for sprites and
workspace and should be set to HIMEM + 1 each time BASIC's MEMORY
command is executed.

Use

The value of the expression el is assigned to the system variable el.

PARAMETER RELATED COMMANDS

Command
SET,el

XCL,el

IK1,el

IK2,e1l

COL,el

ROW,el

LEN,el

HGT,el

Action

The value of the expression el is assigned to the graphics variable SET. The
value for the expression must be in the range 0 to 15 and is used to select one of
the 16 sets of graphics variables.

The value of the expression el is assigned to the graphics variable XCL. The
value must be in the range 0to 319 and is used by the FILL command to give the
X-coordinate of the point at which to begin FILLing.

The value of the expression el is assigned to the graphics variable IK1. The
valuemust be in the range 0 to 15 and is used to setthe INK number for the FILL,
STCV and SETV commands.

The value of the expression el is assigned to the graphics variable 1K2. The
valuemust be in the range 0 to 15 and is used to set the INK number forthe SETV
command.

The value of the expression el is assigned to the graphics variable COL. The
value must be in the range -128 to 255 and is used to define the screen column
for various operations.

The value of the expression el is assigned to the graphics variable ROW. The
value must be in the range -128 to 255 and is used to define the screen row (in
pixels) for operations.

The value of the expression el is assigned to the graphics variable LEN. The
value must be in the range -128 to 255 and isused variously to define the width of
screen windows, sprite windows, sprite dimensions and the X-incrementforthe
move commands.

The value of the expression el is assigned to the graphics variable HGT. The
value must be in the range -128 to 255 and is used in similar applications to LEN.

69

SPN, el

SP1,el

SP2,el

SP3,el

SP4,el

SCL,el

SRW,el

NPX, el

KEY,el

SETQ, 3V1
XCLQ,3V1
1K1Q,3V1
1K2Q,av1l
coLQ,avl
ROWQ,3V1
LENQ,3V1
HGTQ, avl
SPNQ,aVv1
spiQ,avi
SP2Q,aVvl

SP3Q,3V1

The value of the expression el is assigned to the graphics variable SPN. The
value must be in the range 1to 255 and is used to specifythe sprite numberina
variety of applications.

The value of the expression el is assigned to the graphics variable SP1. The
value must be in the range 1 to 255 and is used to specify one of two sprite
numbers in sprite to sprite operations or one offour sprite numbers in animated
sequences.

The value of the expression el is assigned to the graphics variable SP2. The
value mustbe in the range 1to255and isused inasimilarmannerto SP1 above.

The value of the expression el is assigned to the graphics variable SP3. The
value must be in the range 1to 255 and is used as one of four sprite numbers in
an animated sequence.

The value of the expression el is assigned to the graphics variable SP4. The
valuemustbeintherange 1to255and isusedasoneofthefourspritenumbers
in an animated sequence.

The value of the expression el is assigned to the graphics variable SCL. The
value must be in the range 0 to 255 and is used to specify the column of a sprite
window within a sprite or the screen column for the target of a rotation.

The value of the expression el is assigned to the graphics variable SRW. The
value must be in the range 0 to 255 and is used to specify the row of a sprite
window within a sprite or the screen row for the target of a rotation.

The value of the expression el is assigned to the graphics variable NPX. The
value must be in the range -128 to 255 and is used to specify the size (in pixels)
and direction by which to vertically scroll a screen window, sprite window or
whole sprite.

The value of the expression el is assigned to the graphics variable KEY. The
value must be in the range 0 to 79 and specifies amongst other thingsthe KEY to
be scanned for bythe KBFN command orthe key/joystick row to be scanned by
the FMVJ, BMVJ, XMVJ and WMVJ commands.

The value in the graphics variable SET is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable XCL is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable IK1 is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable IK2 is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable COL is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable ROW is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable LEN is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable HGT is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable SPN is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable SP1 is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable SP2 is assigned to the BASIC variable V1.V1
must be an integer variable.

The value in the graphics variable SP3 is assigned to the BASIC variable V1.V1
must be an integer variable.

70

SP4Q,3V1 The value in the graphics variable SP4 is assigned to the BASIC variable V1.V1
must be an integer variable.

SCLQ,3V1 The value in the graphics variable SCL is assigned to the BASIC variable V1.V1
must be an integer variable.

SRWQ,3V1 The value in the graphics variable SRW is assigned to the BASIC variable V1.V1
must be an integer variable.

NPXQ,3V1 The value in the graphics variable NPX is assigned to the BASIC variable V1.V1
must be an integer variable.

KEYQ,avl The value in the graphics variable KEY is assigned to the BASIC variable V1.V1

must be an integer variable.

EXXV Exchange foreground and background SET variables. Inorder to allow the user
to utilise locomotive BASIC’'s powerful EVERY and AFTER commands it is
necessary to be able to save the current value for SET and assign the new value
that the interrupt now requires. EXXV should be executed as the first and last
commands of all interrupt routines.

SWPS Swop the sprite numbers in SP2 and SP4. This command is provided so that the
order of an animation sequence can be reversed.

ASTV Assigns sprite data to current variable SET. The sprite should contain 20 bytes of
information and must have a height of 1 and a length of 20, otherwise a
parameter error will be issued.

Parameter Use

SPN Number of the sprite containing the data for variables.
SET The set to which the data should be assigned.

AVTS Assign the current variable set to the sprite whose number is held in SPN. The
sprite must have a height of 1and a length of 20, otherwise a parameter error will
be issued.

Parameter Use

SPN Number of the sprite which will contain data.

SET The set of variables to be assigned.

ESAV Exchange the current variable set with the data in the sprite whose number is

held in SPN. The sprite must have a height of 1 and a length of 20, otherwise a
parameter error will be issued.

Paramete r Use
SPN Number of the sprite containing the data to be exchanged.
SET The set of variables to be exchanged.

SYSTEM SWITCHES

ONLO Puts the hardware and software into 16colour mode. This should be executed instead of
BASIC's MODE command.

ONHI Puts the hardware and software into 4 colour mode. Again this replaces the use of BASIC’s
MODE command.

CLLO Puts the software into 80 column mode. Inthis mode column 79 is the rightmost column.

CLHI Putsthe software intol60column mode. Inthis mode, all GETsand PUTstreatthe screen
as being 160 columns wide and column 159 is the rightmost column. Note, however, that
for all other purposes the screen is still treated as having 80 columns and in particular,
windows defined for scrolling, mirroring etc., will still treat the screen as having 80
columns.

IMPORTANT NOTE:

When operations are carried out on sprites or sprite windows the ONHI and ONLO commands are
needed to inform the system thatthe mode has been changed BEFORE the operation is carried out. If,
forinstance, a 16 colour sprite is MASKed and the last switch used was ONHI, then the sprite will be
corrupted. 71

GROUP 1 GETs and PUTs

Group 1 GETs and PUTs are prefixed with GT and PT respectively. GET commands use a screen
window as their source of data and a spriteas their destination. PUTs use a sprite as their source and
the screen as their destination. Each command has one of six suffixes.

BL Data is block moved from source to destination and replaces the data previously held in the
destination.

OR Data from the source is ORed into the data currently held in the destination.
ND Data from the source is ANDed into the data currently held in the destination.
XR Data from the source is XORed into the data currently held in the destination.
BH Data from the source is placed behind data in the destination.

IF Data from the sourceis placed in front of data in the destination.

Ineach case, SPN is used to specify the sprite and COL and ROW are used to define the top left hand
corner ofa screen window. The dimensions ofthe window are the dimensions of the sprite and in the
event of the window overlapping the screen border, the operation takes place on the "on-screen’
portion of the window. If the sprite is wholly off screen no operation takes place but no errors are
generated.

For each of the twelve commands in Group 1:

Parameter Use

SPN The number of the sprite to be used.

coL The screen column of the window.

ROW The screen row of the window.

@V1i Used in collision detection (see next section).
Command Action

GTBL Block move screen window into sprite.

GTOR OR screen window into sprite.

GTN D AND screen window into sprite.

GTXR XOR screen window into sprite.

GTBH Place screen window data behind sprite data.
GTIF Place screen window data in front of sprite data.
PTBL Block move sprite into screen window.

PTOR ORspriteintoscreenwindow.

PTND AND sprite into screen window.

PTXR XOR sprite into screen window.

PTBH Place sprite data behind screen window data.
PTIF Place sprite data in front of screen window data.

Collision Detection

Each of the 12 commands in this group can be executed with or without collision detection. Ifany of
the commands in the group is executed without a following parameter then detection is flagged “off"
If the command is executed with the address of an integer variable as its single operand, then
detection is flagged "on”.Collision detection will slow the execution and should only be used when
necessary. Ifthe source data collides with the target data then the value in the BASIC variable is
incremented, but if not, remains unchanged.

Example: If the value of X% was set to 7 and the command PTBH,@ X% were executed.
then collision between the sprite and screen data would cause X% to be
incremented so that it subsequently held 8.

GROUP IIGETs and PUTs

Group I GETs and PUTs are prefixed with GW and PW respectively. The GET commands use a
screen window as their source of data and a sprite window as their destination. The PUTs use a
sprite window as their source and a screen window as their destination. Each command has one of
six suffixes:

BL Data is block moved from source to destination and replaces the data previously held in the
destination.

72

OR Data from the source is ORed into the data currently held in the destination.
ND Data from the source is ANDed into the data currently held in the destination.
XR Data from the source is XORed into the data currently held in the destination.
BH Data from the source is placed behind data in the destination.

IF Data from the source is placed in front of data in the destination.

Ineach case SPN is used to specify the sprite, SCLand SRW specify the column and row of the sprite
window within the sprite, COLand ROW specifythe column and row ofthe screen window and HGT
and LEN specifythe dimensions ofthe window. Thedimensions ofthe window will be reduced ifthe
window lies partially “off-sprite” or "off-screen”. Ifthe window is wholly “off-sprite” or "off-screen”
then no operation will take place, but no error message will be generated.

For each of the twelve commands in Group I

Parameter Use

SPN The number of the sprite to be used.

SCL Thespritecolumnofthewindow.

SRW The sprite row of the window.

CcoL The screen column of the window.

ROW The screen row of the window.

LEN The width of the window.

HGT Theheightofthewindow.

@Vvi Used in collision detection.

Command Action

GWBL Block move screen window into sprite window.

GWOR OR screen window into sprite window.

GWND AND screen window into sprite window.

GWXR XOR screen window into sprite window.

GWBH Place screen window data behind sprite window data.
GWI F Place screen window data in front of sprite window data.
PWBL Block move sprite window into screen window.

PWOR OR sprite window into screen window.

PWND AND sprite window into screen window.

PWXR XOR sprite window into screen window.

PWBH Place sprite window data behind screen window data.
PWI F Place sprite window data in front rlscreen window data.

Collision Detection

Collision detection for the Group Il commands works in exactly the same way as the previously
described Group lcommands. Ifno parameterfollowsthecommand then detection isoff, ifan integer
variable address follows the command then the variable will be incremented if collision takes place,
or remain unchanged if no collision is detected. Again detection will slow the operation of the
command.

GROUP Ill GETs and PUTs

Group Il GETs and PUTs are prefixed with GM and PM respectively. The GET commands use a
sprite window as their source of data and a whole sprite as their destination. The PUTs use a whole
sprite as their source and a sprite window as their destination. Each command has one of six
suffixes:

BL Data is block moved from source to destination and replaces the data previously held in the
destination.

OR Data from the source is ORed into the data currently held in the destination.
ND Data from the source is ANDed into the data currently held in the destination.
XR Data from the source is XORed into the data currently held in the destination.
BH Data from the source is placed behind data in the destination.

IF Data from the source is placed in front of data in the destination.

73

Ineach case SP1 is used to specify the whole sprite, SP2 specifies the sprite containing the window,
SCL and SRW specify column and row ofthe window in sprite SP2 and dimensions ofthe window are
the dimensions of sprite SP1.The dimensions of the window will be reduced of the values of SCL and
SRW cause sprite SP1 to overlap the borders of sprite SP2. If SP1 lies wholly "off-sprite” then no
operation will take place but no error will be generated.

For each of the twelve commands in Group Il

Parameter Use

SP1 The number of the whole sprite.

SP2 The number of the sprite containing the sprite window.
SCL Column of the sprite window in sprite SP2.

SRW Row of the sprite window in sprite SP2.

@Vv1 Used in collision detection.

Command Action

GHBL Block move sprite window into whole sprite.

GMOR OR sprite window into whole sprite.

GMND AND sprite window into whole sprite.

GMXR XOR sprite window into whole sprite.

GMBH Place whole sprite data behind sprite window data.
GMI F Place whole sprite data in front of sprite window data.
PMBL Block move whole sprite into sprite window.

PMOR OR whole sprite into sprite window.

PMND AND whole sprite into sprite window.

P MXR XOR whole sprite into sprite window.

PMBH Place sprite window data behind whole sprite data.
PMI F Place sprite window data in front ofwhole sprite data.

Collision Detection

Collision detection for the Group Il commands works in exactly the same way as the previously
described Group land llcommands. If no parameter follows the command then detection is off, if an
integer variable address follows the command then the variable will be incremented ifcollision takes
place or remain unchanged if no collision is detected. Again, detection will slow the operation ofthe
command.

IMPORTANT NOTE:

Ensure that ONLO and ONHI are used to put Laser BASIC into the correct mode before using 'GM' or
'PM' commands.

GROUP ISCROLLS AND WRAPS

Group Iscrolls and wraps are prefixed with SV and WV respectively. The scroll commands scroll data
without wrap and the wraps scroll data with wrap. Each command has one of six suffixes:

R1 Data moves right by 1 pixel. This is 1/320 ofthe screen width in 4 colour mode or 1/160 ofthe
screen width in 16 colour mode.

L1 Data moves left by 1 pixel. This is 1/320 ofthe screen width in 4 colour mode or 1/160 ofthe
screen width in 16 colour mode.

R4 Data moves right by 1 byte. This is 1/80 of the screen width in both modes. In4 colour mode
this represents a 4 pixel move and in 16 colour mode this represents a 2 pixel move.

L4 Data moves left by 1 byte. This is 1/80 ofthe screen width in both modes. In4 colourmodethis
represents a 4 pixel move and in 16 colour mode this represents a 2 pixel move.

R8 Data moves right by 2 bytes. This is 1/40 ofthe screen width in both modes. In4 colour mode
this represents an 8 pixel move and in 16 colour mode this represents a 4 pixel move.

L8 Data moves left by 2 bytes. This is 1/40 of the screen width in both modes. In4 colour mode
this represents an 8 pixel move and in 16 colour mode this represents a 4 pixel move.

Ineach case COL and ROW specify the column and row ofthe top left ofthe screen window and HGT
and LEN specify the dimensions ofthe window. The dimensions ofthe window will be adjusted ifthe
window lies partially "off-screen”. If the window is wholly "off-screen” then no operation will take
place but no error will be generated.

74

For each of the twelve commands in Group I

Parameter Use

coL Column of screen window.

ROW Row of screen window.

LEN Width of screen window.

HGT Height of screen window.

el Optional parameter to specify number of executions.
e2 Optional parameter to specify frame sync status.
Command Action

SVR1 Scroll screen window right, 1 pixel, no wrap.
SvL1 Scroll screen window left, 1 pixel, no wrap.
SVR4 Scroll screen window right, 1 byte, no wrap.
SVL4 Scroll screen window left, 1 byte, no wrap.
SVR8 Scroll screen window right, 2 bytes, no wrap.
SVL8 Scroll screen window left, 2 bytes, no wrap.
WVR1 Scroll screen window right, 1 pixel. with wrap.
uvLil Scroll screen window left, 1 pixel, with wrap.
WVR4 Scroll screen window right, 1 byte, with wrap.
WVL4 Scroll screen window left, 1 byte, with wrap.
WVR 8 Scroll screen window right, 2 bytes, with wrap.
WVL8 Scroll screen window left, 2 bytes, with wrap.

Repeated Execution

If any of the Group Iscrolls or wraps (or Group Il or lll scrolls or wraps for that matter) is executed
without any following parameters, then the command will simply execute once. If, however, the
command is followed by 2 expressions then the command will repetetively execute. The first
expression sets the number of times the command will execute. The second parameter specifies
whether the command will synchronise with frame-flyback or not. A zero value for the second
parameter causes the command to repeatedly execute without delay but a non-zero value causes
the execution tocommence 50 times a second (or multiples of 1/50 second period depending on the
execution time) and thus produces much smoother movement. If the command is followed by 1
parameter or more than 2 parameters then ** PARAMETER ERROR ** will be displayed.

GROUP I SCROLLS AND WRAPS

Group Il scrolls and wraps are prefixed with SS and WS respectively. The scroll commands scroll
data without wrap and the wraps scroll data with wrap. Each command has one of six suffixes:

R1 Data moves right by 1 pixel. This is 1/320 ofthe screen width in 4 colour mode or 1/160 ofthe
screen width in 16 colour mode.

L1 Data moves left by 1 pixel. This is 1/320 ofthe screen width in 4 colour mode or 1/160 ofthe
screen width in 16 colour mode.

R4 Data moves right by 1 byte. This is 1/80 of the screen width in both modes. In4 colour mode
this represents a 4 pixel move and in 16 colour mode this represents a 2 pixel move.

L4 Data moves left by 1 byte. This is 1/80 ofthe screen width in both modes. In4 colour mode this
represents a 4 pixel move and in 16 colour modethis represents a 2 pixel move.

R8 Data moves right by 2 bytes. This is 1/40 ofthe screen width in both modes. In4 colourmode
this represents an 8pixel move and in 16 colour mode this represents a 4 pixel move.

L8 Data moves left by 2 bytes. This is 1/40 of the screen width in both modes. In4 colour mode
this represents an 8pixel move and in 16 colour mode this represents a 4 pixel move.

Ineach case, SPN specifies the sprite to be scrolled or wrapped, so for each of the twelve commands
in Group I

Parameter Use

SPN Sprite to be scrolled or wrapped.

