HiSoft
TurboBASIC

Amstrad BASIC
Compiler for the

CPC464/664/6128

HISOFT

High Quality
Microcomputer
Software

CONTENTS

Introduction
The Compilation Process
Getting Started With TurboBASIC

Saving compiled code
Program Development &Compilation
- A Quick Guide

Compilation Errors

Runtime Errors
BASIC keywords, functions and statements
accepted by TurboBASIC

Technical Information
Interpreted & Compiled Code

Using the Printer from compiled code
Passing Variables Between Compiled and
Interpreted Code

Example Program - INVADERS.BAS
Listing of INVADERS.BAS

PAGE

10
14

15
16
17
17

18
20

© Copyright HiSoft 1986

All rights reserved worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrival
system of any nature.

It is an infringement of the copyright pertaining to HiSoft TurboBASIC and
associated documentation to copy, by any reason other than for the purposes of
making a security back-up copy of the object code.

Introduction

Welcome to the world of fast programs and easy development given to you and
your Amstrad CPC464, CPC664 or CPC6128 with HiSoft's TurboBASIC
compiler. TurboBASIC is a totally new product which transforms your Amstrad
BASIC programs in to pure Z80 machine code, making them run between 7 and
80 times faster!

TurboBASIC is easy to use and is small enough to allow most programs to be
compiled. Before we start to use it we'll look in to the process of compilation to
see why having a program such as TurboBASIC is so handy.

The Compilation Process

When you write a BASIC program on your Amstrad you're taking advantage of
the machine's in-built interactive features. This means that you can write part of
a program, run it, correct any errors, add to the program, run it etc. This can be
done because the BASIC system used by the Amstrad machines is known as an
'interpreter’.

When a program is run, the BASIC interpreter's syntax checker looks at the
BASIC in each line and determines if it makes sense or not. If a line does not
make sense the syntax checker stops the interpreter and throws out a message
to the screen, along with the offending line. This syntax checker is able only to
detect what is known as a syntax error, which is a programming error stopping
a line forming part of a BASIC program because the line does not conform to
the syntax rules of the language, i.e. does not make any sense to the interpreter.
For example, just as we cannot say in English:

Time four half past is the

and expect to be understood by anyone, we cannot assign a string to a numeric
variable in Amstrad BASIC:

10 a = "This will cause a 'Type mismatch' syntax error"

and expect the interpreter to understand what we want.
TurboBASIC manual Page 1 TurboBASIC manual

The syntax checker cannot detect algorithmic errors, which are programming
errors that although perfectly legal BASIC, do not really do what you expect or
require. You may have a line which adds 10 to a variable, for instance, when in
fact you are supposed to be adding 5. Errors of this type are always the hardest
to find!

Once you have a valid BASIC program in the Amstrad's memory you may
execute it by typing RUN and pressing the RETURN or ENTER key. Errors can
still occur, of course, if you miss out lines or perform incorrect calculations. The
program will then stop with an error report, telling you at which line the error
occurred. You can then list the rogue line, correct the error (hopefully) and run
the program again. This is why the system is known as interactive as it allows
you to correct errors as they occur rather than having to run the program, find
all the errors and correct them all before running the program again,

Interaction is a feature of interpreters; when you RUN a program the interpreter
finds the first line of the program, which is stored in the computer as BASIC,
and works out what it is supposed to do with the line. This may involve
continuing on to other lines, it may involve calling subroutines or it may just print
something on the screen and finish. The interpreter then either reports an error
and allows you to interact again or executes the instructions in the line and then
it moves on to examine the next one.

Interpreted programs are automatically much slower than the computer truly is
capable of because each individual line has to be examined by the interpreter
program every time it is met. A FOR. . NEXT loop is not automatically converted
in to a machine code loop which ends after a certain number of iterations, but is
examined each time the line containing the NEXT is encountered and a check is
made to see if the end of the loop has been reached.

The Amstrad BASIC interpreter lives in the ROM (read-only memory) inside
the machine and cannot easily be removed. TurboBASIC supplants this
interpreter with a program known as a compiler.

A compiler is a program which converts a source programming language code

in to an object code. In the case of TurboBASIC the source code is Amstrad
Locomotive BASIC and the object code is pure Z80 machine code.

TurboBASIC manual Page 2 TurboBASIC manual

A compiler which converts a language in to a computer's native language is
particularly useful because computers - or the microprocessors inside them -
can only understand their own language (machine code) and therefore we
obtain much faster-running programs if we convert the whole program to native
code and then give it to the computer rather than convert each BASIC line into
native code every time we run the BASIC program.

Thus one main advantage of using a compiler is the increase in speed with
which our programs can run when compiled to machine code.

Other good reasons for using compilers are that it removes the need for us to
load an interpreter (no problem in the case of the Amstrad, of course, as the
interpreter is in ROM) and the object code which we run usually is smaller than
the source code we started off with. Smaller source code usually means that
programs load from disc or tape faster, too, so having a compiler is much more
fun than being stuck with an interpreter.

