Appendix XII The Hardware and Hardware Variants

A. Processor.

The processor is a Z80A running at a clock frequency of 4.00 MHz ($\pm 0.1\%$). There is logic that stretches $\overline{\text{MREQ}}$ and $\overline{\text{IORQ}}$ using the CPU WAIT facility so that the processor can only make one access to memory each microsecond.

The processor $\overline{\text{NMI}}$ pin is pulled up and made available on the expansion bus. However, a non-maskable interrupt may cause the firmware to violate various timing constraints and so its use is not recommended.

The processor interrupt pin is driven by a flip-flop in the video gate array. This flipflop is set during every vertical flyback and every 52 scan lines thereafter until the next vertical flyback. The interrupt is arranged to occur approximately 2 scans (125 microseconds) into the 8 scan (500 microsecond) vertical flyback signal. The interrupt latch is cleared by the processor acknowledging the interrupt, or explicitly, using a software command. The top bit of the divide by 52 scan counter is also cleared when the processor acknowledges an interrupt occurring after this counter has overflowed. This allows the interrupt system to be expanded.

B. Memory.

ROM

A single 32K byte ROM is present on the processor board, but is mapped onto two blocks of 16K in the processor address space. The lower half of the ROM occupies addresses #0000 to #3FFF and the upper half occupies addresses #C000 to #FFFF. These two halves of the ROM can be separately enabled and disabled by two control latches in the video gate array. On power-up or other system reset both halves of the ROM are enabled.

An expansion port signal can be used to disable this internal ROM and allow external ROM(s) to be accessed instead. These are selected by output instructions and replace the upper half of the on-board 32K byte ROM when selected.

RAM

On the CPC464 and CPC664 64K bytes of dynamic RAM are fitted to the processor board at addresses #0000 to #FFFF. On the CPC6128 128K bytes are fitted and this can be bank switched to be accessed at addresses #0000 to #FFFF (see section 2.5). The lowest 16K and the top 16K are overlayed when ROM is enabled. Whether the ROM is enabled or not affects where data is read from, it has no effect on write operations which will be correctly performed 'through' the enabled ROM to the underlying RAM.

VDU SCREEN MEMORY

The display uses 16K of the processor RAM memory as screen refresh memory. On the 464 and 664 the 16K used can be switch between the blocks starting at #0000, #4000, #8000 and at #C000 by the top two bits (bits 12 and 13) programmed into the HD6845S start address register. On the 6128 the top two bits select RAM banks 0, 1, 2 or 3 to be used (see section 6.4 for further details).

The arrangement of data in the VDU screen memory is dependent on the VDU mode currently selected. In all modes the memory can be considered as consisting of 8K 16 bit words. Each word contains either 4, 8, or 16 pixels (P0..Pn) of 1, 2 or 4 bits (B0..Bm) depending on the mode as follows:

A0	Bit	Mode 0	Mode 1	Mode 2
0	D7	P0 B0	P0 B0	P0 B0
0	D6	P1 B0	P1 B0	P1 B0
0	D5	P0 B2	P2 B0	P2 B0
0	D4	P1 B2	P3 B0	P3 B0
0	D3	P0 B1	P0 B1	P4 B0
0	D2	P1 B1	P1 B1	P5 B0
0	D1	P0 B3	P2 B1	P6 B0
0	D0	P1 B3	P3 B1	P7 B0
1	D7	P2 B0	P4 B0	P8 B0
1	D6	P3 B0	P5 B0	P9B0
1	D5	P2 B2	P6 B0	P10 B0
1	D4	P3 B2	P7 B0	P11 B0
1	D3	P2 B1	P4 B1	P12 B0
1	D2	P3 B1	P5 B1	P13 B0
1	D1	P2 B3	P6 B1	P14 B0
1	D0	P3 B3	P7 B1	P15 B0

Data for lines 0,8,16,24.. on the display are packed into the first 2K byte block of the memory, lines 1,9,17,25.. are packed into the corresponding places of the next 2K byte block of memory, with lines 7,15,23,31.. occupying the top 2K byte block of the 16K memory area.

The bottom 10 bits of the HD6845SP start address register define where within these 2K blocks the screen starts. The offset from the start of the 2K byte block is always even and is calculated as twice the register contents modulo 2K bytes. When data has to be displayed from beyond the end of a 2K byte block wrap around occurs to the beginning of the same 2K byte block. See section 6.4 for a fuller description.

C. AY-3-8912 Programmable Sound Generator.

The PSG is accessed using ports A and C of the μ PD8255 device. Note that when writing or loading address to the AY-3-9812 the maximum duration of the write or load address command with BDIR high is 10 microseconds. The clock input to the sound generator is exactly 1.00 MHz. The BC2 signal is tied permanently high. On power-up the I/O port should be programmed to input mode.