75

Command Action

SSR1

SSL1

SSR4
SSL4
SSR8
SSL8
WSR1
WSL1
WSR4
USL4
WSR8
WSL8

Scroll sprite right, 1 pixel, no wrap.
Scroll sprite left, 1 pixel, no wrap.
Scroll sprite right. 1 byte, no wrap.
Scroll sprite left, 1 byte, no wrap.
Scroll sprite right, 2 bytes, no wrap.
Scroll sprite left, 2 bytes, no wrap.
Scroll sprite right, 1 pixel, with wrap
Scroll sprite left, 1 pixel, with wrap.
Scroll sprite right, 1 byte, with wrap.
Scroll sprite left, 1 byte, with wrap.
Scroll sprite right, 2 bytes, with wrap.
Scroll sprite left, 2 bytes, with wrap.

Repeated Execution

Group Il scrolls and wraps can be repeatedly executed in exactly the same manner as previously
described for Group I repeated execution.

GROUP Il SCROLLS AND WRAPS

Group Nl scrolls and wraps are prefixed with SP and WP respectively. The scroll commands scroll
data without wrap and the wraps scroll data with wrap. Each command has one of six suffixes:

R1

L1

R4

L4

R8

L8

Data moves right by 1 pixel. This is 1/320 ofthe screen width in 4 colour mode or 1/160 ofthe
screen width in 16 colour mode.

Data moves left by 1 pixel. This is 1/320 ofthe screen width in 4 colour mode or 1/160 ofthe
screen width in 16 colour mode.

Data moves right by 1 byte. This is 1/80 ofthe screen width in both modes. In4 colour mode
this represents a 4 pixel move and in 16 colour mode this represents a 2 pixel move.

Data moves left by 1 byte. This is 1/80 ofthe screen width in both modes. In4 colour mode this
represents a 4 pixel move and in 16 colour mode this represents a 2 pixel move.

Data moves right by 2 bytes. This is 1/40 ofthe screen width in both modes. In4 colour mode
this represents an 8 pixel move and in 16 colour mode this represents a 4 pixel move.

Data moves left by 2 bytes. This is 1/40 of the screen width in both modes. In4 colour mode
this represents an 8 pixel move and in 16 colour mode this represents a 4 pixel move.

Ineach case SPN specifies the sprite containing the window to be scrolled, COL and ROW contain
the column and row at the top left of the window within the sprite, and LEN and HGT specify the
dimensions of the window. If the choice of COL and ROW causes the window to lie partially
“off-sprite” then the window dimensions are adjusted accordingly and if the window lies wholly
“off-sprite” then no execution takes place but no error message is generated.

Parameter Use

SPN

Number of the sprite containing the window.

coL Sprite column of the window

ROW Sprite row of the window.

LEN Width of the window.

HGT Height of the window.

Command Action

SPR1 Scroll sprite window right, 1 pixel, no wrap.
SPL1 Scroll sprite window left, 1 pixel, no wrap.
SPR4 Scroll sprite window right, 1 byte, no wrap.
SPL4 Scroll sprite window left, 1 byte, no wrap.
SPR8 Scroll sprite window right, 2 bytes, no wrap.
SPL8 Scroll sprite window left, 2 bytes, no wrap.
WPR 1 Scroll sprite window right, 1 pixel, with wrap.
WPL1 Scroll sprite window left, 1 pixel, with wrap.
WPR4 Scroll sprite window right, 1 byte, with wrap.
WPL4 Scroll sprite window left, 1 byte, with wrap.
UPRS8 Scroll sprite window right, 2 bytes, with wrap.
WPL8 Scroll sprite window left, 2 bytes, with wrap.

76

Repeated Execution

Group lll scrolls and wraps can be repeatedly executed in exactly the same manner as previously
described for Group land Il repeated execution.

GROUP IVSCROLLS AND WRAPS

These are the vertical scrolls and wraps, and each is suffixed with VN (Vertically NPX). The scroll
commands scroll without wrap and are prefixed with S, whilst the wraps scroll with wrap, and are
prefixed with W. There are three differenttypes (given by the second character in the name) and these
are:

Type V

Scrolling takes place on a screen window, where COL and ROW specify the screen position of the
window top left and HGT and LEN specify the window dimensions. The window parameters are
adjusted if it lies partially "off-screen™.

Type S

Scrolling takes place on the whole sprite whose number is held in SPN.

Type P

Scrolling takes place on a sprite window. The number of the spriteisgiven by SPN and the window is
specified by COL, ROW, HGT and LEN. The window is adjusted if it lies partially "off-sprite".

Command Action

SVVN The screen window is scrolled vertically by NPX pixels, without wrap.

WVVN The screen window is scrolled vertically by NPX pixels, with wrap.

Parameter Use

coL Screen column of window top left.

ROW Screen row of window top left.

LEN Width of screen window.

HGT Height of screen window.

NPX Size and direction of scroll in pixels (1/200 of screen height). Positive values

cause upward movement and negative values cause downward movement.

Command Action

SSVN The sprite is scrolled vertically by NPX pixels, without wrap.
WSVN The sprite is scrolled vertically by NPX pixels, with wrap.
Parameter Use

SPN Number of the sprite to be scrolled.

NPX Size and direction of scroll in pixels.

Command Action

SPVN The sprite window is scrolled vertically by NPX pixels, without wrap.
WPVN The sprite window is scrolled vertically by NPX pixels, with wrap.
Parameters Use

SPN Number of sprite to be scrolled.

CcoL Sprite column of window top left.

ROW Sprite row of window top left.

LEN Width of sprite window.

HGT Height of sprite window.

NPX Size and direction of scroll in pixels.

Repeated Execution

Group IV scrolls and wraps can be repeatedly executed in exactly the same manner as previously
described in Group I, land Il commands.

77

IMPORTANT NOTE:

Ensure that ONLO and ONHI have been executed correctly before carrying out any operations on
sprites or sprite windows.

TRANSFORMATIONS

A range of commands are included in the package which carry out various transformations on
sprites, sprite windows or screen windows. In each case oniy the window or the sprite itself is
affected, and there is no flow of data between the window or sprite being transformed and any other
windows or sprites. There are three data types (indicated by the command suffix) and these are:
Type V

Transformationstake place on a screen window where COL and ROW specify the screen position of
the window top leftand HGT and LEN specify the window dimensions. The window parameters are
adjusted if it lies partially “off-screen".

Type S

The transformation takes place on the whole sprite whose number is held in SPN.

Type P

The transformation takes place on a sprite window. The number of the sprite is given by SPN and the
window is specified by COL, ROW, HGT and LEN. The window is adjusted if it lies partially
“off-sprite".

GROUP ITRANSFORMATIONS

Group ltransformations are all type V and are carried out on screen windows. Each command is
suffixed with V. For the following commands in Group I

Parameter Use

coL Screen column of window top left.

ROW Screen row of window top left.

LEN Window width.

HGT Window height.

Command Action

CLSV Clear window to paper colour (INK 0).

MEXV X-expand left hand half of screen window into full screen window.

MGYV Y-expand top half of screen window into full screen window.

MIRV Mirror screen window about its vertical centre.

MORV Mirror left hand half of screen window into right hand half (creates a horizontally
symetric window).

FIPV Mirror screen window about its horizontal centre.

FOPV Mirror top half of screen window into bottom half (create a vertically symetric
window).

INVV Invert (1's compliment) all the pixel data in the screen window.

For the following commands in Group [

Parameter Use

CcoL Screen column of window top left.

ROW Screen row of window top left.

LEN Width of window.

HGT Height of window.

1K1 First INK colour.

1K2 Second INK colour.

Command Action

STCV Fill screen window with the INK whose number is held in IK1.

SETV Re-colour a window graphic. Replaces every pixel which currently has the

colour whose number is held in IK1, by a pixel which has the colour whose
number is held in IK2.
78

GROUP II TRANSFORMATIONS

Group Illtransformations are all type S and are carried out on whole sprites, and each command is

suffixed with S.

For the following commands in Group I

Parameter
SPN

Command

CLSS
MGXS
MGYS
MIRS
MORS

FIPS
FOPS

Use

Number of sprite to transform.

Action

Clear sprite to paper colour (INK 0).

X-expand left hand half of sprite into full sprite.

Y-expand top half of sprite into full sprite.

Mirror sprite about its vertical centre.

Mirror left hand half of sprite into right hand half (creates a horizontally symetric
sprite).

Mirror sprite about its horizontal centre.

Mirror top half of sprite into bottom half (creates a vertically symetric sprite).

For the following commands in Group Ik

Parameter

SPN
1K1
1K2

Command

STCS
SETS

Use

Number of sprite to be transformed.
First INK number.
Second INK number.

Action

Fill whole sprite with the INK whose number is held in IK1.

Recolour a sprite graphic. Replaces every pixel which currently has the colour
whose number is held in IK1, by a pixel which has the colour whose number is
held in IK2.

GROUP Il TRANSFORMATIONS

Group Il transformations are all type P and are carried out on a sprite window. Each command is

suffixed with P.

For the following commands in Group i

Parameter

SPN
CcoL
ROW
LEN
HGT

Command

CLSP
MGXP
MIRP
MORP

INVP

Use

Number of sprite to be transformed.
Sprite column of the window top left.
Sprite row of window top left.

Width of sprite window.

Height of sprite window.

Action

Clear sprite window to paper colour (INK 0).

X-expand left hand half of sprite window into full window.

Mirror sprite window about its vertical centre.

Mirror left hand half of sprite window into right hand half (creates a horizontally
symetric sprite window).

Invert (1's compliment) all the pixels in the sprite window.

For the following commands in Group I

Parameter

SPN
CoL
ROW
LEN
HGT
1K1
1K2

Use

Number of the sprite to be transformed.
Sprite column of window top left.
Sprite row of window top left.

Width of sprite window.

Height of sprite window.

First INK number.

Second INK number. ~

Command Action

STCP Fill sprite window with the INK whose number is held in IK1.

SETP Re-coloura spritegraphic. Replacesevery pixel which currently hasthecolour
whose number is held in IK1, by a pixel which has the colour whose number is
held in 1K2.

IMPORTANT NOTE:

Ensure that ONLO and ONHI have been correctly executed before carrying out any operations on
sprites or sprite windows.

DATA EXCHANGES

Three data exchange commands are provided which utilise MASKed sprites to allow data to be PUT
behind or in front of screen data, and which store the screen data inthe sprite so that the screen and
sprite can be returned to their former state.

Ineach case, SPN is used to specify the number of the MASKed spriteand COL and ROW are used to
define the top left hand corner of a screen window. The height of the window isthe height ofthe sprite
butthe width of the window is only half the width of the sprite. This is because of the internal format of
MASKed sprites (see MASK). Ifany of these commands is executed with a sprite which has not been
masked then the outcome is unpredictable. Ifthe window overlaps the screen border, the operation
takes place in the "on-screen" portion of the window. Ifthe window is wholly "off-screen" then no
operation takes place but no error is generated. Although the above description may sound rather
confusing, the effect of the operation is quite simple.

For each of the three commands:

Parameter Use

SPN The number of the masked sprite to use.

COL The screen column of the window.

ROW The screen row of the window.

@Vvi Used in collision detection.

Command Action

FSWP The masked sprite is placed in front of the screen data and the screen data is

lifted into the sprite. Note that executing a second FSWP atthe same COL and
ROW with the same masked sprite will return both the sprite and the screen to
their former states. If FSWP is not executed a second time, the sprite will be left
corrupted.

BPUT The masked sprite is placed behind the screen data and the screen data is lifted
into the sprite. This command does not do an exchange in the same way as
FSWP does and so BPUT should not be executed twice to restore the data
Instead, data is restored using a BGET.

BGET The masked sprite data that was placed behind the screen data by the BPUT
command is lifted back up into the sprite and the screen is restored to the state it
was in before the BPUT. Note that BPUT should always be followed by BGET or
the masked sprite will be left in a corrupted state.

NOTE: If a sprite is used in a BPUT-BGET sequence, then it cannot be used in a
FSWP-FSWP sequence unless the sprite is re-masked using RMSK.

Collision Detection

Data exchanges support collision detection in exactly the same manner as the GETs and PUTs

previously described.

UNEAR MOVE COMMANDS

There are four MOVE commands which allow a previously placed sprite to be moved from one
screen position to another. The only difference between them is the type of operation they use to
make the movement. All MOVE commands can be repeatedly executed and have a collision
detection option. All MOVE commands are suffixed with MOV.

80

Animation Sequences

The MOVE commands also provide a facility for animated movement and use the four graphics
variables SP1,SP2, SP3 and SP4 for this purpose. Each time a move command isexecuted, a check
is first made to ensure that either HGT or LEN are non-zero. Ifboth are in fact zero then no execution
takes place, nor is the animation sequence effected. Ifone or both of HGT and LEN are non-zero then
amovement will take place. At this stage itis assumed thatSP1 is the number of the sprite which was
previously PUT at the co-ordinates currently held in COL and ROW. This sprite is removed, the
increments HGT and LEN are added to COL and ROW, and sprite SP2 is PUT at the new COL and
ROW position. In addition to this, the old values for COL and ROW are replaced by the new values
(incremented values) and the four sprite numbers are rotated. That is to say that SP1 takes the value
SP2 held, SP2 takes the value SP3 held, SP3 takes the value SP4 held, and SP4 takes the value SP1
held. Ifa sprite is to be moved without animation then simply setSP1,SP2, SP3 and SP4 to contain the
same sprite number.

For each of the four MOVE commands:

Parameter Use

SP1 Sprite to be removed.

SP2 New sprite to be PUT.

SP3 Sprite to be PUT when SP2 is removed.
SP4 Sprite to be PUT when SP3 is removed.
coL Screen column of sprite to be moved.
ROW Screen row of sprite to be moved.

HGT Y-increment of movement.

LEN X-increment of movement.

@vi Variable address for collision detection.
el Number of times to execute the command.
e2 Frame-flyback synchronisation flag.
Command Action

FMOV Move and animate, in front of screen data. Note that before the first execution of

FMOV, the masked sprite needs to be PUT to the screen ready to be moved. This
can be achieved either by using FSWP (when SPN is the same as SP1) or by
moving from an “off-screen” position to an “on-screen” or partially "on-screen”
position. An FMOV sequence should be terminated either by executing another
FSWP with SPN equal to SP1, or by moving

“off-screen”.

FMOV,@V1 Move and animate as for FMOV, but this time collision detection is on, and the
integer variable V1 is incremented if collision
is detected.

FMOV,el,e2 Move and animate as for FMOV, el times, with flyback synchronisation if e2 is

non-zero, without flyback synchronisation if e2 is zero.

FMOV,@V1,1l,e2 Move and animate as for FMOV, with detection, el times, with or without flyback
synchronisation.

BMOV Move and animate, behind screen data. Note that before the first execution of
BMOV, the masked sprite needs to be PUT to the screen ready to be moved. This
can be achieved either by using BPUT (where SPN is the same as SP1) or by
moving from an "off-screen” position to an "on-screen" or partially "on-screen”
position. A BMOV sequence should be terminated either by executing a BGET
with SPN equal to SP1, or by moving "off-screen”. BMOV and BGET can only be
used with masked sprites and every sprite which has been “BMOVed" will need
to be re-masked before it can be "FMOVed".

BMOV,@V1 Move and animate as for BMOV, but this time collision detection is on and the
integer variable V1 is incremented if collision is detected.

BMOV,et,e2 Move and animate as for BMOV, el times, with flyback synchronisation if e2 is
non-zero, without flyback synchronisation if e2 is zero.

BMOV,@V1,el,e2 Move and animate as for BMOV, with detection, el times, with or without flyback
synchronisation.

81

XMOV Move and animate, using the exclusive-OR operation. Note that before the first
execution of XMOV, the non-masked sprite needsto be PUT to the screen ready
to be moved. Thiscan beachieved eitherby using PTXR (whereSPN isthe same
as SP1)or by moving from an "off-screen” position to an "on-screen" or partially
"on-screen" position. An XMOV sequence need not be terminated as the sprites
being used are not affected by the XOR operation. If, however, the sprite isto be
removed from the screen (without clearing the screen window) then this can be
achieved by executing another PTXR (with SPN equal to SP1), or by simply
moving "off-screen".

XMOV,@V1 Move and animate as for XMOV, but this time collision detection is on and the
integer variable V1 is incremented if a collision is detected.

XMOV,el,e2 Move and animate as for XMOV, el times, with flyback synchronisation if e2 is
non-zero, without flyback synchronisation if e2 is zero.

XMOV,@V1,1,e2 Move and animate as for XMOV, with detection, el times, with or without flyback
synchronisation.

WMOV Move and animate, using a block over-write operation. The block over-write
operation is a lot less sophisticated than the previous three MOVE types, but it
can be as much as ten times faster in its execution. When WMOV is executed itis
assumed that SP1 was PUT to the screen at the current COL and ROW. All
WMOV actually does is to add LEN and HGT to the current COL and ROW values
and PUT SP2 to these new co-ordinates. Forthis reason SP2 must have a blank
border (containing no data) which is atleastas large as the increments HGT and
LEN, so thatthe old sprite SP1 is completely blotted out by the placing ofthe new
sprite SP2. Clearly this would destroy any other screen data in the window being
used by SP2, butwhen a sprite is being moved over a blank background with no
other data present, this operation should always be used because of the
enormous time savings. The sprite can be removed from the screen using CLSV
or moving "off-screen”.

WMOV,@V1l Move and animate as for WMOV, but this time collision detection is on, and the
integer variable V1 is incremented if collision is detected. In fact there is little
point in using this option, as a detection is inevitable (SP1 is being blotted out
and detection does slow execution down considerably.

WMOV,el,e2 Move and animate asforWMOYV, el times, with flyback synchronisation ife2 is
non-zero, without flyback synchronisation if el is zero.

WMOV,@V1,l,e2 Move and animate as for WMOV, with detection, el times, with or withoutflyback
synchronisation. Again, the detection option is unlikely to be of use.

JOYSTICK/KEYBOARD MOVE COMMANDS

There are four commands in this group and each allows a previously placed sprite to be moved from
one screen position to another under keyboard or joystick control. As with the previously detailed
MOVE commands, the only difference between them is the type of operation used to carry out the
movement. The four commands in this category can be repeatedly executed and have a collision
detection option. All joystick/keyboard MOVE commands are suffixed with MVJ.