The TurboBASIC compiler produces machine code which does exactly what
the original BASIC source program does, but it does it considerably faster. The
object code produced by TurboBASIC is also its executable cod~ and may be
stored in memory or saved on disc as a normal AMSDOS '.BIN file.

As it is now in machine code the program cannot be run simply by typing RUN,
while it is in memory, as this is a BASIC interpreter command rather than a
native machine one. If the object code has been left in memory rather than sent
to a file it can be started using the BASIC interpreter's CALL statement, using
the address shown by TurboBASIC as the start of the program. If this address
were 26121, for example, we could start the program by typing

CALL 26121

and pressing RETURN or ENTER.

TurboBASIC manual Page 3 TurboBASIC manual

Typing in CALL followed by an address often is inconvenient and it's certainly
not as tidy as using the RUN command of the built-in BASIC interpreter, so
TurboBASIC adds a new external command to the system: | RUN. An external
command is one which is prefixed by the | symbol, such as |CPM or |ERA.
TurboBASIC actually adds three external commands, {RUN, | MAKE and
ICOMPILE. We'll look at the purpose and usage of | MAKE and | COMPILE later;
the {RUN command causes the program just compiled by TurboBASIC to be
run, exactly as if we had typed the requisite CALL statement. Only one of these
commands should be used on one line.

In those circumstances where we have written the compiled code out to a file
(we'll see how later) we are left with a normal Amstrad .BIN file on cassette
or floppy disc. This may be run in the usual way by typing

RUN"filename [ENTER]

where filename is the name under which we saved the program. There is no
need for the TurboBASIC compiler to be in memory for programs created by it
to be run later; this allows you to sell programs compiled by TurboBASIC
without having to sell TurboBASIC as well!

There are a very few BASIC features which TurboBASIC cannot handle but
we needn't consider them until later. To see how the whole system works, let's
start from the beginning.

Getting Started With TurboBASIC

The TurboBASIC compiler is supplied on cassette tape or 3" floppy disc, both of
which incorporate a short BASIC loader to get the compiler in to memory and
initialise it. If you have the floppy disc version we recommend that you back it
up straightaway using one of the utilities supplied by Amsoft with CP/M.

The cassette version has a fast loading version and a slow loading version on
the other side. Try the fast side first; if this will not load on your recorder don't
worry - use the slower side instead. If you cannot get this to load please return
the cassette to us for replacement.

TurboBASIC manual Page 4 TurboBASIC manual

To load the cassette version, ensure that the tape is fully rewound and then
place it in your cassette player ready to be loaded. Type

RUN"

and press ENTER followed by the PLAY button of your cassette player. The
loading process takes a few minutes.

To load the disc version place the disc in the drive and type

RUN"TURBOBAS
followed by ENTER or RETURN.

Both versions clear the screen and produce a title sign-on message. Shortly you
will be asked where you would like the compiler to be loaded. For the minute,
press RETURN by itself as we don't know any other answers to this question
yet. The loading process continues until the compiler is safely in memory.

When the load is complete, the BASIC interpreter's READY prompt re-appears;
to all intents and purposes nothing has changed. This isn't really true, of course.
If you ask how much free memory there is, by typing

PRINT FRE(O) [ENTER]

the answer will be smaller than previously as the compiler has grabbed a chunk
for itself. Also, the three external commands |MAKE, |{COMPILE and |RUN
have been installed, but DON'T try them out just yet!

The interpreter's still there, so we now have a machine which contains both a
BASIC interpreter and a BASIC compiler. Since they are co-residing we often
can take advantage of features of each. For example, while developing
programs we may test them using the interactive features of the interpreter and
still run the compiled versions! Let's do that now. Type

AUTO

and press RETURN or ENTER.

TurboBASIC manual Page 5 TurboBASIC manual

The built-in interpreter produces a line number, 10, for us and awaits our input.
Anything we type now becomes part of a BASIC program for the interpreter
but because the TurboBASIC compiler also is present, we can compile the
same program at any stage!

Type in the program below, using the ESC key to stop the sequence of line
numbers generated by AUTO once all the lines have been entered.

10 N%=1

20 DIM FLAGS%(7000)

30 t=TIME

40 PRINT N%;" iteration(s)..."
50 FOR M%=1 TO N$%

60 COUNT%=0

70 FOR I%=0 TO 6199

80 FLAGS%(I%)=1

90 NEXT I$%

100 FOR I%=0 TO 6199

110 IF FLAGS%(I%)=0 GOTO 190
120 PRIME$=I%+1%+3

130 K%=I%+PRIME$%

140 WHILE K% <= 6199

150 FLAGS% (K%)=0

160 K%=K%+PRIME%

170 WEND

180 COUNT$=COUNTS%+1

190 NEXT I%

200 NEXT M%

210 PRINT COUNTS%;"primes in"; (TIME-t)/3;"1/100th seconds"
220 INPUT "Press [ENTER] to return to system...";Z$
230 END

[ESC]

This is a BASIC version of the famous BYTE Sieve benchmark program which
calculates prime numbers up to 7000. If you run this program from the
interpreter, by typing

RUN

and pressing RETURN or ENTER, you'll find that it takes about 94 seconds (on
a CPC6128). Now we can compile it and see if there's a difference in execution
speeds.