The user is advised to use the firmware routine MC SOUND REGISTER to write to the PSG.

D. HD6845S CRT Controller (HD6845S CRTC).

The character clock to the CRTC occurs for every two bytes fetched from memory, i.e. every 1.0 microseconds. The first byte of a pair has an even address, the second has an odd address. In normal operation the internal registers are set up as follows:

Register	Function	PAL	SECAM	NTSC
0	Horizontal Total	63	63	63
1	Horizontal Displayed	40	40	40
2	Horizontal Sync. Posn.	46	46	46
3	Vsync.,Hsync. widths	#8E	#8E	#8E
4	Vertical Total	38	38	31
5	Vertical Total Adjust	0	0	6
6	Vertical Displayed	25	25	25
7	Vertical Sync. Posn.	30	30	27
8	Interlace and Skew	0	0	0
9	Max. Raster Address	7	7	7
10	Cursor Start Register	Х	Х	Х
11	Cursor End Raster	Х	Х	Х
12	Start Address (H)	Х	Х	Х
13	Start Address (L)	Х	Х	Х
14	Cursor (H)	Х	Х	Х
15	Cursor (L)	Х	Х	Х

In the above table the numbers for PAL and SECAM standards are identical.

For information on the NTSC Register 5 see Appendix XIII.

Note that X indicates that software may vary these numbers during device operation. The firmware only makes use of the start address register which is used to set the screen base and offset.

E. Video Gate Array.

The software must access this device in order to control the enabling and disabling of ROMs, the mode of operation of the VDU and also to load colour information for 'inks' into the palette memory. One I/O channel is used for all commands, the top two bits of data specifying the command type as follows:

Bit 7	Bit 6	Use
0	0	Load palette pointer register.
0	1	Load palette memory.
1	0	Load mode and ROM enable register.
1	1	Bank Switching Register on CPC6128

MODE AND ROM ENABLE REGISTER

This write-only register controls the VDU mode and ROM enabling as follows:

Bit 7:	1
Bit 6:	0
Bit 5:	** Reserved ** (Send 0)
Bit 4:	Clear raster 52 divider.
Bit 3:	Upper half ROM disable.
Bit 2:	Lower half ROM disable.
Bit 1:	VDU Mode control MC1.
Bit 0:	VDU Mode control MC0.

writing a 1 to bit 4 clears the top bit of the divide by 52 counter used for generating periodic interrupts.

Modes are defined by the mode control pins as follows:

MC1	MC0	Mode	
0	0	Mode 0, 160x200 pixels in 16 colours	
0	1	Mode 1, 320x200 pixels in 4 colours	
1	0	Mode 2, 640x200 pixels in 2 colours	
1	1	** Do not use **	

The gate array hardware synchronises mode changing to the next horizontal flyback in order to aid software that requires different parts of the screen to be handled in different modes.

On power-up and other system resets, the mode and ROM enable register is set to zero, enabling both halves of the ROM.

PALETTE POINTER REGISTER

This write-only register controls the loading of the VDU colour palette as follows:

Bit 7: 0 Bit 6: 0 Bit 5: ** Reserved ** (Send 0) Bit 4: Palette pointer PR4. Palette pointer PR3. Bit 3: Bit 2: Palette pointer PR2. Bit 1: Palette pointer PR1. Bit 0: Palette pointer PR0.

Bits PR0 to PR3 select which ink is to have its colour loaded, providing bit PR4 is low. If bit PR4 is high then bits PR0 to PR3 are ignored and the border ink colour is loaded.

PALETTE MEMORY

This write-only memory controls the VDU colour palette as follows:

Bit 7: 0 Bit 6: 1 ** Reserved ** (Send 0) Bit 5: Bit 4: Colour data bit CD4. Bit 3: Colour data bit CD3. Colour data bit CD2. Bit 2: Bit 1: Colour data bit CD1. Colour data bit CD0. Bit 0:

The ink entry pointed at by the palette register is loaded with the colour sent on this channel. The number of colours that need to be loaded ranges from 2 colours in mode 2 to 16 colours in mode 0. In addition to loading the colours an extra colour data byte must be sent to this channel to define the border colour. On power-up and other system resets the contents of the palette are undefined, but the border colour is set to BLACK, to avoid unsightly effects on power-up.

The 32 colour codes are decoded to drive the RGB signals, producing 27 different colours. The hardware colours are listed in Appendix V.