Animation Sequences

TheJ/K(joystick/keyboard) MOVE commands provide exactly the same animation facilities as the
previously described linear MOVE commands. If the joystick/keyboard is not activated then the
movement routines are effectively handed zero values for the X and Y increment and no movement
takes place. This means that the animation sequence does notincrement either and thisprevents the
animation being out of step.

For each of the four commands:

Parameter Use

SP1 Sprite to be removed.

SpP2 Next sprite to be PUT.

SP3 Sprite to be PUT when SP2is removed.
SP4 Sprite to be PUT when SP3is removed.
coL Screen column of sprite to be moved.

82

ROW
HGT
LEN
@Vv1
el

e2
KEY

Screen row of sprite to be moved.

Y-increment of movement.

X-increment of movement.

Variable address for collision detection.

Number of times to execute command.

Frame-flyback synchronisation flag.

Physical row to poll for movement (see "GETTING STARTED").

Joystick/Keyboard Control

If the joystick/keyboard is not activated, no operation takes place.

If the joystick/keyboard is activated left, the sprite will move left by the value held in LEN. If LEN is
negative it will actually move right. If LEN is zero it will not move or animate.

Ifthe joystick/keyboard is animated right, the sprite will move right by the value held in LEN. IfLEN is
negative is will actually move left. If LEN is zero it will not move or animate.

Ifthejoystick/keyboard is activated upward, the sprite will move upward by thevalue held in HGT. If
HGT is negative it will actually move down. If HGT holds zero it will not move or animate.

Ifthe joystick/keyboard is activated downward, the sprite will move downward by the value held in
HGT. If HGT is negative it will actually move upward. If HGT holds zero it will not move or animate.

Combinations ofthe above will cause diagonal movement.

Command
FMVJ

FMVJ,@V1

FMVJ,@V1,el,e2

BMVJ

BMVJ,@V1

BMVJ,@V1,el,e2

XMVJ

XMVJ,@V1

XMVJ,@V1,el,e2

WMVJ

WMVJ,@V1

Action

The same action as the linear move FMOV, i.e. animate in front of screen data,
but the direction of movement is under joystick/keyboard control.

The same action as the linear move FMOV,@ V1, i.e. animate in front of screen
data, with collision detection, but the direction of movement is under joystick/
keyboard control.

The same action as the linear move command FMOV,gV1 ,el,e2 ,i.e. animate in
front of screen data, el times, with or without flyback synchronisation. Direction
of movement is under joystick/keyboard control.

The same action as the linear move command BMOV, i.e. animate behind screen
data, but with the direction of movement under joystick/keyboard control.

The same action as the linear move command BMOV,@V1,i.e. animate behind
screen data, with collision detection, but with the direction of movement under
joystick/keyboard control.

The same action as the linear move command BMOV,gV1,el,e2 ,i.e. animate
behind screen data, el times, with or without flyback synchronisation. Direction
of movement is under joystick/keyboard control.

The same action as the linear move command XMOV, i.e. animate using the
exclusive-OR operation, but with the direction of movement under joystick/
keyboard control.

The same action as the linear move command XMOV,@ V1,i.e. animate using the
exclusive-OR operation, with collision detection, but with the direction of
movement under joystick/ keyboard control.

The same action as the linear move command XMOV,@V1,el,e2 ,i.e. animate
using the exclusive-OR operation, el times, with or without flyback synchronisa-
tion. Direction of movement is under joystick/keyboard control.

The same action as the linear move command WMOV, i.e. animate with the block
over-write operation, but with the direction of movement under joystick/
keyboard control.

The same action as the linear move command WMOV,@V1, i.e. animate using
the block over-write operation, with collision detection, but with the direction of
movement underjoystick/ keyboard control.

83

BOUNCING MOVE COMMANDS

There are four commands in this group and each allows a previously placed sprite to be 'bounced"’
within the confines of a pre-defined rectangular window. The window is set using the BWST
command which is described at the end of this section. Again, the difference between the four
commands in the group is the type of movement employed. Each command in this category can be
repeatedly executed and has a bounce detection option. All bouncing MOVE commands are suffixed
with BNC.

Animation Sequences

The bouncing MOVE commands use SP1, SP2, SP3 and SP4 to provide an animation option. The
‘frames' are rotated every time the command is executed unless the MOVE increments in HGT and
LEN are both set to zero, in this case no action is taken. When a 'bounce’ takes place, the animation
sequence is automatically reversed. If bounce detection is 'on’, then the user has the option to
‘re-reverse' the sequence using SWPS if a bounce is tested for and found to have occurred. I,
however, the sprite bounces simultaneously on two edges, the result of the two 're-reversals' will
cancel each other outand the animation sequence will not run in reverse. ltshould also be noted that
a double bounce will still only increment the collision detection variable by 1 and there is no way of
testing for a double bounce without examining the collision detection variable and SP2.

For each of the four commands:

Parameter Use

KEY Number of the sprite containing the bounce window parameters. Note that KEY
and not SPN is used.

SP1 Sprite to be removed.

SP2 Next sprite to be PUT.

SP3 Sprite to be PUT when SP2 is removed.

SP4 Sprite to be PUT when SP3 is removed.

coL Screen column of sprite to be removed.

ROW Screen row of sprite to be removed.

HGT Y-increment of movement.

LEN X-increment of movement.

@V1 Variable address for collision detection.

el Number of times to execute command.

e2 Frame-flyback synchronisation flag.

Command Action

FBNC The same action as the linear move FMOV, i.e animate in front of screen data, but

the direction of movement is subject to the bounce condition imposed by the
pre-defined bounce
window.

FBNC,@V1 The same action as the linear move FMOV,@ V1, i.e. animate in frontof screen
data,thistimewith bouncedetection,butdirection ofmovementissubjecttothe
bounce condition.

FBNC,@V1l,el,e2 The same action as the linear move FMOV,@V1,el,e2, i.e. animate in front of
screen data, with collision detection, el times, with or without fiyback synchron-
isation. Direction of movement is subject to bounce condition.

BBNC The same operation as FBNC, but movement is behind screen data.

BBNC,@V1 The S3me operation as FBNC,@ V1, but movement is behind screen data.

BBNC,@V1,1,e2 The same operation as FBNC,@V1 ,el,e2 but movement is behind screen data

XBNC The same operation as FBNC, but movement is acheived by the XOR operation

XBNC,@V1 The same operation as FBNC,gV1, but movement is acheived by the XOR
operation.

XBNC,@V1,1l,e2 The same operation as FBNC,@V1 ,el,e2, but movementis acheived by the XOR
operation.

WBNC The same operation asFBNC, but movementis acheived by the block over-write
operation.

84

WBNC,@V1 The same operation as FBNC,gV1, but movement is acheived by the block
over-write operation.

WBNC,@V1,el,e2 The same operation as FBNC,@V1,el,e2, but movement is acheived by the
block over-write operation.
BWST

An additional command is required to set up the window in which 'bouncers’ are constrained to
move. The command is detailed in this section as it is only applicable to this group of operations.

Parameter Use

KEY The number of the sprite which is to contain the window information.

coL The left hand column of the window. This is the furthest left the sprite will move.

ROW The top row of the window. This isthe lowest row value the sprite will take before
bouncing.

LEN This is the length of the window and is the horizontal distance the sprite will

move, as measured from COL, before bouncing. Note thatthe sprite size will not
affect the window size as itis the sprite co-ordinates which are constrained to
move within the window.

HGT This is the heightofthe window and is thevertical distance the sprite will move,
as measured from ROW, before bouncing.

Command Action

BWST Set up bouncing window data in sprite KEY. Note that the sprite containing the
data must have a height of 1and a length of 4 or a parameter error will be issued.

THE DATA SCANNING COMMANDS

Three commands are provided for scanning screen windows, sprites and sprite windows for pixel
data, and are complimentary to the collision detection facility. These can be used in conjunction with
the logical GETs and PUTs to facilitate collision detection and pattern matching. If, for instance, a
screen window iSANDed with a sprite, then the SCAN commands can be used to detect data which, if
present, indicates a collision. If a screen window is XORed with a sprite then again, the SCAN
commands can be used to detect data which, ifabsentindicates a pattern match. There are three data
types (indicated by the command suffix) and these are:

Type V

The scan takesplace over a screen window, where COL and ROW specify the screen position ofthe
window top left, and HGT and LEN specify the window dimensions. The window parameters are
adjusted if it lies partially “off-screen”.

Type S

The scan takes place over the whole sprite whose number is held in SPN.

Type P

The scan takes placeover a sprite window.The numberofthe sprite is given by SPN and thewindow
is specified by COL, ROW, HGT and LEN. The window is adjusted if it lies partially "off-sprite".

Parameter Use

CcoL Screen column of window top left.

ROW Screen row of window top left.

LEN Window width.

HGT Window height.

Vi Data detection variable.

Command Action

SCNV,@V1 The screen window is scanned for pixel data, and if found, the integer variable
V1 is incremented.

SUMV,@V1 The 16 bit sum of all the data in the screen window is formed and the result

assigned to the BASIC variable V1.

85

SUMV,el,
e2,..@V1

Parameter
SPN

V1
Command
SCNS,@V1

SUMS,@V1

SUMS,e1l,
e2,...@v1

Parameter

SPN
coL
ROW
LEN
HGT

Command
SCNP,@V1

SUMP,@V1

SUMP,el,
e2,...@Vv1

Again the 16 bit sum of all the data in the screen window is formed.
If more than one parameter is used however, the sum is compared with each
expression in the list and the position in the list of the first expression to match
the calculated sum is assigned to V1. If no match is found V1 is assigned 0. A
maximum of 8 parameters (including gV1) is allowed.

Use

The number of the sprite to be scanned.
Data detection variable.

Action

The sprite is scanned for pixel data, and if found, the integer variable V1 is
incremented.

The 16 bit sum of all the data in the sprite is calculated and the resultassigned to
the BASIC variable V1.

This command works in exactly the same way as the previously described
SUMV command except that the sprite whose number held in SPN is used
instead of a screen window.

Use

The number of the sprite containing the window to be scanned.
The column of the window top left.

The row of the window top left.

Width of sprite window.

Height of sprite window.

Action

The sprite window is scanned for pixel data, and if found, the integer variableV1
is incremented.

The 16 bit sum of all the data in the sprite window is formed and the result
assigned to the BASIC variable V1.

This command works in exactly the same way as the previously described
described SUMV and SUMS commands except that a sprite window is used as
data for the sumation.

MISCELLANEOUS COMMANDS

FILL

This command is provided to fill irregular shapes with a particular INK. The user must specify the
co-ordinates (in pixels) atwhich FILLing is to begin, and thenumber ofthe INK to FILL with. The area
that contains the colour of the pixel atthe chosen starting point will be filled with the indicated INK. In
4 colour mode the screen is 320 pixels wide, in 16 colour mode the screen is 160 pixels wide. In both
cases the screen is 200 pixels high. The FILL command makes extensive use of the machine stack
and if the object to be filled is particularly intricate the command may terminate before completing
with ** OUT OF MEMORY**. Forthisreason usethecommand with greatcare.Thecommand only
works with one data type and this is the screen.

Parameter
XCL

ROW

1K1

Command
FILL

Use

Pixel co-ordinate of starting point (0 to 319 in 4 colour mode or 0 to 159 in 16
colour mode) as measured from the left.

Pixel co-ordinate of starting point (0 to 199 in both colour modes) as measured
from the top of the screen.

INK number to fill with (0 to 3 or 0 to 15).

Action

The screen is filled from the starting point outward, bounded by pixels with a
colour different from the starting point, or the screen edges.

86

SPNV

The screen window, indicated by COL, ROW, HGT and LEN is rotated by 90 degrees into a window
whose dimensions are the transpose of the source window and whose top left is specified by SCL
and SRW. The windows are adjusted to lie "on-screen". The source and target windows should not
overlap or the results will be unpredictable, albeit spectacular!!! This command is provided for use
with screen data only. Note that the height of the window to be ‘SPUN" is rounded down to the nearest
8 pixels, i.e. HGTs of 25, 26, 27, 28, 29, 30 and 31 would all be rounded down to 24 - and so on.

Parameter Use

coL Screen column of source window top left.

ROW Screen row of source window top left.

HGT Height of window to be rotated. (Mod 8).

LEN Width of window to be rotated.

SCL Screen column of target top left.

SRW Screen row of target top left.

Command Action

SPNV The screen window is rotated by 90 degrees in the clockwise direction, into a

second screen window, with the transposed dimensions of the source window
and the top left specified by SCL and SRW.

KBFN,@V1

This command scansthe keyboard hardware (its BASIC equivalent scansthe table which is updated
on interrupt). Thus KBFN can beused to scan even ifthe interruptis disabled. The command KBFN is
followed by one parameter, which is the address of a BASIC integer variable V1. If the key whose
number is specified in the graphics variable KEY is pressed, V1 is incremented, otherwise it is
unchanged. Multiple key presses are thus enabled butifthree keys on one row are pressed then the
hardware may return a fourth as being pressed.

Parameter Use

KEY Number of key to be tested (see Appendix A).

Command Action

KBFN,@V1 Test the key whose number is held in KEY and increment V1 if it is pressed.
SCLS

Clear the whole screen to INK O (paper colour), home the cursor to the top left, set the screen to
window 0 with full width, and height 24 rows. The bottom row cannot be used by BASIC but all of the
graphics routines will utilise the whole screen. If the user changes the current window to be the
whole screen then hardware scrolling is enabled. Ifthis happensthen SCLS must be executed before
any of the extended graphics commands. SCLS has no parameters.

Command Action

SCLS Clear the screen, home the cursor, make the screen the current stream and
define a window with the width of the screen and height 24 rows (1 less than the
full screen).

BILD

This command is used to set up screen backdrops and is really best explained by example. A data
compression technique is used so that sprite building blocks are represented by bits in a data sprite.
The command has 5 parameters. COL and ROW are used to specify where the building should begin
from. Note that COL and ROW can be "off-screen” and the backdrop can be larger than the screen. In
each case the command will fitas much data as itcan onto the screen. The graphics variable TYP is
used to hold the type of operation that should be used to PUT the data to the screen.

Value in KEY Operation

0 Block overwrite

1 Exclusive-OR

2 PUT in front of current data
3 PUT behind current data

87

The graphics variable SP1 is used to hold the number ofthe sprite which is used as the building block
and the variable SPN holds the number of the sprite which contains the BIT pattern that determines
where the building blocks will be PUT.

The Data Sprite Format

The format for the data sprite (containing the bit pattern) is quite straightforward. The width in
"sprites" ofthe scenario will be 8times the width of the data sprite. This is because there are 8 bits per
byte. The height of the scenario in “sprites” will be the height of the data sprite. The actual physical
size of the scenario also depends on the size of the sprite which forms the building block. If, for
instance, the sprite building block was 20 pixels high and 5 bytes wide and the data sprite was 2 bytes
wide and 10 bytes high, then the backdrop would be 5x2x8=80 bytes wide and 20x10=200 pixels high
and would exactly fill the screen. Thus ifyour basic building block is 20 pixels high and 5 bytes wide
then you will need 20 bytes per “screen”.

Parameter Use

coL Screen column to begin building.

ROW Screen row to begin building.

KEY Typeofoperation.

SPN Number of data sprite (contains bit map).

SP1 Number of sprite to build with.

Command Action

BILD The data sprite, whose number is held in SPN, is scanned from left to right, a bit at

a time. If a bit is set then the sprite whose number is held in SP1 is PUT to the
screen and the column advanced by the width of the building sprite. Ifa bit is not
set then the column is simply advanced by the width of the building sprite. The
operation is repeated for each of the rows in the data sprite and each time the
screen row is advanced by the height of the building sprite. The overall effect is
just to expand from bit to sprite.

NOTE: The gaps between building blocks (represented by bits set to 0) are not
overwritten so data already present is not cleared. The data sprite can be
scrolled using WSVN, WSL4, WSR4, WSL8, WSR8 without corrupting the data
structure. Using the scrolls and suitable values for COL and ROW, users can
create scenarios many screens high and wide and move a screen window
through them. This is, however, an advanced technique and should not be
attempted until familiarity is gained with the whole package.

DEEK and DOKE

DEEK and DOKE are the 16 bit equivalents of PEEK and POKE and are included in this package
because of their omission from locomotive BASIC.

Command Action

DEEK,el,@V1 16 bit equivalent of PEEK. The contents of the address el are assigned to the
BASIC integer variable V1.

Parameter Use

@V1 Address of variable in the assignment.

el BASIC expression for the address el.

Command Action

DOKE,el,e2 16 bit equivalent of POKE. The low byte of the value of el is placed in el and the
high byte is placed in el+1.

Parameter Use'

el Address to be 'DOKE'd.

e2 Data to 'DOKE"

88

TRACKING SPRITES

Although one of the main aims ofthe package throughout has been to keep the features as simple as
possible, some complex features have been included for the more adventurous user. Before
attempting to use tracking sprites, please ensure that you are fully conversant with the workings of
the rest of the package. The nature ofthese commands meansthatthey are notcrash protected and
the outcome of mistakes is unpredictable.

Format for Tracking Sprites

A tracking sprite, in the context of Laser Basic, is not really a sprite at all. A tracking sprite is really a
primitive program which is held within a dummy sprite. The program controls where the sprite moves
to, the type of operation used for its movement, and which sprites are actually used in the animation
sequence. This provides much greater flexibility than the previously described MOVE commands
and the advanced user will appreciate that almost entire programs could be written using tracking
sprites alone. The format of the tracker is as follows:

BYTE USE

0,1 16 bit program counter. This is a pointer to the next instruction in the tracker sprite and is
advanced by the length of the instruction each time an instruction is executed.

The screen column at which the sprite was last PUT.

The screen row at which the sprite was last PUT.

The number of the sprite that was last PUT.

The type of move operation that the tracker is currently using.

The type byte has four fields:

g WwWN

Bits 0 and 1 These specify the movement operation.
00 =Move in front of screen data.
01 =Move behind screen data.
10 = Move with the XOR operation.
11 =Move with block overwrite.