TurboBASIC manual Page 6 TurboBASIC manual

To compile this program, type:
| MAKE

and pressing RETURN or ENTER. Notice that when you execute the |MAKE
command the compiler prints a sign-on message on the screen and prints the
message

Compiling...

and proceeds to do just that. | MAKE is in fact a special case of the more general
{COMPILE command but we need not be worried about that yet. If there are
any errors in the code it is trying to compile then the compiler will report the fact
by displaying an error message on the screen and returning to the interpreter. If
the program has been typed in as shown, has executed correctly under the
interpreter then it will compile without error, producing a message saying where
the code starts and how long it is. Both the numbers displayed are in decimal.

To run our compiled program we can take advantage of TurboBASIC's added
external command, |RUN. So, type

|RUN

and press the RETURN or ENTER key. The compiled code will run, producing
the same output as the interpreted version but rather faster. Our timings show
that the compiled code runs about 37 times faster than the interpreted version -
not the largest speed increase which TurboBASIC can offer, but indicative of
things to come.

TurboBASIC manual Page 7 TurboBASIC manual

Saving compiled code

Although the | MAKE command compiled a program in memory and produced its
machine code in memory with the |COMPILE command, TurboBASIC is fully
capable of compiling programs stored on disc and cassette and also of saving
the code it generates on to disc or cassette. Programs stored in this way may
then be run as normal machine code programs using the interpreter's
RUN"filename command in the usual way.

To try out the | COMPILE command type:

|COMPILE

fiollowed by RETURN or ENTER. You will then be asked a series of questions. If
you type RETURN or ENTER in reponse to each one the compiler uses its built-in
'default’ values. This is exactly equivalent to the |MAKE command.

To make the compiler save the code to a file on floppy disc or cassette, simply
type a file name when asked

Output file ?

by the compiler's |COMPILE command. Don't forget to press RETURN! So long
as the file name you type conforms to the normal Amstrad file name
conventions everything will go according to plan. Disc files you create will have
an extension of .BIN (unless you specify otherwise, which isn't normally
wise) so that AMSDOS can recognise them as binary (machine code) files
ready to be executed when you RUN" them.

Program Development & Compilation - A Quick Guide

Programs may be developed in the interactive interpreter environment with the
compiler loaded until the combined program and variable size exceeds about
8K. From that point on the program must be compiled from tape or disc. As
BASIC programmers tend to make efficient use of available memory HiSoft has
made TurboBASIC relocatable in order to allow the programmer to maintain
his/her absolute addressed data areas. Relocation takes place after the compiler
has been loaded, as follows:

TurboBASIC manual Page 8 TurboBASIC manual

Load the compiler using RUN" or RUN"TURBOBAS as appropriate. This places
the compiler at its load address, which is NOT the same as its execution
address. The loader program asks for a run address and presents a minimum
and maximum value. Pressing RETURN or ENTER alone uses the default run
address of 7000 (decimal) and relocates the compiler to that address.

If a lower address is specified and if this address is within range then the
compiler is moved there. A low address allows a larger compiled program to be
generated but reduces the space available to co-resident and interactively
developed interpreted programs.

Entering a higher address results in the reverse situation where there is less
space available to the compiler but more to the interpreter and its programs.

Initially the default run address should be used, but as programs are developed
which require a higher or lower ratio of compiled to interpreted code the run
address should progressively be altered to allow the use of interactive features
for as long as is possible. Naturally, once the program and its variables get
beyond about 8K it can no longer be developed with the compiler in memory. If
you wish to compile the largest possible program then you should ase as low an
address as possible.

When a compilation is invoked with the new {COMPILE external command, the
programmer is asked a series of questions. The first is

Input file 2

and can be ignored (by pressing RETURN or ENTER) to compile the program
currently resident in memory. Otherwise a valid filename may be entered; this
will be opened and taken as the source of input for the compiler. If the file does
not exist or is bad in some way, the compiler will produce an error message
when all the questions have been answered. This program must be a .BAS file
as TurboBASIC only compiles tokenised BASIC. TurboBASIC is a two pass
compiler and so the familar

Press PLAY then any key:

will appear twice and the second time you should rewind the tape before hitting
a key.

TurboBASIC manual Page 9 TurboBASIC manual

The next question concerns the output file:
Output file ?

and this also may be ignored (by pressing RETURN to ENTER) if the code is to
be compiled in to memory. If a valid filename is entered then it is used as the
destination for the compiled binary object code. Again, an error is generated
once all the questions have been answered if the file cannot be created or is
otherwise bad. If you use both an Input file and Output file when
using cassette things can get very boring because of the tape swapping involved.