BANK SWITCHING REGISTER (CPC6128 only)

This write-only register controls the layout of the bank switchable RAM as follows:

Bit 7:	1
Bit 6:	1
Bit 5:	** Reserved ** (Send 0)
Bit 4:	0
Bit 3:	0
Bit 2:	Х
Bit 1:	Х
Bit 0:	Х

The xxx appearing on bits 0, 1, and 2 is the code for the selected bank layout, detailed as follows:

	Code	0	1	2	3	4	5	6	7
Address									
#C000		3	7	7	7	3	3	3	3
#8000		2	2	6	2	2	2	2	2
#4000		1	1	5	3	4	5	6	7
#0000		0	0	4	0	0	0	0	0

Selecting Code 0 (The number sent to the Bank Switch Register would be #C0) will switch the normal default bank layout, i.e. Banks 0..3.

The other 64k can be accessed by selecting codes 4..7. These switch one of the other 16k blocks into area #4000. See section 2.5 for more details.

F. µPD8255 Parallel Peripheral Interface.

The PPI as well as the 8 port pins on the PSG are used to interface to the keyboard and to control and sence miscellaneous signals on the processor board. Port A must be programmed either to input or to output in mode 0 since this port is used for reading and writing to the PSG. Port B must be programmed to input in mode 0, Port C must be programmed to output in mode 0 on both halves.

Circuitry is provided around the PPI to reset it during system reset. For details of the operation of the μ PD8255 see the NEC product specification.

CHANNEL A (Input or Output)

- Bit 6: Data/Address DA6 connected to AY-3-8912.
- Bit 5: Data/Address DA5 connected to AY-3-8912.
- Bit 4: Data/Address DA4 connected to AY-3-8912.
- Bit 3: Data/Address DA3 connected to AY-3-8912.
- Bit 2: Data/Address DA2 connected to AY-3-8912.
- Bit 1: Data/Address DA1 connected to AY-3-8912.
- Bit 0: Data/Address DA0 connected to AY-3-8912.

CHANNEL B (Input only)

- Bit 7: Datacorder cassette read data.
- Bit 6: Centronics busy signal.
- Bit 5: Not expansion port active signal.
- Bit 4: Not option link LK4.
- Bit 3: Not option link LK3.
- Bit 2: Not option link LK2.
- Bit 1: Not option link LK1.
- Bit 0: Frame flyback pulse.

The option links, LK1..LK4 are factory set. LK4 is fitted for 60 Hz T.V. standards and omitted for 50 Hz standards.

CHANNEL C (Output only)

- Bit 7: AY-3-8912 BDIR signal.
- Bit 6: AY-3-8912 BC1 signal.
- Bit 5: Datacorder cassette write data.
- Bit 4: Datacorder cassette motor on.
- Bit 3: Keyboard row select KR3.
- Bit 2: Keyboard row select KR2.
- Bit 1: Keyboard row select KR1.
- Bit 0: Keyboard row select KR0.

G. Centronics Port Latch.

This latch is loaded with data by output commands to the correct I/O channel. It cannot read. Note that the timing requirements on Centronics interfaces generally specify that the data must be present on the seven data lines at least 1 microsecond before the strobe is made active and must remain valid for at least 1 microsecond after the strobe returns inactive. The duration of the strobe must be between 1 and 500 microseconds. The busy signal can be inspected as soon as the strobe is inactive in order to determine when more data can be sent.

Bit 7: Centronics strobe signal (1 = active).
Bit 6: Data 7 to Centronics port.
Bit 5: Data 6 to Centronics port.
Bit 4: Data 5 to Centronics port.
Bit 3: Data 4 to Centronics port.
Bit 2: Data 3 to Centronics port.
Bit 1: Data 2 to Centronics port.
Bit 0: Data 1 to Centronics port.

On power-up and other system resets the outputs of this latch are all cleared.

H. Keyboard and Joysticks.

The keyboard and joystick switches are sensed by selecting one of ten rows using the four control bits on channel C of the PPI and reading the data from the PSG parallel port using port A of the PPI.

The keyboard and joystick switches are arranged in a 10 by 8 matrix. One of ten rows is selected using the code on KR0..KR3 and the eight bits of data are then read in parallel on a parallel port as described above. A switch is active (closed) if the corresponding data bit is a logic 0.

The key number associated with each key (see Appendix I) is constructed as follows:

Bit:	7	6	5	4	3	2	1	0
	0	Row 1	numb	er		Bit n	numb	er

Thus the key that is associated with bit 5 in row 4 has key number 37 (4 * 8 + 5).