Bit 2 If bit2 s set, thenthe increment will be joystick/keyboard controlled.
Bits 3,6 Ifbit2 is set, thenbits 3 to 6 specify the key row/joystick to be used.
Bit 7 If bit7 s set, thencollision/bounce detection is enabled.

After the initial 6 bytes of system information come the instructions themselves. Ifa sprite is simply to
be moved and animated then the instructions will be 3 bytes long:

BYTE OPERATION

0 The number of the sprite to be PUT. The system knows the number of the last sprite PUT
and if either XINC or YINC (see next paragraph) is non-zero then the last sprite to be PUT
will be removed and the new sprite to be PUT will be given by this byte. Ifthis byte is zero
then the system does notexecute a MOVE butinstead looks fora control code (see Control
Codes in next section).

1 This isthe X-incrementand is the amount by which to move in the horizontal direction. The
MOVE command takes into accountwhether the system is in 80 or 160 column mode and
positive values move right and negative values move left.

2 This is the Y-increment and is the amount by which to move in the vertical direction.
Positive values move downward and negative values move upward.

NOTE: If the X-increment and the Y-increment are both zero the instruction is ignored and the
program counter is advanced to point to the next instruction before returning.

Control Codes

Ifthe control program finds that byte 0 (which itexpects to be a sprite number) contains a zero, then it

knows that a control code is to follow. There are four control codes in all, and these are:

Code Operation

0 Start at first instruction. The program counter is set to point to the first instruction in the
tracker. This instruction is executed and the program counter is advanced to point to the
second instruction before returning.

89

1 Start newtrack with sprite numberequal tothe value in the nextbyte ofthecurrenttracker.
The last sprite PUT is removed using the current operation and then the new tracker sprite
is launched.Tracking involves setting the program counterto point to the first instruction,
setting the COL and ROW pointers to those of the sprite last removed and re-PUTting the
sprite just removed but using the operation specified in the new tracker. For this reason,
the new tracker must use the same type of sprite (masked or unmasked) as the old tracker.
This code should only be used ifthe tracker is being executed from within a controller or
the outcome is unpredictable.

Continue track with move type equal to the value in the next byte ofthe current tracker. The
current sprite is removed from the screen using the current operation, and then put back
using the new operation. Byte 5 of the tracker variables is amended to hold the new move
type and then the next instruction in the current tracker is executed. Thus a code of 2
effectively executes 2 instructions and the program counter is therefore advanced by 6
bytes.

3 Start new track with sprite number equal to the value in the next byte of the current tracker
and program counter equal to the value in the next two bytes after that. The effect is exactly
the same as CODE 1exceptthatthe new tracker can be entered ata convenient pointand
need not be run from the start. Again this code should only be used where the tracker is
being executed from within a controller.

4 Execute the command whose address (see ADDR) is in the next 2 bytes but one, using the
variable set whose number is in the next byte. For details of command addresses see the
section on compiler related commands.

Launching a Tracker

Before a tracker can be executed using the TMOV command, it needs to be "launched" using the
TPUT command. The TPUT command requires 5 parameters. The column and row at which to start
the track, the number of the first sprite to PUT, the number of the tracker and the value for the program
counter at which execution should begin. The first sprite is PUT to the screen and the system
information set up in the required tracker.

Parameter Use

coL Screen column of start of track.

ROW Screen row of start of track.

KEY Holds the number of the sprite holding the tracker program.

SP1 First sprite to PUT.

el Initial program counter value (1 =first instruction in tracker).

Command Action

TPUT,el Tracker KEY is initialised and sprite SP1 is placed at the screen position

specified by COL,ROW using the operation specified by the tracker sprite KEY.
The program counter in the tracker KEY is set to the value of the expression el.
The tracker can now be executed using the TMOV command.

Moving a Tracker

Parameter Use
KEY The number of the tracker, one instruction of which is to be executed.
@V1i Optional parameter which is the address of the BASIC integer variable which is

to be incremented if collision detection is enabled and detected.

Command Action
TMOV Execute one instruction of the tracker whose number is held in KEY.
TMOV,@V1 Execute one instruction of the tracker whose number is held in KEY. Ifcollision

detection is enabled (BIT 7 of move type) and ifa collision is detected, increment
the BASIC integer variable V1.

90

CONTROLLERS

There are two controller commands, CPUT and CMOV. These are analogous tothe TPUT and TMOV
commands butwork with sets oftrackers instead of individual trackers. Ineach case the information
is held in sprites so theonly parameter required is the number ofthe sprite containing the controller
information.

CPUT

The CPUT command launchesall thetrackers in the listcontained in thedata spritewhose number is
held in SPN. The format for the controller holding the launch information is as follows:

BYTE Use

0 Number of tracker to be launched.

1 Screen column to launch at.

2 Screen row to launch at.

3 Number of first sprite to PUT.

4,5 16 bit offset into tracker, to begin execution at.

Bytes 6 to 11 contain the information for the second trackerto launch, 12 to 17 the next, and so on. The
end of the list is marked with a zero byte so that the number of the sprite to be launched is read as
zero.

Parameter Use

SPN Number of tie sprite containing the launch information.

Command Action

CPUT The set of trackers whose launch information is contained in the sprite whose

number is held in SPN, are launched. This means effectively a series of TPUTs
are executed using the parameters contained in the controller.

CMOV

Onceaset oftrackershasbeen launched usingtheCPUT command,the setcan be executed using
the CMOV command. The format for the controller is as follows:

BYTE Use
0 Number of the tracker to execute.
1 This byte is set to 2 if collision detection is 'on' in the tracker, and if a collision

occurred. Ifa collision does not occur on the next CMOV itis re-set to 0.

Bytes 2 to 3 hold the second tracker to be executed and so on. Again the list is terminated with a zero.

Parameter Use

SPN The number of the sprite containing the list of trackers to execute.

Command Action

CMOV Execute an instruction in each of the trackers contained in the data sprite whose

number is held in SPN.

NOTE: If a tracker is executed with the instruction “start new tracker" it will auto-
matically modify the data sprite to contain the number of the new tracker.

91

BACKGROUND EXECUTION

One of Laser BASIC's most unique and powerful features is its ability to execute repeatable
commands under interrupt. This means that a list of commands, each with its own associated
variable set, can be run in background (synchronised to the frame-flyback) while the normal BASIC
program runs in foreground. Using this facility will provide the user with the optimum speed and

smoothness.

Command
ISET,@V$

NOTE:

Example:

Command
IRUN,el

NOTE:

Command
IEND

Action

The commands and their variable sets contained in the string variable V$ are
compiled into the background table. The formatfor the string is as follows:

Bytes Use

0,3 First command.

4 Variable set for first command.

5,8 Second command.

9 Variable set for second command.
1
]
]

N,N+3 Last command.

N+4 Variable set for last command.

The required variable setis selected by using one of the 16 letters A to P. The last
character in the string must be a “#”.

"WVR1AINVVBXMOVC#" would compile into the table the commands WVR1,
INVV and XMOV. WVR1 would use SET 0, INV would use SET 1 and XMOV
would use SET 2. The commands would execute in the above order and the
execution of the foreground program would be completely halted until the
completion of the full background task.

Action

Begins execution of the background program which was compiled using ISET.
The value of the BASIC expression el is used to monitor the frequency of the
background program execution. If el is zero then the program will execute on
every flyback (50 times a second), ifel is 1then itwill allow one flyback between
executions and so on up to 65535 which will only execute every twenty minutes
or so.

IRUN should never be executed unless ISET has been executed previously.
IRUN should neverbeexecuted ifabackground program isalready running.To
ensure that no background program is executing use IEND(see next section) to
halt the background task, or press the “ESC" key. Ifthe execution time for the
task is longer then 1/50th of a second and el is O, then control will never return
from the background program. This may be the desired effect, but pressing the
“ESC” key will always halt the execution of the background task and thus
prevent the system from becoming 'locked-up'. Errors in the extended com-
mands running in foreground will also halt the background task.

Action

Halts execution of the background task. This command should always be
executed before re-executing ISET or IRUN.

For a list of commands which can be executed in background refer to the command summary.

COMPILER RELATED COMMANDS

With the exception of ADDR which is used with tracking sprites, these commands will probably only
be used if you intend to compile the Laser BASIC program you are writing, or are short of space.

The requirement for these extra commands stems from the fact that the RSX command table is not
part of the final compiled run-time program.

92

ADDR,@V1,@A$

This command assigns to the BASIC integer variable V1, the execution address of the command
whose character string is in A$. For example to find out the execution address of WVR1 use:

AS="MVR1":|ADDR,aX%,aA$:PRINT X%

The command mustbeentered in uppercase charactersor"lllegal Command” will be reported. The
address returned is generally used as data for tracking sprites when control code 4 is employed.
ADDR cannot be compiled by the Laser BASIC compiler.

IPUTand IGET

Due to the fact that the RSX table is not present in compiled programs, ISET cannot be compiled
either. This would prevent background programs from being executed and so 2 additional
commands have been included.

IPUT

IPUT will store the current interrupt table (created by ISET) into the sprite whose number is held in
SPN.

IGET
IGET will retrieve the interrupt table data from the sprite whose number is held in SPN.

If you intend to compile your Laser BASIC program then all you need to do is execute the ISET
command to set up the interrupttable and then execute IPUT to save the information into a sprite. The
sprite can be loaded into the compiled program along with the other sprites and then IGET used to
restore the table to the state itwas formerly in. Out of memory errors will occur ifthe sprite is notlarge
enough to accomodate the table (three bytes per command in the interrupt list plus one delimiter byte)
or if a table is loaded which overflows the interrupt table space (90 bytes).

LASER BASIC SOUND

This final section deals with what is probably the most difficult to use feature of Laser BASIC. The
Amstrad's own BASIC caters for sound control in a much more ‘simple to use' manner and this
extended facility need only be used in very advanced applications. As with tracking sprites, the
nature of the operation means thatthere is very little crash protection and the outcome of mistakes is
unpredictable. These commands do not have to be driven under interrupt, but in practice this will
usually be the case.

The philosophy employed in Laser BASIC's sound handling is very similar to that used by tracking
sprites - the data sprite contains a primitive program, in this case there are 20 instructions in the set.
The program in the data sprite does not have to be run under interrupt but for most applications it
almost certainly will be. To run sound under tracking sprite control the PLAY command isentered as
acommand in a normal tracker sprite (see control code 4 in the section on tracking sprites).

Command Action

PLAY,el,e2 The 16 bit program counter in the sound program contained in the sprite whose
number is held in KEY is setto el.The execution frequency is set to e2 but the
sound program itself is not executed.

PLAY The sound program contained in the sprite whose number is held in KEY is
executed.

Parameter Use

KEY Holds the number of the sprite containing the sound program.

Format for the Program

BYTE USE

0,1 16 bit program counter. This is a pointer to the next instruction in the data sprite and is
advanced by the length of the instruction each time an instruction is executed. Unlike
tracker sprites, sound programs will execute until they reach an instruction which halts
execution.

93

2 This is an 8 bit counter which is incremented every time PLAY is executed. The sound
program will only execute when this value is equal to the ‘limit’ held in BYTE 3. This facility
is provided because sound programs usually run much more slowly than tracking sprite
programs and means that they can be executed on selected tracker executions.

3 This isthe 8 bit 'limit' which sets the execution rate of the sound program. Selecting a limit
of 0 will cause execution to begin every time PLAY is executed, selecting a limit of 1 will
cause execution to begin after every other PLAY and so on.

After these initial four bytes of information come the program itself. The first instruction (byte 4)
corresponds to a program counter value of 1. Let's now look at the instructions themselves.

CODE INSTRUCTION LENGTH OF DATA (INCLUDING CODE)
0 SOUND 10

1 WAIT-SOUND 10

2 RESET 1

3 RELEASE 2

4 HOLD 1

5 CONTINUE 1

6 AMP-ENV VARIABLE — UP TO 18
7 TONE-ENV VARIABLE — UP TO 18
8 RE-RUN 1

9 JUMP 3

10 RE-LIM 3

11 CALL-CHANNEL 2

12 CALL-AMP-ENV 2

13 CALL-TONE-ENV 2

14 CALL-TONE-PERIOD 3

15 CALL-NOISE-PERIOD 2

16 CALL-INITIAL-AMP 2

17 CALL-DURATION 3

18 CALL-TONE-DURATION 5

19 STOP 1

To fully appreciate the operation of each ofthese instructions you should refer to the Amsoftfirmware
or BASIC manuals, but a sufficient description of each command is given in the next section. Where
relevant, the entry point into the firmware JUMP table is given. .

SOUND -JUMP table #BCAA

This instruction attempts to add a 9 byte ‘sound’to the sound queue of one or more channels. Ifany of
the queues is full then no action will take place and the sound program will continue at the next
instruction. The format for the 9 bytes of the sound are as follows:

BYTE USE POSITION IN LIST OF
BASIC “SOUND” COMMAND
0 Channel status 1
1 Amplitude envelope 5
2 Tone envelope 6
3,4 Tone period 2
5 Noise period 7
6 Volume 4
7,8 Duration 3

For a full description of the range of each ofthe above parameters and their use in defining the sound
produced, consult your BASIC manual or the "SOUND" section of this manual.

WAIT-SOUND

This instruction works in the same way and uses the same parameters as the sound instructions but
differs in one respect. If any of the queues that the instruction is trying to use are full then the
execution of the PLAY command is terminated and the program counter is left pointing at the current
'WAIT-SOUND" instruction. In fact, 'WAIT-SOUND" is almost invariably used in place of 'SOUND".

94

RESET - JUMP table #BCA7

This instruction stops the current sound and clears all sound queues.

RELEASE 1 JUMP table #BCB3

This instruction will RELEASE individually held sounds. It uses one byte of data which specifies
which channels to release. Only 3 bits of the byte are used - see the BASIC command RELEASE.

HOLD - JUMP table #BCB6

This instruction freezes all sounds. These will be automatically re-started by the execution of
SOUND, WAIT-SOUND, RELEASE or CONTINUE.

CONTINUE -JUMP table #BCB9

Restarts all sounds which have been held.

AMP-ENV - JUMP table #BCBC

This is analogous to BASIC's ENV command. It uses up to 18 bytes of data and the format for the data
block is as follows:

BYTE USE

0 Envelope number

1 Number of sections

2,3,4 Step count, step size, pause time for section 1
5,6,7 Step count, step size, pause time for section 2

14,15,16 Step count, step size, pause time for section 5

Note that data is only supplied for the number of sections indicated in byte 1, and this is therefore a
variable length instruction. For a full description of the parameters and their use, see the description
of BASIC’s ENV command.

TONE-ENV - JUMP table #BCBF

Thisis analogous to BASIC's ENT command. ltuses up to 18 bytes of data and the format for the data
block is as follows:

BYTE USE

0 Envelope number

1 Number of sections

2,3,4 Step count, step size, pause time for section 1
5,6,7 Step count, step size, pause time for section 2

14,15,16 Step count, step size, pause time for section 5

Again data is variable length and mustcorrespond to the number of sections dictated by byte 1. Fora
comprehensive description see BASIC's ENT command.

RE-RUN

This instruction causes control to jump to the first instruction in the program, and execution to
continue from that point. This provision allows sound programs to be indefinitely repeated.

JUMP

This 3 byte instruction is analogous to BASIC's GOTO or the Z80 s JP instructions. The two bytes
forming the 16 bit program counter value to jump to are in LSB, MSB order as are all the 16 bitvalues
used in this section.

95

RE-LIM

This instruction is provided to control the overall speed and phase of the program. Ituses two data
bytes which are passed to bytes 2 and 3 of the sound program. This has the effect of re-setting the
count and limit. By passing a smaller limit the program can be made to execute with a higher
frequency (although this doesn't usually cause the tune to play any faster!) and vice-versa. Passing a
count equal to the limit will ensure that the program executes on the next invocation.

CALL Commands

There are actually 7 CALL instructions in all and in order to use these you must ensure that the first
instruction in the program is a SOUND (code 0) oraWAIT-SOUND (code 1), otherwisean “ILLEGAL
TRACKER CODE" error will be generated. As has been discussed, a 'SOUND" is represented by 9
bytes. What these instructions do is to modify 1 or more bytes in the ‘SOUND’, and then return to the
point in the program from whence itwas called. FCALL-TONE-PERIOD or CALL-TONE-DURATION
is executed then the SOUND or WIAT-SOUND will be automatically executed. Ifthe instruction being
called is a SOUND instruction, then control will continue at the next instruction after the CALL
whether the 'SOUND"' was added to the queue or not. If the instruction was a WAIT-SOUND then
control will only continue at the next instruction after the CALL if the 'SOUND’ was successfully
added. If it was not, then the program counter remains pointing at the CALL and the program is
terminated. Ifthe latter was the case then the nexttime PLAY is executed with count equal to the limit
then this CALL will be the first instruction to execute.

CALL-CHANNEL

Calls the first instruction in the program which must be a SOUND or WAIT-SOUND. The channel
status in the 9 byte 'SOUND' block is replaced by the new channel status and the sound executed.
The new channel status is left in the data block after control returns buta SOUND or WAIT-SOUND is
not executed.

CALL-AMP-ENV

This works in the same way as CALL-CHANNEL except that the new data is a volume envelope
number.

CALL-TONE-ENV

This works in the same way as CALL-AMP-ENV except that the data is a tone envelope number.

CALL-TONE-PERIOD

This works in the same way as CALL-TONE-ENV except this time the data is 2 bytes long and
represents the tone period. The other difference is that this instruction will cause the SOUND or
WAIT-SOUND to execute with the modified TONE-PERIOD.

CALL-NOISE-PERIOD

This works in the same way as CALL-TONE-ENV except that the data is 1 byte long again and
represents the Noise period.

CALL-INITIAL-AMP

Works in the same way as CALL-NOISE-PERIOD exceptthat the data represents the starting volume
(which can be altered by the volume envelope if one is specified).

CALL-DURATION

Works in the same way as the other commands but its 2 data bytes specify the new duration.