The third question concerns the usage of events. If you require events
(basically, interrupts and software ‘exceptions’) to be recognised then press
RETURN or ENTER in response to this question, as the default reply is Yes. If
events are enabled then the ESC key may be used to break in to running
compiled programs in the normal way. Remember that if events are disabled (by
typing N or No in response to the question) then ESC is not recognised and the
AFTER and EVERY keywords are ignored.

The final question asked by the compiler concerns the maximum string length.
This defaults to 255 on the compiler and this value is selected by pressing
RETURN or ENTER in response to the question. Other values below 255 may be
entered if the program does not contain - and will not generate - strings
longer than the entered value. A lower value saves memory space as each
string is allocated its maximum space at compile time. For many programs a
value of 32 is appropriate.

Compilation Errors

When TurboBASIC compiles a program it will from time to time encounter
syntax errors, compiler restriction errors and various other errors. Whenever it
finds one of these, it prints an error message along with the line and statement
numbers on to the screen and stops compilation immediately, returning control to
the BASIC interpreter.

These are the messages which TurboBASIC can produce, along with the
situations which can cause them:

TurboBASIC manual Page 10 TurboBASIC manual

Array exists
An array is being used in a DIM statement despite having been
dimensioned already.

Array not dimensioned
The program contains a reference to an array prior to the dimensioning of
that array in a DIM statement.

Bad subscript

This error occurs if the subscript of an array evaluates to less than O or
greater than the dimensioned size. Please note that subscripts are NOT checked
at runtime!

Broken in
This message is produced when the ESC key is pressed during cassette or
disc input and output.

Can't match NEXT
A NEXT statement refers to a variable which has not bee used in the
corresponding FOR statement.

Can't match WHILE
This message should not normally occur.

Can't write to output file
An error was reported by the system as it was writing the compiled code
to disc or cassette. '

Expression too complex
This error message means that an expression is too complicated to
evaluate. Simplify the relevant expression by using parentheses.

Function not defined

A user-defined function is called in a program but there is no preceding
definition of the function.

TurboBASIC manual Page 11 TurboBASIC manual

Function not supported

A Locomotive BASIC function which TurboBASIC does not support has
been used. Please see below for the small list of functions and statements which
TurboBASIC programs may not use.

I/0 error. Can't open input file
The name you specified for the input file is illegal as a filename, the file
doesn't exist or some other file error occurred.

I/0 error. Can't open output file
The name you specified for the output file is illegal as a filename, there is
no directory space or some other file error occurred.

IFs too deeply nested
This error is generated when the compiler's internal limit on IF statement
nesting is encountered.

Illegal code generated

This is an internal compiler error and should never occur; please contact
HiSoft with full documentary evidence if one of your programs generates this
€r7or.

Insufficient room for Object code
There is not enough memory available to the compiler to allow it to
generate any more object (compiled) code.

Invalid tree node

This is an internal compiler error and should never occur; please contact
HiSoft with full documentary evidence if one of your programs generates this
error.

Line does not exist

The destination of a GOTO, GOSUB or another line-referencing statement
does not exist.

Missing bracket
An expression or parameter list has an unbalanced number of brackets.

TurboBASIC manual Page 12 TurboBASIC manual

Missing NEXT
A FOR .. NEXT loop is being processed but there is no NEXT statement
to match the earlier FOR.

Multiple function definition
A user-defined function definition using DEF FN occurs more than once.

Must RESTORE to DATA line
The statement on the line referenced in a RESTORE statement must be a
DATA statement.

Real numbers are not supported
Sorry! TurboBASIC does not allow floating point numbers in the programs
itis to compile.

Statement not supported
TurboBASIC does not support the BASIC statement used.

String too long
A string has been generated, accessed or otherwise manipul ted which is
longer than 255 characters.

Syntax error
Whenever something is encountered which TurboBASIC cannot
understand, it produces this error message.

Term missing
Part of a statement containing an expression has been omitted. For
example, WHILE alone in a statement will cause the error but #5ILE 1 won't.

Too many nested FOR-NEXT loops
This error is generated when the compiler's internal limit on FOR
NEXT loop nesting is encountered.

Type mismatch

A variable has been assigned a value of another type; for example, a string
has been assigned to an integer variable. This error also may be caused if an
operation or function call is not valid for the type in question.

TurboBASIC manual Page 13 TurboBASIC manual

Unexpected ELSE
An ELSE statement has been encountered in an inappropriate place; there
is no matching IF.

Unexpected NEXT
A NEXT statement has been encountered outside of a FOR .. NEXT loop,
or aNEXT occurs in an inappropriate place.

Unexpected WEND
If a WEND is encountered by the compiler before a WHILE, or in a context
in which a WEND statement is invalid, this error is generated.

Wrong number of subscripts
An array has been referenced with a different number of dimensions to
that used in the array's DIM statement.

Runtime errors

The compiled code generated by the compiler is less likely to encounter errors
than the interpreter because most of the programming errors and all of the
syntax errors will be trapped at compile time. However, there are a couple of
error messages which can occur:

Division by zero
An expression has caused a division by zero error to occur.

Can't find external command
A program has used a '|' external command but the system has returned
an error saying that it cannot locate the command

TurbeBASIC manual Page 14 TurboBASIC manual

BASIC keywords, functions and statements accepted by
TurboBASIC

ABS AFTER ASC BINS BORDER CALL
CHR$ CLG CLS DATA DEF FN DI

DIM DRAW DRAWR EI END ENT
ENV EVERY FOR FRAME GOSUB GOTO
HEX$ IF INK INKEY INKEY$ INP
INPUT INSTR JOoYy KEY KEY DEF LEFTS$
LEN LET LINE INPUT LOCATE LOWERS$
MAX MIDS$ MIN MODE MOVE MOVER
NEXT ON GOTO ON GOSUB ON BREAK GOSUB

ON BREAK STOP ON s5Q ORIGIN ouT PAPER
PEEK PEN PLOT PLOTR POKE POS
PRINT RANDOMIZE READ RELEASE REM REMAIN
RESTORE RETURN RIGHTS RND RUN SGN
SOUND SPACES$ SPC SPEED INK TAB TAG
TAG OFF TEST TESTR TIME UPPERS VAL
VPOS WEND WHILE WINDOW WINDOW SWAP

XPOS YPOS ZONE

As we have said in various places throughout this manual, TurboBASIC does
NOT support floating point numbers; it deals with integers, which here are
whole numbers between -32768 and 32767. Also, there are some functions and
statements which the TurboBASIC compiler does not support. These are:

Tape, disc and printer handling in compiled code
Mainly because they wouldn't be any faster; however the printer may be
accessed using the requisite firmware calls - see below for an example.

HIMEM, MEMORY and FRE
Not really useful in a compiler system.

ON ERROR
No non-fatal runtime errors. Extra command added in BASIC 1.1. Not
universally applicable.

Also there are a few of differences and restrictions on some aspects of the
system:

TurboBASIC manual Page 15 TurboBASIC manual

DIM must be used for each array and must textually precede the first use of the
array.

GOTO, GOSUB etc. must not reference DATA statements.
INPUT LINE can have only one variable per line.
PRINT supports the usual separators but does not allow USING.

RND returns a 15-bit integer between 0 and 32767; see the example INVADERS
program as an example of its use.

TIME also returns a 15-bit integer between 0 and 32767. When the time reaches
32767 it goes back to 0 again.

RANDOMIZE must be used in conjunction with a parameter.

Strings are not dynamic; the length defaults to 255 characters but this may be
altered at compile time when using the | COMPILE command.

Technical Information

Memory Map

Interpreter's Workspace

6999 normally

COMPILER
------------------------------- =24200
RUNTIMES
27000
Compiled code

Compiled program's Variables

Compiled program's Stack

System Variables

TurboBASIC manual Page 16 TurboBASIC manual

Interpreted & Compiled Code

To use interpreted and compiled code together compile the subroutines to be
used together as one program, preceded by a line such as

ON PEEK (addr) GOTO a,b,c ...

where a, b, ¢ and so on are the line numbers of each subroutine in the compiled
section. By poking a value in to the addr address and using | RUN, the relevant
compiled subroutine will be executed. addr is an arbitrary address which is
decided upon by the programmer. Ensure that it does not conflict with the
system, the compiler and the interpreter.

Variable values may be passed to and from the compiled code using PEEK and
POKE. The technique is demonstrated in a simple example program in the
next-but-one section.

Using the Printer from Compiled Code

The following assembly language program calls the firmware to output a string
to the printer

1; print a string to the printer

DD6EQO 2 1d 1, (ix) ;hl -string descriptor
DD6601 3 1d h, (ix+1)

46 4 1d b, (hl) ;b - string length
23 S inc hl

SE 6 1d e, (hl) ;de - string address
23 7 inc hl

56 8 1d d, (hl)

04 9 inc b

05 10 loop dec b ;finished?

c8 11 ret z

1a 12 loop2 1d a, (de) ;next character
CD2BBD 13 call #bd2b

30FA 14 jr nc, loop2 ;loop until not busy
23 15 inc de ibump to next

18F5S 15 jr loop

This can then be loaded into memory incorporated into a BASIC program as
shown over the page:

TurboBASIC manual Page 17 TurboBASIC manual

10 pr=6900

20 FOR I=pr TO pr+22

30 READ A: POKE I,A

50 NEXT I

55 a$="hello there printer"+CHR$ (13)+CHR$(10)

60 CALL pr,@a$

70 DATA &DD,&6E,0,&DD,&66,1,646,&23,&5E,4&23

80 DATA &56,4,5,&C8,&1A,&CD, &2B,&BD, &30,&FA, 813,418, &F5

before we run or compile this we need to lower HIMEM using

MEMORY 6899 [ENTER]

so that BASIC does not use the area that we are using to store our machine
code. Now compile and run this program using:

|{MAKE [ENTER]
|RUN [ENTER]

After we have run the BASIC program we can print a$ by:
CALL pr,@a$ [ENTER]

Note that you can use CALL pr, "HELLO THERE" on later machines but not
on the CPC 464.