CALL-TONE-DURATION

Works in the same way as CALL-TONE-PERIOD but this instruction has 4 data bytes, the first two
represent a new duration and the third and fourth representa new tone period. As with CALL-TONE-
PERIOD, the SOUND or WAIT-SOUND instruction being called is executed.

NOTE: All two byte numbers are entered in least significant, most significant byte order.

96

STOP

This will cause the termination of the sound program and a return to be made to wherever'PLAY' was
executed from (usually a tracker). The program is exited with the program counter pointing to the

instruction after STOP, which will be the next instruction to be executed the next time PLAY is
executed.

This concludes the final section of the Laser BASIC commands in detail, for more examples of
interrupt driven sound see the section on SOUND in the main part of this manual.

97

LASER BASIC ERRORS

Error 1 — ** SPN TOO HIGH **

This error occurs whenever a sprite number is being used with a value greater than SMAX. The
variables which hold the sprite numbers are SPN, SP1,SP2, SP3, SP4 and KEY. Sprite numbers are
also held in tracking sprites. Be sure that you are using the correct SET particularly when using
background programs, tracking sprites, EXXV, ASTV, AVTS and ESAV.

Error 2 — ** SPN EXISTS **

This occurs when an attempt is made to add a sprite to the table with a number that has been
previously allocated. Itcan occur with CSPR, HRSP, RNUM, ADNM and MSPR. This error is usually
straightforward to identify.

Error 3— ** SPN OF ZERO **

This error occurs when an attempt is made to use sprite number zero and can occur in numerous
instances. The best way to deal with this error isto look atthe values held in SPN, SP1, SP2, SP3, SP4
and KEY. Although this error has many possible causes it is usually fairly obvious where to look.

Error 4 — ** SMAX OF ZERO **

This occurs ifan SMAX of zero is given as the first parameter of SSPR. This error seldom occurs as
SSPR is seldom used.

Error 5— ** ZERO LENGTH DATA **

This error very rarely occurs and signals an attempt to block move a zero length of code. It can
happen if an attempt is made to relocate an empty sprite file, or if IPUT/IGET are used to move an
empty interrupt list, but generally indicates that the sprite table or system variables have become
corrupted. Itis unwise to continue after the error unless you are sure of it's cause.

Error 6 — ** SPN DOESN'T EXIST **

Again this error can result from numerous different situations. By examining the variables SPN, SP1,
SP2, SP3, SP4 and KEY itis usually possible to work out where the error occured.

Error 7 — ** CAN'T MASK ****

An attempt has been made to MASK, re-MASK orde-MASK a sprite with an ‘odd’as opposed to ‘even’
width (in bytes).

Error 8 — ** ILLEGAL TRACKER TERMINATOR **

An illegal control code has been found in a tracker or sound program.

Error 9 — ** OUT OF MEMORY **

An attempt has been made to carry out an operation which requires more space than is available
between MBOT (which should be HIMEM+1)andthebottom of spritesorhasrun outof stack space.
To overcome this you will need to reduce HIMEM with the MEMORY command (followed by an MSET
command), delete one or more of the existing sprites or relocate spites upwards (if this is possible).
This error can also be caused by FILL if insufficient stack space is available but there is no way
around this as the space allocated to a the stack is fixed. The following commands require free
memory:

WVVN, WSVN, WPVN, HRSP, ISET, GSPR and MSPR
IPUT and IGET may also generate this error see the section on "compiler related commands".

Note: The BASIC ‘LOAD’ command uses a buffer which is not required after LOADing. This means
that you can usually reduce HIMEM (don't forget the MSET!), once your BASIC program has been
loaded. Sprites can then be loaded into a larger space.

Error 10 — ** ILLEGAL FILENAME **

This error occurs when an attempt is made to load, save or merge sprite files using a filename that
does not end in "SPR" or "SPR.BAK " Filenames must be typed in upper case. Ifan error occurs
during one of these 3 operations you may find that the filename has been altered. Ifthis occurs you
will need to re-type the filename.

98

Error 11 - ** PARAMETER ERROR **

Thiserroroccurs ifa Laser BASIC command is followed by the wrong number of parameters or one of
the SUM commands Is followed by more than 8 parameters.

Error 12 — ** NO SPRITES **

This error occurs if an attempt is made to save an empty file of sprites.

Error 13 — ** OUT OF RANGE **

This error will occur ifan attempt is made to assign one of the Laser BASIC variables with an illegal
value. This error will also occur if an attempt is made to set up a bounce window in a sprite which
does not have a height of 1 and a width of4. Similarly this error will occur ifASTV, AVTS or ESAV are
used with sprites that do not have a height of 1 and a width of 20.

Error 14 — ** ILLEGAL COMMAND **

This error can occur when using the ISET command and means that one of the commands in the
string doesn't exist, or has be typed in lower case, or '# is missing from the end of the string ora SET
has been selected without using one of the letters 'A’ to 'P' (in upper case). Itcan also occur when
using the ADDR command.

99

COMMAND SUMMARY

The following is a summary of Laser BASIC's extended commands. The number after the command
in the table is called the command class. Below is a description of each class.

CLASS 1

Commands in this class can be used in MODE 2 (2 colour mode) as well as MODEs zero and one.
These commands do not have a collision detection option, cannot be included in tracker sprites,
cannot be executed in background (see ISET) and do not have a repeat option. The following
commands are included in Class 1:

ADDR coL coLQ DEEK DOKE HGT HGTQ 1K1 1K1Q I SET
ISPR KBFN KEY KEYQ LEN LENQ MSET MSPR NPX NPXQ
PSPR ROW ROWQ RSPR SCL SCNP SCNS SCNV SET SETQ
SP1 SP1Q SP2 SP2Q SP3 SP3Q SP4 SP4Q SPN SPNQ
SRW SRWQ SSPR SUMP SUMS SUMV TPUT XCL XCLQ

CLASS 2

Commands in this class cannot be used in MODE two and can only be used in MODESs zero and one.
They do not have a collision detection option but could be used as instructions in tracker sprites.
They cannot be executed in background and do not have a repeat option.

FILL HRSP MASK MGXP MGXS MGXV ONHI ONLO RMSK SPNV

CLASS 3

Commands in this class can be used in MODE two as well as MODEs zero and one, do not have a
collision detection option, can be used as instructions in a tracker, cannot be executed in
background and do not have a repeat option.

ADNM CSPR DMSK DSPR ESPR GSPR IEND MGYS MGYV RNUM

CLASS 4

Commands in this class can be used in all three graphics modes, do not have a collision detection
option, can be executed in trackers, can be executed in backgrodnd butdo not have a repeat option.

ASTV AVTS BILD BWST CLHI CLLO CLSP CLSS CLSV CPUT
ESAV EXXV FIPS FIPV FOPS FOPV IGET INVP I NVS I NVV
IPUT PLAY SCLS STCP STCS STCV SWPS

CLASS 5

Commands in this class do not work in MODE two, do not have a collision detection option, can be
executed in trackers, can be executed in background but do not have a repeat option.

MIRP MIRS MIRV MORP MORS MORV SETP SETS SETV

CLASS 6

Commands in this class do not work in MODE two, butdo have a detection option, can be executed in
trackers, can be executed in background, but do not have a repeat option.

BGET BPUT FSWP GMBH GMIF GTBH GTIF GWBH GWIF PMBH
PMIF PTBH PTIF PWBH PWIF

CLASS 7

Commands in this class work in all three graphics MODEs, do have a detection option, can be
executed in background, but do not have a repeat option.

GMBL GMND GMOR GMXR GTBL GTND GTOR GTXR GWBL GWND
GWOR GWXR PMBL PMND PMOR PMXR PTBL PTNO PTOR PTXR
PWBL PWND PWOR PWXR

100

CLASS 8

Commands in this class do not work in graphics MODE two, do not have a detection option, but can
be executed in trackers, can be executed in background and do have a repeat option.

SPL1 SPR1 SSL1 SSR1 SVL1 SVR1 WPL1 WPR1 WSL1 WSR1
WvL1 WVR1
CLASS 9

Commands in this class do work in graphics MODE two, do not have a detection option butcan be
executed in trackers, are background executable and do have a repeat option.

CMOoV SPL4 SPL8 SPR4 SPR8 SPVN SSL4 SSL8 SSR4 SSR8
SSVN SVL4 SVL8 SVR4 SVR8 SVVN WPL4 WPL8 WPR4 WPRS8
WPVN WSL4 WSL8 WSR4 WSR8 WSVN WVL4 uvLs WVR4 UVRS8
WVVN

CLASS 10

Commands in this class do notwork in MODE two butdo have a detection option, can be executed in
a tracker, can be executed in background and do have a looping option.

BBNC BMOV BMVJ FBNC FMOV FMVJ

CLASS 11

Commands in this class do work in MODE two, do have a detection option, can be executed in a
tracker, can be executed in background and have a repeat option.

TMOV WBNC WMOV WMVJ] XBNC XMOV XMVJ

CLASS OPTIONS

The following is a summary of available options and a summary of the classes supporting them.

MODE 2

All Laser BASIC commands will execute in MODE zero (16 colour mode) and MODE one (4 colour
mode), but only selected commands will function correctly with MODE 2 (2 colour mode). The
following classes will work in MODE 2:

Class 1, class 3, class 4, class 7, class 9, class 11.

Collision Detection Option

Laser BASIC commands which move data around the screen and between sprites have a collision
detection option. This option will never work on MODE two data. The following classes support the
option:

Class 6, class 7, class 10, class 11.

Tracking Option

Laser BASIC commands can be executed from within tracking sprites (see Tracking Sprites, Control
Code 4). Only certain commands can be executed in this way and only commands in the following
classes should be used:

Class 2, class 3, class 4, class 5, class 6, class 7, class 8, class 9, class 10, class 11.

Background Execution

Certain commands can be compiled into an interrupt table and executed in background under
interrupt. The following command classes support this option:

Class 4, class 5, class 6, class 7, class 8, class 9, class 10, class 11.

Repeat Option

Certain commands can be repeatedly executed in a machine code loop with or without frame-flyback
synchronisation. The following classes support this option.

Class 8, class 9, class 10, class 11.

101

COMMAND/CLASS PARAMETERS ACTION

ADDR 1 avi,av$ Assigns the execution address of the command
in the 4 character string V$ to t he BAS 1 C
integer variable V1.

ADNM 3 SPN Increment all existing sprite numbers by
the value held in SPN.
ASTV 4 SET,SPN The 20 bytes in sprite SPN are assigned to the
current variable set.
AVTS 4 SET,SPN The current variable set is assigned to
sprite SPN.
BBNC 10 SP1,SP2,SP3 Bounce ‘behind’ screen data.
SP4,HGT,LEN
COL,ROW ,KEY
3Vl,el,e2
BGET 6 SPN,COL,ROW Remove a previously 'BPUT' sprite.
avi
BILD 4 COL,ROW,SPN Expand BIT pattern.
SP1,KEY
BMOV 10 SP1,SP2,SP3 Move linearly 'behind' screen data.

SP4,HGT,LEN
COL,ROW,aVvil
el,e2

BMVJ 10 SP1,SP2,SP3 Move under keyboard/joystick control,
SP4,HGT,LEN 'behind" screen data.
COL,ROW,KEY

3Vl,el,e2
BPUT 6 SPN,COL,ROW 'PUT' a sprite 'behind’ screen data.
avi
BWST 4 KEY,COL,ROW Bounce window data is set up in sprite KEY.
HGT,LEN
CLHI 4 Puts the software into 160 column mode.
CLLO 4 Puts the software into 80 column mode.
CLSP 4 SPN,COL,ROW Clear sprite window to INK 0.
HGT,LEN
CLSS 4 SPN Clear whole sprite to INK 0.
CLSV 4 COL,ROW,HGT Clear screen window to INK 0.
LEN
CMOV 9 SPN Execute one instruction in each of the
trackers listed in SPN.
coL 1 el Assign the value of the expression el to the
graphics variable COL.
COLQ 1 avi Assign the value in the graphics variable COL
to the BASIC integer variable V1.
CPUT 4 SPN Launch all of the trackers listed in SPN.
CSPR 3 SPN,HGT,LEN Create sprite SPN with height HGT and length LEN.
DEEK 1 ei,avi The 16 bit contents of address el,el+1 are
assigned to the BASIC integer variable V1.
DMSK 3 SPN Sprite SPN is de-masked.
DOKE 1 el ,e2 The 16 bit value e2 is POKEd into el and el+1
in LSB,MSB order.
DSPR 3 SPN Sprite SPN is deleted.

102

ESAV

ESPR
E XXV
FBNC

FILL
FIPS
FIPV

FMOV

FMVJ

FOPS
FOPV

FREE

FSWP

GMBH

GMBL

GMI F

GMND

GMOR

GMXR

GSPR
GTBH

GTBL

GTI F

GTND

GTOR

GTXR

10

10

10

SET,SPN

SPN

SP1,SP2,SP3
SP4,HGT,LEN
COL,ROW,KEY
S1Vl,el,e2

XCL,ROW, 1K1
SPN

COL,ROW,HGT
LEN

SP1,SP2,SP3
SP4,HGT,LEN
COL,ROW,3V1
el,e2

SP1,SP2,SP3
SP4,HGT,LEN
COL,ROW,KEY
avi,el,e?

SPN
COL,ROW,HGT

avi

COL,ROW,SPN
avi

SP1,SP2,SRW
scL,avi
SP1,SP2,SRW
scL,avi
SP1,SP2,SRW
scL,avi
SP1,SP2,SRW
scL,avi
SP1,SP2,SRW
scL,avi
SP1,SP2,SRW
scL,avi

av$

SPN,COL,ROW
avi

SPN,COL,ROW
avi

SPN,COL,ROW
avi
SPN,COL,ROW
avi

SPN,COL,ROW
avi

SPN,COL,ROW
avi

Exchange the current SET with the contents
of sprite SPN.

Expand/contract sprite table space.
Exchange current and alternative SET pointers.

Bounce 'in-front of screen data.

Fill the shape withINKIK1.
Vertically reflect sprite SPN.

Vertically reflect screen window.

Move linearly 'in-front of' screen data.

Move under keyboard/joystick control ‘in-front
of’ screen data.

Make sprite SPN vertically symmetric.

Make screen window vertically symmetric.
LEN

Calculate free space and assign result to
the BASIC integer variable V1.

Exchange sprite and screen data in front of
screen data.

Place sprite SP1 'behind' window SP2.
Block move sprite SP1 into window in SP2.
Place sprite SP1 ‘in-front of’ window in SP2.
data in SP1.

AND sprite SP1 into window in SP2.

OR sprite SP1 into window in SP2.

XOR sprite SP1 into window in SP2.

Load sprites from DISK/TAPE.
‘GET’ screen data ‘behind1sprite data.

Block move screen window into sprite.
‘GET’ screen data ‘in-front of sprite data.
AND screen data into sprite.

OR screen data into sprite.

XOR screen data into sprite.

103

GUBH

GWBL

GWIF

GWND

GWOR

GWXR

HGTQ

HRSP
IEND
IGET

1K10

1K2

1K2Q

INVP

INVS
INVV

IPUT
IRUN

ISET

ISPR

KBFN

KEY

KEYQ

SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

SPN,COL,ROW
SCLf SRW,HGT
LEN,aV1l

SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

el

avi

SPN

el

avi

el

avi

SPN,COL,ROW
HGT,LEN

SPN

COL,ROW,HGT
LEN

SPN
el

advs$

SPN,HGT,LEN
avl,av2,av3
av4d

KEY,avi

el

avi

'GET' screen window 'behind' sprite window.

Block move screen window into sprite window.

'GET' screen window 'in-front of' sprite window.

AND screen window into sprite window.

OR screen window into sprite window.

XOR screen window into sprite window.

Assign the value of el to the graphics
variable HGT.

Assign the value in the graphics variable
HGT to the BASIC integer variable V1.

Create hi-res pair in SPN and SPN+1.
Terminate execution ofthe background program.

Move data from sprite SPN into the
interrupt table.

Assign the value of el to the graphics variable
IK1.

Assign the value in the graphics variable 1K1
to the BASIC integer variable V1.

Assign the value of el to the graphics variable
1K2:

Assign the value in the graphics variable 1K2
to the BASIC integer variable V1.

Invert (1's complement) sprite window.

Invert (1's complement) whole sprite.

Invert (1's comlement) screen window.

Move the interrupt table into sprite SPN.

Set background program running with execution
interval el.

Compile all the commands/sets in the string
V$ into the interrupt table.

Interrogate sprite SPN.

Increment the BASIC integer variable V1 if
KEY is pressed.

Assign the value of el to the graphics
variable KEY.

Assign the value in the graphics variable
KEY to the BASIC integer variable V1.
104

LEN
LENQ

MASK
MGXP

MGXS
MGXV

MGYS
MGYV

MIRP

MIRS
MIRV

MORP

MORS
MORYV

MSET

MSPR
NP X

NPXQ

ONHI
ONLO
PLAY
PMBH

PMBL

PMIF

PMND

PMOR

PMXR

PSPR
PTBH

PTBL

=

o~ NN

el

avi

SPN

SPN,COL,ROW
HGT,LEN

SPN

COL,ROW,HGT
LEN

SPN

COL,ROW,HGT
LEN

SPN,COL,ROW
HGT,LEN

SPN

COL,ROU,HGT
LEN

SPN,COL,ROW
HGT,LEN

SPN

COL,ROW,HGT
LEN

el

av$

el

avi

KEY,el,e2

SP1,SP2,SCL
SRw,avi

SP1,SP2,SCL
SRw,avi

SP1,SP2,SCL
SRW,3V1M

SP1,SP2,SCL
SRu,avi

SP1,SP2,SCL
SRu,avi

SP1,SP2,SCL
SRW,avi

avi

SPN,COL,ROW
avi

SPN,COL,ROW
avi

Assign the value el to the graphics variable LEN.

Assign the value in the graphics variable LEN
to the BASIC integer variable V1.

Convert sprite SPN to become a MASKed sprite.

X-expand sprite window.

X-expand whole sprite.

X-expand screen window.

Y-expand whole sprite.

Y-expand screen window.

Horizontally mirror sprite window.

Horizontally mirror whole sprite.

Horizontally mirror screen window.

Make sprite window horizontally symmetric.

Make whole sprite horizontally symmetric.

Make screen window horizontally symmetric.

Set lowest address usable by Laser BASIC to be
el.

Merge sprite files.

Assign the value of el to the graphics variable
NPX.

Assign the value in the graphics variable
NPX to the BASIC integer variable V1.

Put Laser BASIC into 4 colour mode.

Put Laser BASIC into 16 colour mode.
Execute sound program.

GET data in window SP2 behind data in SP1.

Block move window in SP2 into sprite SP1.
PUT data in window SP2 'in-front of

data in SP1.

AND window in SP2 into sprite SP1.

OR window in SP2 into sprite SP1.

XOR window in SP2 into sprite SP1.

'PUT" sprite file to TAPE/DISK.

'PUT' sprite ‘behind’ screen data.

Block move sprite into screen.

105

PTIF
PTND
PTOR
PTXR

PWBH

PWBL

PWIF

PUND

PWOR

PWXR

RMSK
RNUM
ROW

ROWQ

RSPR
SCL

SCLQ
SCLS
SCNP

SCNS
SCNV

SET

SETP

SETQ

SPN,COL,ROW

avi

SPN,COL,ROW

avi

SPN,COL,ROW

avi

SPN,COL,ROW

avi

SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

SPN,COL,ROW
ScL,SRW,HGT
LEN,3V1

SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

SPN,COL,ROW
SCL,SRW,HGT
LEN,aV1l

SPN,COL,ROW
SCL,SRW,HGT
LEN,3V1

SPN,COL,ROW
SCL, SRW,HGT
LEN,aVl

SPN
SP1,SP2

el
ROW.

avi

el
el

avi

SPN,COL,ROW
HGT,LEN,aV1l

SPN

COL,ROW,HGT
LEN

el

SPN,COL,ROW
HGT,LEN, IK1
1K2

avi

'PUT' sprite 'in-front of screen data.

AND sprite into screen data.

OR sprite into screen data.

XOR sprite into screen data.

'PUT' sprite window 'behind' screen window.

Block move sprite window into screen window.

'PUT sprite window 'in-front of screen window.

AND sprite window into screen window.

OR sprite window into screen window.

XOR sprite window into screen window.

Re-MASK a previously MASKed sprite.
Re-number sprite SP1 to become sprite SP2.

Assign the value of el to the graphics variable

Assign the value in the graphics variable
ROW to the BASIC integer variable V1.

Relocate sprite space by the signed value el.

Assign the value of el to the graphics variable
SCL

Assign the value in the graphics variable
SCL to the BASIC integer variable V1.

Clear the screen and make the current text window

Laser BASIC's text window.

Scan sprite window for data.

Scan whole sprite for data.

Scan screen window for data.

Assign the value of el to the current set
pointer SET.

Re-colour the sprite window.

Assign the value of the current set pointer
to the BASIC integer variable V1.

SETS
SETV

SP1

SP1Q

SP2Q

SP3

SP3Q

SP4Q

SPL1

SPL4

SPL8

SPN

SPNQ

SPNV

SPR1

SPR4

SPR8

SPVN

SRU

SRWQ

SSL1

SPN

COL,ROW,HGT
LEN

el

avi

el

el

avi

el

SPN/COL,ROW
HGT,LEN,el
e2

SPN,COL/ROW
HGT,LEN,el
e2

SPN,COL,ROW
HGT,LEN,el
e2

el

avi

COL,ROW,HGT
LEN,SCL,SRW

SPN,COL,ROW
HGT,LEN,el
e2

SPN,COL,ROW
HGT,LEN,el
e2

SPN,COL,ROW
HGT,LEN,el
e2

SPN,COL,ROW
HGT,LEN,NPX
el,e2

el

SPN,el,e2

Re-colour the whole sprite.

Re-colour the screen window.

Assign the value of el to the graphics variable
SP1.

Assign the value in the graphics variable
SP1 to the BASIC integer variable V1.

Assign the value of el to the graphics variable
SP2.

Assign the value in the graphics variable
SP2 to the BASIC integer variable V1.

Assign the value of el to the graphics variable
SP3.

Assign the value in the graphics variable
SP3 to the BASIC integer variable V1.

Assign the value of el to the graphics variable
SP4.

Assign the value in the graphics variable
SP4 to the BASIC integer variable V1.

Scroll sprite window left 1 pixel, no wrap.

Scroll sprite window left 1 byte, no wrap.

Scroll sprite window left 2 bytes, no wrap.

Assigns the value of el to the graphics variable
SPN.

Assigns the value in the graphics variable
SPN to the BASIC integer vaiable V1.

Spins screen window 90 degrees clockwise.

Scroll sprite window right 1 pixel, no wrap.

Scroll sprite window right 1 byte, no wrap.

Scroll sprite window right 1 byte, no wrap.

Scroll sprite window vertically, NPX
pixels, no wrap.

Assign the value of el to the graphics variable
SRW.

Assign the value in the graphics variable
SRW to the BASIC variable V1.

Scroll sprite left 1 pixel, no wrap.

107

SSL4
SSL8
SSPR
SSR1
SSR4
SSR8
SSVN

STCP

STCS
STCV

SUMP

SUMS

SUMV

SVL1

SVL4

SVL8

SVR1

SVR4

SVR8

SVVN

SWPS

TMOV
TPUT

WBNC

UumMov

© © ©O© W Fr ©O ©

11

11

11

SPN,el,e2
SPN,el,e2
el ,e2

SPN,el,e2
SPN,el,e2
SPN,el,e2

SPN,NPX,el
e2

SPN,COL,ROW
HGT,LEN,IK1

SPN

COL,ROW,HGT
LEN

SPN,COL,ROW
HGT,LEN,el
e2, ...,avl

SPN,el,e2
L. ..,avi

COL,ROW,HGT
LEN,el,e2
, . ..,avi

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,NPX,el
e2

SP1,SP2,SP3
SP4

<EY,avi

KEY,SP1,COL
ROW,el

SP1,SP2,SP3
SP4,HGT,LEN
COL,ROW,KEY
avl,el,e?

SP1,SP2,SP3
SP4,HGT,LEN
COL,ROW,av1l
el,e2

Scroll sprite left 1 byte, no wrap.
Scroll sprite left 2 bytes, no wrap.
Set sprite space.

Scroll sprite right 1 pixel, no wrap.
Scroll sprite right 1 byte, no wrap.
Scroll sprite right 2 bytes, no wrap.

Scroll sprite vertically NPX pixels, no wrap.
Set colour throughout sprite window.

Set colour throughout whole sprite.

Set colour throughout whole screen window.

Sum the sprite window and assign or compare.

Sum the whole sprite and assign or compare.

Sum the screen window and assign or compare.

Scroll the screen window left 1 pixel, no wrap.

Scroll the screen window left 1 byte, no wrap.

Scroll the screen window left 2 bytes, no wrap.

Scroll the screen window right 1 pixel, no wrap.

Scroll the screen window right 1 byte, no wrap.

Scroll the screen window right 2 bytes, no wrap.

Scroll the screen window vertically NPX pixels,
no wrap.

Reverse frame sequence.

Execute one instruction in a tracker.

Launch a tracker.

Bounce using block over-write.

Linearly move using block over-write.

108

WMVJ

WPL1

WPL4

WPL8

WPR1

WPR4

WPR8

WPVN

WSL1
UsSL4
USL8
WSR1
WSR4
WSR8
USVN

WVL1

WwvL4

WVL8

UVR1

WVR 4

WVR8

XMOV

11

© © © 0w © ©O ©

11

SP1,SP2,SP3
SP4,HGT,LEN
COL,ROW,KEY
3Vl,el,e?2

SPN,COL,ROW
HGT,LEN,el
e2

SPN,COL,ROW
HGT,LEN,el
e2

SPN,COL,ROW
HGT,LEN,el
e2

SPN,COL,ROW
HGT,LEN,el
e2

SPN,COL,ROW
HGT,LEN,el
e2

SPN,COL,ROW
HGT,LEN,el
e2

SPN,COL,ROW
HGT,LEN,NPX
el,e2

SPN,el,e2
SPN,el,e2
SPN,el,e2
SPN,el,e2
SPN,el,e2
SPN,el,e2

SPN,el,e2
NPX

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,el,e2

COL,ROW,HGT
LEN,el,e2

SP1,SP2,SP3
SP4,HGT,LEN
COL,ROW,3V1
el ,e2

Move under keyboard/joystick control using

block over-write.

Scroll sprite window left 1 pixel, with wrap.

Scroll sprite window left 1 byte, with wrap.

Scroll sprite window left 2 bytes, with wrap.

Scroll sprite window right 1 pixel, with wrap.

Scroll sprite window right 1 byte, with wrap.

Scroll sprite window right 2 bytes, with wrap.

Scroll sprite window vertically NPX pixels,

with wrap.

Scroll whole sprite
Scroll whole sprite
Scroll whole sprite
Scroll whole sprite
Scroll whole sprite

Scroll whole sprite

left 1 pixel, with wrap.
left 1 byte, with wrap.
left 2 bytes, with wrap.
right 1 pixel, with wrap.
right 1 byte, with wrap.
right 2 bytes, with wrap.

Scroll whole sprite vertically NPX pixels,

with wrap.

Scroll screen window left 1 pixel, with wrap.

Scroll screen window left 1 byte, with wrap.

Scroll screen window left 2 bytes, with wrap.

Scroll screen window right 1 pixel, with wrap.

Scroll screen window right 1 byte, with wrap.

Scroll screen window right 2 bytes, with wrap.

Linearly move using exclusive-OR.

THE SPRITE GENERATOR
by Cyclone Software

INTRODUCTION

The sprite generator program was developed to compliment the Laser series of languages. The
languages are comprised of commands for manipulating sprites and screen data butdo not have the
facility to directly design sprites. This means there are two phases to games creation. The first
involves designing and editing your sprites with the sprite generator program, and the second
involves the writing of the game itselfusing the Laser languages. Inpractice the two areas of work will
probably be carried out simultaneously. The sprite generator program is designed to work in all three
of the Amstrad’s screen modes. Inorder to make the sprite generator as easy as possible to use, all
operations are executed in the same way regardless of the screen mode you are in. The rotation
operation, however, should only be used in mode 1.

THE MAIN MENU

The main menu shows all the optionsthat are available to you. You may selectone ofthese options by
pressing the appropriate number. Options 1,2 or 3 will allow you to design sprites. Option 4 allows the
sprites you have designed to be saved to tape or disk. Option 5 allows sprites that have previously
been designed to be loaded back into the sprite generator. Option 6 allows sprites on tape or disk to
be merged with the sprites currently held in the sprite generator. Ifyou are using a disk then option 7
allows you to examine what is on a disk and if you so desire erase a file. Option 8 allows you to
animate between several sprites in a defineable pattern. Option 9 allows you to choose between
using tape or disk.

GLOSSARY OF TERMS

THE CHARACTER SQUARE

The character square refers to the 8 by 8 grid which is situated in the top left hand corner of the
screen. This is the area used to create and edit sprites, one character at a time.

THE SPRITE DISPLAY AREA

This is the larger area located at the bottom of the screen and is the area used to create, develop,
transform and generally work on sprites.

THE CHARACTER SQUARE CURSOR

This is the non-destructive flashing cursor which is used to design and edit the character currently
held in the character square.

THE SPRITE DISPLAY WINDOW

The area of the screen currently being worked on is refered to as the sprite display window. Its
position is defined by SX and SY which corresponds to the position of thetop left ofthe window, and
its dimensions are defined by XS and YS. Top left of the sprite display area has co-ordinates SX:0,
SY:0. To display the window you are currently working on, press “:" (colon) and it will flash.

SPRITE LIBRARY

This refers to the set of sprites you are currently working with and contains between 1 and 255
sprites. When the program is first RUN you are asked to enter the maximum sprite number which you
wish to use.

SPRITES

A sprite is aprogrammable graphics character. The sprite generator program can develop up to 255
sprites of user selectable dimensions. The amount of free memory in the generator is about 6k, but
Laser BASIC can merge a number of sprite files so this is not a problem.

INKS AND PAPER

When working inscreen mode 0,16 INKS are available, in screen mode 1,4 INKS are available and in
screen mode 2 only 2 INKS are available. The colours ofthese INKS are displayed to the right of the
character square. The colour of the INK currently in use is indicated by an arrow. The first INK (INK 0)
is referred to as paper and this will be the colour displayed where no pixels are set. Changing the
colour of the first INK will cause the whole background of the screen to change colour.

110

DESIGNING YOUR SPRITES

THE SPACE BAR

The sprite generator program operates in two modes, character mode and sprite mode. Incharacter
mode the sprite generator allows you to design characters on the character square and then put
down or pick up characters from the sprite display area. In sprite mode the sprite generator allows
you to develop and transform your sprites on the sprite display area. The SPACE BAR allows you to
switch between character mode and sprite mode.

CHARACTER MODE

Cursor movement
The non-destructive cursor may be moved over the character square using the following keys:

A to move left;
D to move right;
W to move up;
X to move down.

Ifthe 'SHIFT' key is pressed with one ofthe above keys then the cursor on the sprite display area will
move and CX or CY will be updated. The use of ‘A’, O', 'W' and 'X' is replicated by the joystick, if
present.

The ‘S’ key

This allows you to place a character from the character square onto the sprite display area at the
current cursor position which is defined by CX and CY. In order to help you a cursor will flash to
indicate the position of CX and CY on the sprite display area.

The ‘L’ key

This allows you to pick up a character from the sprite display area atthe currentcursor position and
expand it into the character square.

The T key

Pressing the T key will cause the INK currently in use to cycle through all the available colours until
the T key is released.

The ‘C key

Pressing the 'C' key will simply clear the character square. Ifthe 'SHIFT' key is pressed at the same
time then the character square will remain intact but the sprite display area will be cleared.

The SPACE BAR
Pressing the SPACE BAR puts the sprite generator into sprite mode.
The 'P' key

Pressing the 'P’key will move the arrow indicating the INK being used downward, ifthe 'SHIFT' key is
pressed at the same time then the arrow will move upward.

The ‘J’ key

When spritesare used in a program the colour ofthe INKs will usually be setto those used when the
sprites were designed. To make this easier pressing the 'J' key will display the colour number thatall
the INKs are set to.

The'B 'key
Pressing the 'B' key changes the colour of the border.

The ‘CLR’ key
Pressing the ‘CLR’ key homes both of the cursors (sends them back to the top left).

111

The ENTER’ key

The 'ENTER' key sets the pixel at the current cursor position on the character square grid to the
current pen. Ifajoystick is connected then the fire button can be used to carry out the same function.
The ‘DEL’ key

The 'DEL' key sets the pixel atthe current cursor position on the character square to the paper colour
(INK 0).

The 'E' key

Pressing the 'E’' key allows you to enter data directly onto the sprite display area at the current
position. When the 'E' key is pressed you will be asked whether you want to enter the data in decimal
or binary. You should respond by pressing either 'D' or 'B' respectively. You will then be asked to
enter 8 bytes of data. These will be placed directly onto the sprite display area and will leave the
character square unaffected.

The‘R’ key

Pressing the 'R’ key with the 'SHIFT' key will return you to the main menu.

SPRITE MODE
Sprite display window movement
The sprite display window may be moved using the following keys:

A to move left;

D to move right;
W to move up;

X to move down.

Sprite display window size

The size of the sprite display window may be altered by pressing the following keys together with the
‘SHIFT key.

to decrease length of window;
to increase length of window;
to decrease height of window;
to increase height of window.

xgo»

Note that the use of 'A’, 'D', 'W' and 'X' to move and re-dimension is replicated by the joystick if
connected.

The ‘@’ key

Increases the X-increment (in bytes) by which the sprite display window will move. The increment will
increase up to a value of 8, then re-start from 1.

The ’; key

Increases the Y-increment (in pixels) by which the sprite display window will move. Again the
increment will increase until it reaches a value of 8 and then re-start from 1.

The ‘L’ key

Pressing the 'L' key allows a previously created sprite to be placed on the sprite display area at the
current cursor position. The whole sprite will be put onto the sprite display area regardless of the
current size of the sprite window.

Th- ‘S’ key

This allows you to 'GET' a sprite into memory. Pressing the ‘S’ key creates a sprite with the
dimensions of the current display window and the current SPN value (provided it has not already
been allocated). The data in the window is automatically ‘GOT’ into the sprite. If the sprite number
were previously allocated then a low 'beep’ would be issued and no other action taken. If the
operation were successful then a high 'beep' would be heard.

The'P’ key

The sprite generator program puts sprites to the sprite display area in 1 of 6 ways. This is referred to
as the print mode. The six print modes are as follows and are represented by PMD.

BL Block 'PUT' data onto sprite display area

OR OR data onto sprite display area

XOR XOR data onto sprite display area

AND AND data onto sprite display area

IF Place data in front of the data currently on the sprite display area
BH Place data behind the data currently on the sprite display area

Pressing the 'P' key will cycle through these print modes.
The'N'key

Pressing the 'N' key will increment the current sprite number (represented by SPN). Ifthe 'SHIFT' key
is pressed at the same time as the 'N' key then the current sprite number will be decremented.

The 'F' key
Switches on the special FILL cursor which can be guided around the sprite display area by the
'A''D','W" and 'X' keys (or a joystick). Pressing 'ENTER" or 'FIRE" will FILL the appropriate area, from

the cursor position, with the current INK. Pressing SHIFT and 'F' will set the whole sprite display
window to the current INK colour.

The 'E’ key

The 'E' key allows a previously created sprite to be erased. Before actually erasing the sprite you will
be asked "ARE YOU SURE? (Y/N)" this is to safeguard against the accidental erasure of sprites.

The '0' key

Pressing the '0' key toggles 'wrap' for the scrolls (represented by WRP) on and off. If'wrap’ is turned
on when a scroll is performed any data thatgoes off one side ofthe sprite display window reappears
on the other side, whereas if 'wrap' is turned off it does not.