Passing Variables Between Compiled and Interpreted Code

The short programs below show how easy it is to transfer data between
compiled and interpreted code modules. Although it requires a bit of PEEKing
and POKEing the technique is straightforward and easy to follow.

To enable the demonstration to be most effective we need to generate a file on

cassette or disc containing some data. The short program on the next page will
do this for us:

TurboBASIC manual Page 18 TurboBASIC manual

10 OPENOUT "DATAFILE"
20 FOR I=1 TO 100

30 WRITE #9,I*I

40 NEXT I

50 CLOSEOUT

As you can see, it writes the squares of the numbers between 1 and 100 to a
file called 'DATAFILE', which it creates. This program must be run from the
interpreter as it incorporates file handling commands.

Now we must write an interpreted program which opens this file and reads the
data in, sending it to a compiled program. Here we go:

10 MEMORY 6990

20 LOAD"compile.bin™

30 DIM A%(100)

40 OPENIN"DATAFILE"

50 FOR I=1 TO 100

60 INPUT #9,A%(I)

70 NEXT I

80 CLOSEIN

90 POKE 6998, (@a% (1)) MOD 256
100 POKE 6999, (@a% (1)) \ 256
110 CALL 24133

This program uses the two bytes at addresses 6998 and 6999 to pass the
information. The addresses are protected from corruption by the system using
the interpreter's MEMORY command. Two bytes are used because a Z80
memory address occupies 16 bits. The file is read in to an array called A% - an
integer array.

When the entire data file has been read in to the array, the compiled code is
called. As the compiler does not need to be in memory when we run this
program, we can't use the |RUN command; if the compiler isn't there it won't
be recognised. So we use the CALL command, calling the address which
experience tells us is the address at which the compiler places the code by
default. This may change in subsequent releases of the compiler.

If we relocated the compiler to anywhere but the default location, this address
will be wrong.

TurboBASIC manual Page 19 TurboBASIC manual

The compiled code reads the data from the array using this program:

10 DIM a%(100)

20 b=PEEK(6998)+PEEK(6999) *256-2

30 FOR i=1 TO 100

40 a% (i)=PEEK(b+1*2)+PEEK (b+i*2+1) *256
50 NEXT i

60 FOR i=1 TO 100:PRINT a%(i);:NEXT i
70 STOP

As you can see the program grabs the address of the array from 6998 and 6999
and then uses this address to get each integer element from the array.

The values read in are printed out as confirmation that the entire process has
worked correctly.

Naturally this technique may be extended for complicated programs which need
to pass large amounts of data or large data structures.

We hope that you enjoy using the TurboBASIC compiler system and welcome
any comments you may have for further improvements and modifications.

Example Program - INVADERS.BAS

Supplied on the cassette tape or disc along with the compiler is a program called
INVADERS .BAS which is a Space Invaders type game. Like many games type
programs it uses the RND function to give a random response. As this gives a
random number between 0.0 and 1.0 with the interpreter and as the compiler
does not support fractions RND is different when compiled; instead it gives a
random number between 0 and 32767. Clearly we have to change some of our
program if we switch from using the interpreter to the compiler and vice versa.
However by using a user-defined function we can arrange things so that we
only need to modify one line.

TurboBASIC manual Page 20 TurboBASIC manual

In the INVADERS program listed below this is line 20. As listed
20 DEF FNR=RND

this works with the compiler. To make it work with the interpreter use

20 DEF FNR=RND * 32768

To produce the compiled version, load and invoke TurboBASIC in the normal
way. Use- the |COMPILE command and in response to the 'Input file' prompt
type

INVADERS .BAS

and press RETURN or ENTER. When asked for an output file name, type
RETURN or ENTER, When asked about events hit RETURN but when asked for
the string size give the reply 32. After a few seconds, if using disc, the
compiled code will be generated. Then use |RUN to run it. Obviously compiling
from cassette takes a little longer but the finished program will run just as fast.
To play the game use Z and X to move left and right respectively and RETURN
to fire.

If you want to see how slowly the program runs using the interpreter, load it
with LOAD"INVADERS" and change line 20 as described above. We find it just
about unplayable.

For reference purposes, there is a listing of INVADERS . BAS on the following
pages.

TurboBASIC manual Page 21 TurboBASIC manual

Listing of INVADERS.BAS

10 RANDOMIZE 100

20 DEF FNR=RND

30 MODE 2

40 SYMBOL AFTER 240

50 EVERY S5 GOSUB 1690

60 DIM x(5,10),y(5,10),screen(80,25),bombx (20) ,bomby (20)
70 DIM gun$(2)

80 DEF

FNlook$ (x)=CHRS (screen (x-1,25)) +CHRS (screen (x, 25)) +CHRS (sc
reen (x+1,25))

90 DEF FNgun$ (p)=gun$ (2+ (p<>0))

100 shipl=242:ship2=243:sx=0:sdir=1

110 near=2:xdir=1:gx=40:£fx=0:dum=500:alive=3:top=1:score=0
120 invader=240:bomb=252:missile=239

130 gun$(1)=CHRS$(244)+CHRS$(246)+CHRS (247)

140 gun$ (2)=CHRS$ (244)+CHRS (245) +CHRS (247)

150 SYMBOL 252,0,60,24,60,60,60,24,0

160 SYMBOL 240,66,36,60,90,126,60,36,36

170 SYMBOL 241, 36,36,60,90,126,60,36,66

180 SYMBOL 242,15,127,255,204,204,255,127,15
190 SYMBOL 243,240,254,255,51,51,255,254,240
200 syMBOL 244,0,0,0,0,15,8,8,255