The Arrow keys

The arrow keys have two functions. When used on their own the sprite display window is scrolled in
the appropriate direction. If, however, the 'SHIFT' key is pressed at the same time then a flip
(mirroring) will be performed. The following types of flips can be achieved by pressing the 'SHIFT' key
with the arrow keys:

— flips the contents of the sprite display window about the Y axis,
t flips the contents of the sprite display window about the X axis

— flips the contents of the sprite display window to the right of the window (creates a horizontally
symmetric window).

| flips the contents of the sprite display window to the bottom of the window (creates a vertically
symmetric window).

Using the'—"and 'l' keys itis possible to produce a symmetrical design whilst only having to create
half or a quarter of the full design.

The ‘B’ key
Ifthe ‘B’ key is pressed then the contents of the sprite display window will be magnified horizontally.

Ifthe 'SHIFT' key is used in conjunction with the 'B' key then the contents ofthe sprite display window
will be magnified vertically.

The ‘T’ key

Using the 'T' key you are able to rotate the contents of the sprite display window by 90 degrees in a
clockwlJse direction into another area of the screen. When the 'T' key is pressed it is taken that the
data contained within the sprite display window is the data to be rotated. The sprite display window
should be placed in the position where the data isto be rotated to. When the cursor is in position the
'ENTER’ key should be pressed. The area to which the data is being rotated should not overlap the
area from which the data is taken. The height of the area to be rotated is rounded down to the nearest
multiple of 8 pixels. See SPNV.

113

The ‘Z’ key
Pressing the Z' key will invert the contents of the sprite display window.

The ‘H’, ‘G’ and ‘V’ keys

Itmay be necessary at some stage to design a sprite that is bigger than the size of the sprite display
area. This may be done by creating a large sprite in memory and then designing it, a section ata time.
Pressing the 'H' key will create a large sprite in memory. You will be asked to enter the width of the
sprite in bytes and the height of the sprite in pixels. Pressing the ‘G’ key ‘GETs' the contents of the
sprite display window into the large sprite. You will be asked for the column and row positions within
the sprite. Pressing the *V' key will place a section of a large sprite onto the sprite display area. The
position at which this is placed and the size of the section to be placed will be indicated by the sprite
display window. You will be asked to enterthe row and column position within the spritefrom which
the data is to be taken. The sprite number is again indicated by SPN.

The ¥ key

Pressing the'[key changes the amount by which the sprite display window will be scrolled when a
horizontal scroll is performed.

The T key

Pressing the'l key changes the amount by which the sprite display window will be scrolled when a
vertical scroll is performed.

The'K’ key

This option provides you with the facility to change the colour of particular pixels in the sprite display
window for some other colour (see SETV). This does not effect the colour of the INKs but actually
changesthe pixels in the spritedisplayarea. When the'K' key is pressed you will beasked forthefirst
INK. This is the INK number of the pixels to be changed. Then you will be asked to enter the second
INK. This is the INK number to which the pixels are to be changed.

The 'M’ key

The 'M' key performs the function of masking and de-masking a sprite. Ifthe ‘M' key is pressed then
the sprite who's number is shown in SPN will be masked. Ifthe 'SHIFT' key is pressed at the same
time as the 'M' key then the sprite who's number is shown in SF*N will be de-masked.

Th- .’

When the'’ key is pressed, the current sprite display wondow will flash until the key is released. This
option is provided to locate the position and size of the current window.

The T key

When the T key is pressed a new set of information will be shown.

The‘R’ key

Pressing the 'SHIFT' key atthe sametimeasthe 'R' key will return you tothe main menu. Please note
all data contained in both the character square and in the sprite display area will be lost when you
return to the main menu. All system pointers are also reset to their default values.

ANIMATING SPRITES

You are able to animate between several sprites by choosing option 8 from the main menu. The
sequence through which the sprite generator will animate is entered at the top of the screen, the
actual animation will take place on the sprite display area at the bottom.

Entering an animated pattern

To enter a sprite into the animation sequence you must move the cursor to the position in the
sequence where the sprite is to be entered. Then type in the number of the sprite that you wish to
enter at the position followed by 'ENTER'. At the end of your animation pattern enter ‘R’ and at this
point the animation pattern will start from the beginning again.

Cursor movement

The cursor that indicates the current position in the animation sequence may be moved by the
following keys:

A to move left;
D to move right;
W to move up;
X to move down.

Ifthe 'SHIFT’ key is pressed with one of the above keys then the cursor on the sprite display will move.
This cursor indicates the position at which the animation sequence will be displayed.

The SPACE BAR

Pressing the SPACE BAR starts and stops the animation sequence.
The'R’ key
Pressing the 'SHIFT' key at the same time as the 'R' key will return you to the main menu.

SAVING SPRITES

You can save your sprites onto tape ordisk by selecting option 4 from the main menu. After selecting
this option you will be asked for the filename under which the sprites are to be saved. The filename
should be typed in upper case with a maximum of 5 characters. Three sets of data are saved, the first
contains system variables used by the Laser routines, the second contains the sprite table holding
information about each sprite, and the third is the actual sprite data.

LOADING SPRITES

Option 5 will allow a file of previously saved sprites to be loaded from tape or disk. After selecting this
option you will be asked for the filename of the sprites to be loaded. "SPR" will automatically be
appended to the filename you enter. The new maximum sprite number (from the loaded file) is
displayed and an option is given to alter it. Ifyou respond with "Y" to the prompt then a new SMAX
should be entered. This must be in the range 1 to 255. Ifthe file is not found, the prompts will still be

issued but you will probably respond with "N" unless you wish to modify SMAX for some other
reason.

MERGING SPRITES

Sprite files can also be merged from tape or disk. However, this can only be done if none of the sprites
being merged from tape or disk have the same number as any of the sprites thatare currently held in
the sprite generator and if the maximum number of the sprites being merged does not exceed the
current maximum sprite number, entered at the start of the session when you first RAN the program.

Again, after selecting to merge sprites you will be asked to enter the filename of the sprites to be
merged from tape or disk.

A SAMPLE SESSION WITH THE SPRITE GENERATOR

Ifyou haven'talready loaded Laser BASIC then load thisfirst.The sprite generator program can now
be loaded and RUN, making sure the keyboard is in upper case before RUNning - if not press CAPS
SHIFT. You should also ensure that the volume is turned up to make error ‘beeps' audible.

Tape users place Tape 2 Side A in the cassette and type RUN"SPTGEN. Disk users just type
RUN"SPTGEN to load and run the sprite generator program.

When the program first executes you will be prompted to enter the maximum sprite number. This
should be avalue in the range 1to 255, but for now, enter 120. The message "IFYOU HAVE MADE AN
ERROR YOU WILL HEAR..." will appear, and two low beeps will be heard. This is to demonstrate what
will be heard when an error occurs. The message "IF THE OPERATION WAS SUCCESSFUL..." will
appear and two high beeps will be heard. This is to demonstrate what w.Il be heard ifan operation is
successful. Now press any key and the main menu will appear.

You wilfnow need some sprites to work with; we will use the SPT1 sprites (see Appendix A).
The SPT1 sprites should be loaded using the following procedure:

1. Ifyou are using tape then you should place the cassette containing the SPT1 sprites into the
cassette player. The SPT 1 sprites are situated directly after the sprite generator on tape 2 side
A.

115

2. From the main menu select option 5. This allows you to load your sprites.

3. The prompt "ENTER FILENAME” should appear. You should now enter “SPT1” followed by
the key marked 'ENTER'. Note that “SPR" is automatically appended to the filename. For the
purposes of this session, do not modify the maximum sprite number (so type N).

4. You will now return to the main menu.

We are going to start the sample session in 16 colour mode (MODE 0) so select option 1 from the main
menu.

THE CURSOR KEYS

The 'A','D', 'W'and 'X' keys will allow you to move the flashing cursor around the character square. By
pressing the 'SHIFT’ key and the above keys you may move the cursor around the sprite display area.
Use the keys to move both of them around until you get a feel for it. Notice that the cursors will wrap
around, that is to say they will re-appear on the opposite side if they are moved off the edge of the
character square or the sprite display area.

Inorder to set a particular pixel, move the character square cursor to the required position, release
the cursor keys and press 'ENTER'. Move the cursor to the next position you want to set and press
'ENTER' again. To unset a pixel, position the cursor over the set pixel and press 'DEL". If neither of
these keys are pressed then the cursor moves non-destructively. That is to say it moves around the
screen without affecting the cells it moves across. Now spend a few minutes getting used to the
cursor keys by creating, for example, a space invader. ltdoesn't have to be a work of art, but will serve
to demonstrate some of the package's functions.

The ‘S’ and ‘L’ Key*

Now that you have designed a character it's time to see what it will look like, reduced to real size on
the sprite display area. Press 'S’ to put your invader onto the sprite display area, it will appear at the
current sprite display area cursor position. Now press 'C' and this will clear the character square.
Press 'L' to lift the invader back to the character square. Using this method, sprites can be created or
edited a section at a time.

Before going any further, let's take a quick look atthe internal format ofthe Amstrad's pixel data. You
may skip this section if you wish and come back to it at a later date.

When characters are stored on the screen they are stored either in 8 bytes, 16 bytes or 32 bytes,
depending on which screen mode you are in at the time. A byte is an 8 bit number. The bits are
numbered from 0 to 7 starting from the right hand side, and each bit represents the value oftwo to the
power of the number of the bit. Therefore, ifjust bits 2 and 5 were set, then the value of the byte would
be 36. The corresponding values of each bitin a byteare shown below in Fig. 1.BitOisthe rightmost
bit, bit 7 is the leftmost bit.

FIG.1 BitO =2tothepowerofO= 1
Bit 1 =2 to the powerof 1= 2
Bit 2 =2 to the powerof2 = 4
Bit 3 =2 to the power of 3= 8
Bit4 =2tothepowerofd= 16
Bit 5 =2 to the power of 5 = 32
Bit 6 =2 to the power of 6 = 64
Bit 7 =2 to the power of 7 =128

In screen mode 0, 32 bytes are needed to produce a character. The first byte produces the colour of
the first two pixels inthe top line ofthe character, the second byte produces the second two pixels in
the top line of the character, the third byte produces the next two pixels, the fourth byte the last two
pixels, then the fifth byte will produce the colour of the first two pixels of the second row of the
character. Each byte represents 2 pixels which are encoded as follows:

Right pixel - bits 0,4,2,6
Left pixel - bite 1,5,3,7

In screen mode one, 16 bytes are required to store a character. The first byte produces the colour of
the first four pixels in the top row of the character. The second byte produces the colour of the last
four pixels in the top row ofthe character, thethird byte producesthe colourofthefirst four pixels in
the second row of the character and so on. Each byte represents 4 pixels which are encoded as
follows:

Left pixel - bits 0,4
Second pixel - bits 1,5
Third pixel - bits 2,6
Right pixel - bits 3,7

In screen mode two, only eight bytes are required to store a character. In this screen mode each bit
simply indicates whether the corresponding pixel in the character row is on or off. Now for our
invader, firstly press the'E’ key then respond to the question “Decimal or Binary” by pressing the 'D’
key. You will then be asked to enter the first byte value which can be found in Fig. 2. Then enter the
second byte, third byte and so on until all 8 are entered. Now move the cursor on the sprite display
area one place to the right and enter the 8 bytes in Fig. 3, using the same procedure used to enter the
data in Fig. 2. Then move the cursor another place to the right and enter the 8 bytes in Fig. 4. Then
move the cursor another place to the right and enter the last 8 bytes in Fig. 5.

Fig.2 Fig.3 Fig.4 Fig.5
1st byte = 17 0 0 34
2nd byte = 34 0 0 17
3rd byte = 17 51 51 34
4th byte = 51 17 34 51
5th byte = 51 17 34 51
6th byte = 51 51 51 51
7th byte = 17 34 17 34
8th byte = 34 0 0 17

Back to the Sample Sesslon....

Now let us change the INK colours. Press the 'P' key and you will cause the arrow to move down the
INKs (SHIFT 'P' moves the arrow up). Ifyou now press'ENTER’, a pixel on the character square is set
to the INK colour pointed to by the arrow - try it. Although there are only 16 INKs available in this mode,
by pressing the T key you will cause the current INK to cycle through all of the available colours. You
will notice that all the pixels on both the character square and the sprite display area of the INK
pointed to by the arrow will change colour. Ifyou now press the 'J' key, all the values of the INKs will
be displayed, and these should be noted down before saving sprites, so that you can setthe INKs in
your Laser BASIC programs to the required values. Press ‘J’ again to return to the original screen.

Now press the ‘'SPACE BAR' to enter sprite mode. Notice thatthe cursor indicators (CX and CY) have
been replaced by the sprite display window indicators (SX and SY). To view the window, hold down"'
and it will flash to indicate its size and position. The window can be moved by pressing the 'A", 'D", 'W'
and 'X' keys (to move left, right, up and down respectively) or by using a joystick. The width of the
window can be increased or decreased in length by pressing SHIFTed 'A’' or SHIFTed 'D' and the
height can be increased ordecreased by pressing SHIFTed 'W’or SHIFTed 'X'. Again, SHIFT can be
used together with the joystick to produce the same result.

CREATING A SPRITE

Move the window to the top left hand corner of the sprite display area so that the SX and SY values
indicate 0. Now press the T key and a new set of information will be displayed. Press the 'N' key (or
SHIFT 'N' key) until the value of SPN in the top right hand corner is 5. Now press 'L' and sprite 5 will
appear. Press T again and another set of information will be displayed, giving all the information
about sprite 5. Press T again and you will be back to the original information.

We will pretend this sprite hasjust been designed. You could ifyou wish go back to character mode
(SPACE BAR’)and change the colours of the INKs; ifyou do, press the 'SPACE BAR' to return to sprite
mode.

The following sequence must be followed to create a sprite. Adjust the sprite window until itcontains
all the pixel data required in the sprite. You will notice that the values of LEN and HGT will change; in
this example LEN should be around 7 and HGT around 23. Press T and set SPN to 26 (an undefined
sprite).

Press ‘'S' (you will hear a high beep) and the sprite will be created. Press T and all theinformation for
the sprite will be displayed. Press T again to return to the original information display. Move the sprite
window to a clear part of the screen. Press ‘L' and ifall has gone well, the new sprite will be puton the
screen.

NOTE: Ifyou try to create a sprite with a number which has already been allocated, then a low pitched
beep will be heard. Ifthe latter is ever the case then try again using a different SPN number.

117

You may also erase a sprite by setting SPN to the appropriate value and then pressing the 'E' key. The
number of the sprite that you have just erased can now be re-allocated.

The SPT1sprites you have loaded into memory are a mixture of both 16 and 4 colour mode sprites but
only 16 colour mode sprites will be displayed correctly in the current mode (main menu option 1).

We will now display anotherone ofthe SPT1 sprites. Firstdecrease SPN to 6 using 'SHIFT' and 'N',
then press 'L' and sprite 6 will appear. Move the sprite display window with theusual keys 'A", 'D’,"W"
and ‘X’ until its top left hand corner aligns with the displayed sprite’s top left hand corner. Now modify
the size of the sprite display window using 'SHIFT" and 'A’,'D', ‘W’ and ‘X’ until it fits over the sprite.

SPRITE SCREEN TRANSFORMATIONS

We will now perform some scrolls and flips. Press the right arrow key and the sprite will scroll to the
right. Notice that WRAP is off at the moment (WRP is set to 0); if WRAP was on, then the part of the
sprite that had disappeared would wrap around to the other side. Now press the downwards arrow
key and the sprite will scroll towardsthe bottom, the WRAP is still off. Using ‘L', place the sprite back
onto the display area. Press the '0' key and WRAP will be on, (WRP is setto 1) and now see the effect
of scrolling the sprite. Press '0' again to set WRP to 0.

Now let's perform a flip. Press 'SHIFT' and ‘UP ARROW?’, and the contents of the sprite display
window will be turned upside down (vertically mirrored).

We are now going to FILL an area with a particular INK. For this example you will need to design an
enclosed outline on the spritedisplay area. Once you have done this, change the INK and enter sprite
mode. Then press 'F'. You will now have control ofasmall flashing pixel. Using keys'A’,'D’,'W"and 'X’
or thejoystick, move this flashing pixel inside the outline and press 'ENTER' or 'FIRE', and the whole
interior should be FILLed with the current INK. Ifthere were any gaps in your outline, the INK will be
seen to flood all over the sprite display area!!

Move the sprite display window to a free part of the sprite display area, enter character mode and
move the arrow to a particular INK. Now go back into sprite mode ('SPACE BAR') then press 'SHIFT'
and 'F’. The whole of the sprite window will be flooded with the INK you chose.

Press the 'L’ key to put sprite 6 on the screen. Position the window over the sprite.

Now let's change all the pixels in the sprite display window which have a particular INK value to have
a different INK value. Press 'K' and you will be prompted to inputthe INK number you wish to change,
so type in number 3 and then 'ENTER". You will now be asked to enter the INK number you wish to
change itto, so type 14 and then 'ENTER’. This will change everything drawn in INK 3 to INK 14.

At this stage let’s go back to the main menu. Go back to character mode by pressing the 'SPACE
BAR'. Before you return to the main menu check that all the sprites on the sprite display area have
been stored in memory as the sprite display area is about to be cleared. Now press 'SHIFT' and 'R’
and the main menu will be displayed.

MODE 1 SPRITES

Select Option 2 to use the sprite generator in graphics mode 1. The display is similar to the one
selected by option 1.

Press the SPACE BAR and then press 'L’. SPN will be setto 1 (the default value on selecting the
option) so sprite 1 will appear on the screen (sprite 1is a MODE 1 sprite). You may, if you wish, go
back to character mode and set the INKs to their preferred colours.

ROTATION

We are now going to demonstrate rotation (which will only work correctly in this mode). Firstly set the
spritedisplaywindowtocoverthetank(rememberthatHGTmustbedivisibleby8). LEN should bel0
and HGT should be 24.

You can check thatthe sprite display window lies overthe tank by holding down':'or by pressing 'Z'
to invert the window. If you do invert the window by pressing 'Z' then 'Z' should be pressed again
before you proceed.

Press 'T'and move the sprite display area window to a free part of the screen (clear of the tank) and
then press ENTER. A 90 degree rotated tank will appear.