210 SYMBOL 245,24,255,129,129,255,255,255, 255
220 SYMBOL 246,0,0,24,255,255,255,255,255

230 SyMBOL 247,0,0,0,0,240,16,16,255

240 ENT 1,10,5,1,10,10,1,10,5,1

250 ENT -2,10,5,2,10,-5,2

260 GOSUB 990:newal=0

270 add=0:GOSUB 1390

280 WHILE INKEY(66) AND alive>0

290 IF aliens=0 THEN GOSUB 990

300 GOSUB 360

310 dum=dum XOR 100:SOUND 130, dum, 10

320 invader=invader XOR 1

330 WEND

340 WHILE INKEYS$<>"":WEND

350 sTOP

360 'Move invaders

370 near=near+xdir:far=far+xdir

380 IF far>78 OR near<3 THEN md=1l:xdir=-xdir ELSE md=0
390 near=80:far=0

400 FOR a=1 TO 5

TurboBASIC manual Page 22 TurboBASIC manual

410 GOSUB 590:GOSUB 730:GOSUB 1280

420 GOSUB 1470

430 FOR b=1 TO 10

440 IF x(a,b)=-1 THEN GOTO 560

450 xp=x(a,b):yp=y(a,b) :ch=32:GOSUB 1180

460 x(a,b)=x(a,b)+xdir:y(a,b)=y(a,b)+md

470 xp=x(a,b):yp=y(a,b):ch=invader:GOSUB 1180

480 IF x(a,b)<near THEN near=x{(a,b) ELSE IF x(a,b)>far
THEN far=x(a,b)

490 high=0

500 FOR v=1 TO 5

510 IF x(v,b)<>-1 AND y(v,b)>y(high,b) THEN high=v
520 NEXT

530 IF high=a AND FNR>25600 THEN GOSUB 1220

540 r=a:c=b:GOSUB 910

550 IF y(a,b)>24 THEN LOCATE 37,1:PRINT "INVADED":alive=0
560 NEXT b

570 NEXT a

580 RETURN

590 'Move gun

600 ogx=gx

610 IF FNlook$ (gx)<>FNgun$ (fx) THEN GOSUB 1720:RETURN
620 IF NOT INKEY(71) AND gx>3 THEN gx=gx-1

630 IF NOT INKEY(63) AND gx<77 THEN gx=gx+1

640 IF gx=o0gx THEN GOTO 680

650 xp=ogx-1l:yp=25:p$=" ":GOSUB 1810

660 IF FNlook$ (gx)<>" " THEN GOSUB 1720:RETURN

670 GOSUB 1880

680 IF INKEY(18) OR fx<>0 THEN GOTO 720

690 fx=gx:fy=24:xp=fx:yp=fy:ch=missile:GOSUB 1180

700 SOUND 1,400,15,,,1

710 GOSUB 1880

720 RETURN

730 'Move missile

740 IF f£x=0 THEN RETURN

750 xp=fx:yp=£fy:ch=32:GOSUB 1180

760 fy=fy-1

770 IF fy=1 THEN fx=0:GOSUB 1880:RETURN

780 IF screen(fx,fy)=32 THEN GOTO 890

790 IF screen(fx, fy)=shipl OR screen (fx, fy)=ship2 THEN
GOSUB 1880:GOSUB 1550 :RETURN

800 FOR row=1 TO 5

810 FOR col=1 TO 10

820 IF x(row,col)<>fx OR y{(row,col)<>fy THEN GOTO 870
830 x(row,col)=-1

840 xp=fx:yp=£fy:ch=32:GOSUB 1180

850 aliens=aliens-1:add=10:GOSUB 1370

TurboBASIC manual Page 23 TurboBASIC manual

860 row=5:c0l=10:£fx=0

870 NEXT col, row

880 IF fx=0 THEN GOSUB 188(0:RETURN

890 xp=fx:yp=fy:ch=missile:GOSUB 1180

900 RETURN

910 'Missile Hit check. indices of array in r and ¢
920 IF fx=0 THEN RETURN

930 IF screen(fx,fy)<>invader THEN RETURN
940 xp=fx:yp=fy:ch=32:GOSUB 1180

950 fx=0:x(r,c)=-1

960 GOSUB 1880

970 aliens=aliens-1:add=10:GOSUB 1370

980 RETURN

990 'new aliens

1000 FOR rl=1] TO 5

1010 FOR r2=1 TO 10

1020 x(rl,r2)=r2+r2:y(rl,r2)=rl+rl+top
1030 NEXT r2,rl

1040 aliens=50

1050 FOR rl=1 TO 80

1060 FOR r2=1 TO 25

1070 screen(rl,r2)=32

1080 NEXT r2,rl

1090 xdir=l:near=2:far=2

1100 top=top+1l

1110 GOSUB 1880

1120 newal=-1

1130 FOR bc=1 TO 20

1140 IF bombx(bc) THEN

xp=bombx (bc¢) :yp=bomby (bc) :ch=32:GOSUB 1180 :bombx (bc)=0
1150 NEXT

1160 IF sx<>0 THEN GOSUB 1650

1170 RETURN

1180 'Print to array and screen

1190 screen(xp,yp)=ch

1200 LOCATE xp, yp:PRINT CHRS (ch);

1210 RETURN

1220 ‘Drop bomb

1230 FOR z=1 TO 20

1240 IF bombx(z)=0 THEN empty=z:z=20

1250 NEXT

1260 bombx(empty)=x(a,b) :bomby(empty)=y(a,b)+1
1270 RETURN

1280 'Move bombs

1290 FOR z=1 TO 20

1300 IF bombx(z)=0 THEN GOTO 1350

1310 xp=bombx(z) :yp=bomby(z) :ch=32:GOSUB 1180

TurboBASIC manual Page 24 TurboBASIC manual

1320 bomby({z)=bomby(z}+1

1330 IF bomby(z)=26 THEN bombx(z)=0:GOTO 1350
1340 xp=bombx({(z) :yp=bomby(z) :ch=bomb:GOSUB 1180
1350 NEXT

1360 RETURN

1370 'Score

1380 SOUND 1,200-add,5

1390 score=score+add

1400 sc$=STRS (score)

1410 1=LEN(sc$)

1420 FOR zero=1 TO 5

1430 sc$="0"+sc$

1440 NEXT

1450 LOCATE 38, 1:PRINT sc$§

1460 RETURN

1470 'Move ship

1480 IF NOT se THEN RETURN ELSE se=0

1490 IF sx=0 THEN IF FNR>250 THEN sx=1:GOSUB 1650:SOQUND
132,200,10000,8,,2 ELSE RETURN

1500 IF screen(sx,2)<>shipl OR screen{(sx+1,2)<>ship2 THEN
GOTO 1550

1510 xp=sx:yp=2:ch=32:GOSUB 1180

1520 sx=sx+sdir:IF sx>77 THEN GOSUB 1610:sx=0:SCUND
132,100,0,0:RETURN

1530 GOSUB 1650

1540 RETURN

1550 'Ship hit by missile

1560 add=100:GOSUB 1370

1570 GOSUB 1610:sx=0

1580 £x=0:SOUND 132,100,0,0

1590 GOSUB 1880

1600 RETURN

1610 'Remove ship

1620 xp=sx:yp=2:ch=32:GOSUB 1180

1630 xp=sx+1l:yp=2:ch=32:GOSUB 1180

1640 RETURN

1650 'Print ship

1660 xp=sx:yp=2:ch=shipl:GOSUB 1180

1670 xp=sx+1l:yp=2:ch=ship2:GOSUB 1180

1680 RETURN

1690 'Enable ship movement

1700 se=-1

1710 RETURN

1720 'Kill the gun

1730 alive=alive-1

1740 FOR bc=1 TO 20

1750 IF bombx{bc¢)=0 THEN GOTO 1770

TurboBASIC manual Page 25 TurboBASE™ manual

1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890

IF bombx(bc)=gx AND bomby (bc)=25 THEN bombx (bc) =0
NEXT

SOUND 129,100,20
xp=gx-1:yp=25:p$=FNgun$ (fx) :GOSUR 1820
RETURN

'Print a string to array at xp,yp
LOCATE xp, yp

PRINT p$

FOR zz=xp TO LEN(p$)+xp-1
screen(zz,yp) =ASC(MIDS (pS, zz~-xp+1))
NEXT

RETURN

'Print the gun base
Xp=gx-1:yp=25:p$=FNgun$ (fx) :GOTO 1810

TurboBASIC manual Page 26 TurboBASIC manual

Printed by Jiffy Print Limited, Luton, Beds.

	pag 00 - 1
	pag 00 - 2
	pag 00 - 3
	pag 01
	pag 02
	pag 03
	pag 04
	pag 05
	pag 06
	pag 07
	pag 08
	pag 09
	pag 10
	pag 11
	pag 12
	pag 13
	pag 14
	pag 15
	pag 16
	pag 17
	pag 18
	pag 19
	pag 20
	pag 21
	pag 22
	pag 23
	pag 24
	pag 25
	pag 26
	pag 27