118

SPRITE DISPLAY WINDOW AND SPRITE CURSOR REVISITED

By now you will probably have noticed that it takes a long time to move the.sprite display window or
cursor around the sprite display area. The sprite generatoris provided with a facility to change the X
and Y increments which define the speed the display window and cursor move at. In both character
mode and sprite mode, the '@' key will change the value of XS, and the '} key the value of YS. The
valuesforthetwo modes are, however, independant, so changing XS and YS in character mode will
not affect the values displayed when you enter sprite mode. Press the ‘@' key until XS is 8. Press the';
key to change the value of YS until itis also 8. You can now move around in large steps.

The rate of sprite display window scrolling can be changed using the'[' and 7 keys. In sprite mode
press the T key. You will see two values XSC and YSC displayed. XSC is the resolution of sideways
scrolling. This isset to 'PIX' when the sprite generator is first loaded. This gives the scrolling a
resolution of 1 pixel.

Ifyou now press'['a resolution of 1 byte will be set, press'[’again and a 2 byte resolution is set. Press
' and try a sideways scroll.

YSC indicates the vertical scrolling resolution. Pressing'[will increase the value in a cycle of 1to 8.
Try some scrolls with various values of XSC and YSC to see the results.
MORE SCREEN TRANSFORMATIONS

Place the sprite display window at the top left of the sprite display area, i.e. SX and SY should be setto
0. Press 'L'to put sprite 1 onto the screen. Now move the sprite display window to cover the sprite (a
tank). Check its position using either the * key or the 'Z' key.

Press the 'B' key and the tank is magnified by a factor of 2 horizontally. You will notice that the LEN
value Is now twice the original value.

Press ‘SHIFT' and 'B' and the tank is magnified by a factor of 2 vertically. HGT now has twice its
original value. Ifmagnification would produce a result larger than the dimensions of the sprite display
area then no action is taken.

ANIMATION

Mostarcade games require a sequence of animated sprites. The sprite generator program provides
an option which enables you to view an animation sequence.

Return to the main menu by going into character mode and then pressing SHIFT 'R".
There are lots of examples of sprite animation in the demo, so we will now load in the SPT3 sprites.
Tape users will have to insert the demo tape.

Select option 5and type SPT3. Press 'N' in response to ‘change sprite max value', and once you have
returned to the main menu select option 8.

You will see that a cursor (">') is positioned at the top left hand corner of the screen. The sprites we
are going to animate are sprites 30 to 33 (the 'eyeballs’).

Type in 30 followed by ENTER, now move the cursor to position 2 using the 'D' key and type in 31
followed by ENTER. Move the cursor to position 3 using the 'A" and then the 'X' key and type in 32.
Finally, enter 33 at position 4.

Move the cursor to position 5 and press 'R'.
The animation data has now been entered and is ready to be run. Press the ‘SPACE BAR'to animate.

To return to the main menu type SHIFT 'R’.

MORE ADVANCED FEATURES

Return to the main menu and select option 2.

MASKING AND REMASKING

Sprites that are going to be moved using, for example, FMOV or BMOV must be MASKed. You can do
this in your Laser BASIC program or in the sprite generator program.

Set SPN to 10 and press ‘L’to put sprite 10 onto the sprite display area. The first thing you will notice is
a series of vertical bars indicating that the sprite is already MASKed. Press SHIFT 'M'and you should
hear a high beep meaning the operation was successful. Whatyou have done is de-MASK the sprite
in memory. Press ‘L’ to rePUT the sprite and see the result.

119

To MASK a sprite you must make sure, as in sprite 10, that all the useful data is in the left hand side of
the sprite. Press 'M' and a high beep should signify a successful operation. Now press ‘L' and the
MASKed sprite will be displayed.

NUMERICAL DATA ENTRY

As stated earlier in this manual, sprites can be used to hold data for various applications. Ifyou press
the ‘SPACE BAR’to go back into character mode, and then press 'E', 'DECIMAL OR BINARY"' is
displayed. Press'D'for DECIMALand 'BYTE1'isdisplayed, sotype in 1and hitENTERfollowed by2,
4, 8, 16, 32, 64 and 128.

The data you have just entered will appear at the sprite screen cursor position.

SAVING YOUR FINISHED SPRITES

Once you have created your sprites, go back to the main menu. Toggle option 9 to point to either
'DISK" or 'TAPE' depending on your system. This is acheived by pressing the '9' key.

Now press '4' to select option 4 and input the filename. Remember you do not put 'SPR" at the end of
the filename as this is done foryou, e.g. ENTER 'FRED" and a file of sprites named 'FREDSPR" will be
saved.

If you accidentally break out of the sprite generator program, save off the sprites manually using
PSPR before typing RUN. Running the program will erase all the sprites from memory.

FUNCTION KEY SUMMARY

MAIN MENU OPTIONS:

OPTIONS FUNCTIONS

1,2,3 Allows you to design your sprites.

Character Mode

KEYS

A To move left.

D To move right.

W To move up.

X To move down.

SHIFT with Will move cursor around sprite display area.
(A.D,W,X)

S Places a character to the sprite display area.
L Picks up a character from the sprite display area.

Changes the colour of the current INK.

C Clears the character square.

SHIFT and C Clears the sprite display window.
SPACE BAR Puts the sprite generator program in to sprite mode.
P Moves arrow indicating the INK down.
SHIFT and P Moves arrow indicating the INK up.

J Displays the colour value of all the INKs.
B Changes the colour of the border.

CLR Homes both of the cursors.

ENTER Sets a pixel to the current INK.

DEL Sets a pixel to the paper colour.

E Enters data on to the sprite display area.
R and SHIFT Returns you to the main menu.

120

Sprite Mode

KEVS
A To move left.
D To move right.
W To move up.
X To move down.
SHIFT and A To decrease length of window.
D To increase length of window.
W To decrease height of window.
X To increase height of window.
@ Changes the X-increment for the sprite display window movement.
Changes the Y-increment for the sprite display window movement.
L Allows a sprite to be placed on the sprite display area.
S Allows a sprite to be saved to memory.
P Changes print mode.
N Increases current sprite number.
SHIFT and N Decreases current sprite number.
F Fills an area bounded by pixels.
SHIFT and F Floods the sprite display window with the current pen.
SHIFT and E Erases a sprite.
0 Toggles wrap on and off.
i Scrolls down.
Scrolls right.
Scrolls left.
t Scrolls up.
SHIFT and - Flips contents of window about the Y axis.
SHIFT and 1 Flips contents of window about the X axis.
SHIFT and - Flips contents of window to the right of the window.
SHIFT and | Flips contents of window to the bottom of the window.
B Magnifies window horizontally.
SHIFT and B Magnifies window vertically.
T Rotates window by 90 degrees.
z Invert the window contents.
H Creates a large sprite in memory.
G Saves the contents of the window to the large sprite.
Vv Loads a section of a large sprite from memory to the sprite display area.
[Changes the step when performing a horizontal scroll.
] Changes the step when performing a vertical scroll.
K Changes all occurrences of a INK in the sprite display window for some other
colour.
M Masks a sprite.
SHIFT and M De-masks a sprite.
Flash the current sprite display window.
| Displays information.
SHIFT and R Returns to the main menu.

121

APPENDIX A — SPT1 SPRITES
To load sprites into Laser BASIC, type: A$="SPT1 SPR" :~3SPR, 8A%$

Sprite No.

21
22
23
24
25

Description

Light tank

WWII Zero fighter
WWII Stuka
divebomber

Army helicopter
Ghost

Mutant strawberry
Mutant orange
Space cruiser
Space scout-ship
Space transporter
Deep sea submarine
Lunar rover

Lunar transporter
Jet interpreter
Alien

Sports car

Lunar explorer
Martian explorer
Martian probe
Helicopter
transporter
Helicopter gunship
Jet helicopter

Jet fighter

Saloon car
Shuttle

HGT LEN
19 9
13 8
16 8
15 11
22 7
20 5
16 6
19 10
19 9
14 11
18 15
15 10
18 14
16 13
22 6
15 13
21 10
27 16
35 10
19 15
17 15
16 15
16 13
16 14
20 13

eNeoNeoNoNeoNeoNoNoNeoNeNoNeoNolNolNoNole] O OO k-

[eNelNelNolNe)

Suggested colour values for inks

3

12
6
11

13
9

6

15
15
23
8

15
15
15
13
11
11
12
14
24
12

11
11
12
13
13

4

14
26
26

26

5

w

6

©

7

18

8

N

o

D 0>

10

‘e 3 v
N ooy

@ 0o wyg

11

g

oI

ol

© 0OSpOW O
C doepow o
»SNepow O

12

X %.0

13

o

S 8\OW O

w.

gr3*

14

o

NOI1ldO

NOILONN4

15

OOOl

sa1uds JnoA Bunewluy

APPENDIX B— SPT2 SPRITES
To Load sprites into Laser BASIC, type: AS=

Sprite No. Description Suggested colour values for inks
HGT LEN 1 2 3 4 5 6 7 8
1 Spider 16 4 14 6 0
2 Droid 16 4 15 18 0
3 Heart 16 8 0 0 6
<defined in
example session>
<defined in
example session>
6 OCEAN 1Q Logo 32 28 2 26 11 -
7 Ball 8 2 18 0 9
8 Joystick 16 4 6 0 13 -
9 Face 16 4 16 15 0
10 Teddy bear 40 8 15 17 0
11 Little man 16 4 16 7 9
12 Vintage car 16 16 0 13 14 -
13 Dragster 16 16 0 15 18 -
14 Bi-plane 16 3 13 0 0
15 Dummy sprite 18 9
16 <defined in
example session>
17 Mutant plant #1 22 7 19 0 9
18 Mutant plant #2 22 7 19 0 9
19 Mutant plant #3 22 7 19 0 9
20 Mutant plant #4 22 7 19 0 9
21 Walking robot #1 16 6 0 26 10 -
22 Walking robot #2 16 6 0 26 10 -
23 Walking robot #3 16 6 0 26 10 -
24 Walking robot #4 16 6 0 26 10 -
25 Scissors #1 20 8 13 0 0
26 Scissors #2 20 8 13 0 0
27 Scissors #3 20 8 13 0 0
28 Scissors #4 20 8 13 0 0
29 Undefined -
30 <defined in

example session>

31 Bricks 25 10 0 0 6
32 Dummy sprite 25 10
33 The letter ‘A’ 8 2 24 0 0
34 Dummy sprite 8 2
35 The letter 'a’' 8 2 24 0 0 -
36 Dummy sprite 2 1
37 The letter 'a’ 8 2 24 0 0
38 Blank block 8 2 24 0 0 -
39 Banana 17 5 25 0 0 0 0 0 0 0
40 Data sprite 1 13
41 Data sprite 1 11
42 Data sprite 1 170
43 Data sprite 1 170
44 Data sprite 1 19
45 Data sprite 1 7
46 Planet with moon 16 4 11 26 6
#1
47 Planet with moon 16 4 11 26 6
#2
48 Planet with moon 16 4 11 26 6
#3
49 Planet with moon 16 4 1 26 6 -
#4
50 Site 13 3 23 0 0
51 Data sprite 1 4
52 Arrowed square 24 6 25 6 0
53 Cat 22 7 0 12 0
54 Bird 25 5 0 0 4

1=

APPENOIX C(i) — SPT3 SPRITES (Sprite: u*ed In the demo part 1)
BASIC,

To

Sprite No.

a s wN

MPW

29
30
31
32
33
34
35
36

38
39
40
41
42
43

45
46
47
49

50
51
52
53
55
56
57
58
63
64
65
66
67
68
69

Load

«M

spri tes

into

Description

Tortoise

Rat

Hare

Stone floor section
Rope and pulley

lift

Cube

Space scout craft
Alien

Hopping alien #1(M)
Hopping alien #2(M)
Hopping alien #3(M)
Hopping alien #4(M)
Square

Stone call section
Ladder section

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Chasing alien #1(M)
Chasing alien #2(M)
Chasing alien #3(M)
Chasing alien #4(M)
Long cube

Data sprite
Eyeball #1
Eyeball #1
Eyeball #1
Eyeball #1

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Small ladder
section
Corkscrew #1
Corkscrew #2
Corkscrew #3
Corkscrew
Animated toilet #1
Animated toilet #2
Animated toilet #3
Animated toilet #4
Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Data sprite

Laser

type :
Please note that all sprites postfixed with (M) are in a MASKed form i

HGT LEN 1
17 8 0
17 9 0
17 8 0
8 7 0
23 7 0
8 2 0
23 6 0
24 10 0
33 10 0
33 10 0
33 10 0
33 10 0
16 4 0
2410 0
24 10 19
8 2
8§ 2
10 18
1 4
1 4
1 4
1 4
33 14 0
33 14 0
33 14 0
33 14 0
15 5 0

3 2

16 6 0

16 6 0

16 6 0

16 6 0

1 4

1 4

1 4

1 4

1 4

1 4

1 4

1 4

1 4

1 4

1 4

1 4

1 4

1 4

8 3 0

20 4 0

20 4 0

20 4 0

20 4 0

19 7 14

19 7 14

19 7 14

19 7 14

8 1

8 1

8 1

8 1

8 1

8 1

8 1

2

O O O 0 0w o ™

w o ooo

16
16

16

AT <

Sliggested alternative colours for the inks

3

12
10
15
9
7

=N
o O

[Nl NeolNeNoNeNo)

14
14
14
14

© © © ©

oW W W W

4

24

4

5

6

7

8

9

10

11

12

13

14

15

8cT

62T

APPENDIX C(ll) — SPT4 SPRITES (sprite: used in the demo part 2)

°R

N
N

OOO':\OOOOOOOOOOOO

To load sprites into Laser BASIC, type:
Sprite No. Description

HGT LEN 1
6 OCEAN IQ Logo 33 28 9
70 Stone brick 16 8 0
71 Stone brick 16 8 0

with weeds

72 Walking monk #1(M) 26 10 O
73 Walking monk #2(M) 26 10 O
74 Walking monk #3(M) 26 12 0
75 Climbing monk #1(M) 27 12 0
76 Climbing monk #2(M) 27 10 O
7 Climbing monk #3(M) 26 12 0
78 Stone window 36 7 0
79 Spearman #1 38 5 (6]
80 Spearman #2 38 5 0
81 Spearman #3 40 5 0
82 Pointing monk 29 5 0
83 Monk’s hand 6 5 0
84 Woman 35 3 0
96 Rocket plane #1(M) 14 24 (6]
97 Rocket plane #2(M) 14 24 O
98 “Press any key" (M) 8 50 14
100 Data sprite 1 20
101 Data sprite 1 20
102 Data sprite 1 20
103 Data sprite 1 20
104 Data sprite 1 20
105 Data sprite 1 20
106 Data sprite 1 20
107 Data sprite 1 20
108 Data sprite 1 20
109 Data sprite 1 20
110 Data sprite 1 20
in Data sprite 1 20
112 Data sprite 1 20

APPENDIX C(iii) — SPT5 SPRITES (sprites used in the demo part 3)
AS="SPT5SPR":feSPR,3AS

To load sprites into Laser BASIC, type:
Sprite No. Description
HGT LEN 1

60 Platform game 7 49 -
Channel A music sprite

61 Platform game 1 128 -
Channel B music sprite

62 Platform game 1 152 -
Channel C music sprite

86 Loading screen 2 234 -
Channel A music sprite

87 Loading screen 1 94 -
Channel B music sprite

88 Loading screen 1 94 -
Channel C music sprite

90 Ocean IQ screen 3 119 -
Channel A music sprite

a1 Ocean IQ screen 2 128 -
Channel B music sprite

92 Ocean 1Q 1 75 -
Channel C music sprite

93 Hunch back screen 3 91 -
Channel A music sprite

94 Hunch back screen 1 237 -
Channel B music sprite

95 Hunch back screen 2 122 -

Channel C music sprite

A$="SPT4SPR" :~"SPR,3AS

Suggested alternative colours for the inks

3

5
5

OOOOOI—\I—\GHOOOOOO

4

5

QOO0 O0OO0OWWWNOOOOOO

5

Ny

2
2

NOORRLRPLPOOOOOOO

N
INEN

6

12
12
12
12
12
12

© ©

12
12

24
24

7

25
25
25
25
25
25

[eNeNe)

25
25
26
25
25

8

15
15
15
15
15
15

o o

15
15
15

9

o o

9
9

O0OppRrOOOOOOO

56R

10

Suggested alternative colours for the inks

3

4

5

6

7

8

9

10

o o

[eleololoNelNeoNoNoNeoNeNoNeNoNeNe]

11

12

o o

[elecNeNeoNoNoNoNoNeoNeooNoNoNoNo

12

13

o o

[eNecNeNeoNeloNeoNoNoNeoNoNoNoNoNe]

13

14

oo

[eNeNeNeoNoNoNoNoNoNeoNoNeoNoNoNo)

14

15

o o

[eNeNeoNeoNoNoNoNoNoNoNeoNeNoNeoNo]

15

NOTES NOTES

130 131

TECHNICAL ENQUIRY CARD

WE AT OASIS BELIEVE IN GIVING FULL TECHNICAL SUPPORT TO ALL
OUR PRODUCTS. TO ASSIST US, PLEASE FILL INTHIS CARD AND RETURN
TO THE ADDRESS BELOW. TELEPHONE ENQUIRIES, OR LETTERS NOT
ACCOMPANIED BY THIS CARD CANNOT BE ANSWERED. A REPLACE-
MENT CARD WILL BE ENCLOSED WITH OUR REPLY. ALL ENQUIRIES
WILL BE ANSWERED AT OUR FIRST OPPORTUNITY.

MAKE AND MODEL OF COMPUTER.
SOFTWARE PURCHASED.
VERSION No.

PLACE AND DATE OF PURCHASE.

YOUR NAME.

ADDRESS.
TELEPHONE No.
AGE OCCUPATION.

PLEASE WRITE YOUR ENQUIRY HERE.

Please return to:-

] OASIS SOFTWARE, 12WALLISCOTE ROAD, WESTON-SUPER-MARE,
AVON, ENGLAND. BS23 1UG.