I. Disc Interface.

Floppy Disc Controller

The controller uses an NEC type μ PD765A Floppy Disc Controller IC to connect to the disc drives. Only two disc drives are supported, since the US1 line from the μ PD765A is ignored. This results in two disc drives being accessed as drives 0 (zero) and 1 (one) and again as drives 2 and 3. The controller supports both single and double sided and single and double density mini-floppy disc drives. Note that the clock frequency supplied to the μ PD765A CLK pin is 4.00 MHz rather than the 8.00 MHz used with larger disc drives.

The full facilities described in the NEC data sheet for the μ PD765A are available with the exception of interrupts and DMA which are not supported.

Expansion ROM.

The disc ROM is normally number #07, bit may be set to #00 by cutting option trace LK1 in the case of the DDI-1, LK7 in the case of the 664, LK201 in the case of the 6128.

The EXP signal (pin 48), of the 50 way expansion connector, is grounded when the disc ROM number is #07 in order that this address can be avoided by other expansion peripherals. A 200 nanosecond 27128 type EPROM or ROM is normally used, and may be fitted in a DIL socket in some machines.

Option traces LK2 and LK3 are manufacturing options for write pre-compensation. They should not be needed by the user.

Motor Control.

Writing to channel #FA7E starts and stops the disc drive motors. Writing #00 will stop the motors, #01 will start the motors. On power-up and other system resets the motors are not stopped.

Electrical Levels:

All electrical levels on the controller are TTL compatible. Signals originating in the drives are terminated by 680 ohm resistors to +5v at the controller and received with gates with input hysteresis. The maximum permissible cable length is .075 metre.

Using Other Disc Drives

It is possible to use other disc drives with the CPC range of computers (or the DDI-1), in particular 5¹/₄" drives. Some hardware knowledge will be required. The following gives some advice and information which should assist in using a different drive.

If Drive A: the 5V power should be supplied to pins 2, 4, 6 and 14 of the $5\frac{1}{4}$ " drive after ensuring that any existing connections to the drive circuitry have been removed.

If Drive B: no terminating resistor should be installed.

The drive MUST have a 'READY' signal on pin 34.

The drive will require its own power supply.

The extra cable should be as short as possible and should consist of a cablemounted male connector (to mate with the female socket connector on the cable from the interface), all 34 conductors and, normally, a 34 way double-sided card edge connector (to mate with the $5\frac{1}{4}$ " drive).

The step rate, motor on and off timeout may have to be changed, see, in the case of CP/M 2.2, the SETUP utility.

A drive such as the Shugart 201 is not suitable since it does not have a ready signal, but one such as the Chinon F 051-MD is suitable.

Pin Arrangement

All odd numbered pins are pulled to ground (GND). All signals are active low.

1	1 0
PIN No.	SIGNAL
2	+5V
4	+5V
6	+5V
8	INDEX
10	Drive select 0
12	Drive select 1
14	+5V
16	Motor On
18	Direction Select
20	Step
22	Write Data
24	Write Gate
26	Track 0
28	Write Protect
30	Read Data
32	Side 1 Select
34	Ready

J. Serial Interface

The BIOS supports a two channel asynchronous serial interface. The interface is an optional extra for the CPC 464/664/6128 computers. This section describes the recommended hardware configuration for the serial interface such that, if fitted, it can be driven by the BIOS.

The interface consists of a Zilog Z80A SIO/0 or Z80A DART together with an Intel 8253 programmable interval timer. The 8253 is used as a Baud rate generator as follows:

Timer 0 generates the transmit clock for channel A of the SIO.

Timer 1 generates the receive clock for channel B of the SIO.

Timer 0 generates both transmit and receive clocks for channel B of the SIO.

It is assumed that the CLK inputs to all three channels of this device are driven by a 2.0(0.1%)MHz clock signal derived from the 4.0 MHz CPU clock. The GATE inputs to all three channels are tied permanently high.

NOTE: This is an optional extra for all machines.

K. I/O ports

The following is a detailed list of the Z80 I/O used by the CPC range of computers.

OUTPUT	INPUT
Video Gate Array	** Do not use **
HD6845 CRTC address HD6845 CRTC data ** Do not use ** ** Do not use **	** Do not use ** ** Do not use ** Reserved for CRTC status HD6845 CRTC data
Expansion ROM select	** Not used **
Centronics latch	** Do not use **
μPD8255 port A data μPD8255 port B data μPD8255 port C data μPD8255 control	µPD8255 port A data µPD8255 port B data µPD8255 port C data ** Undefined **
Expansion bus Expansion bus Expansion bus Expansion bus ** Not used **	Expansion bus Expansion bus Expansion bus Expansion Bus ** Not used **
	Video Gate Array HD6845 CRTC address HD6845 CRTC data ** Do not use ** ** Do not use ** Expansion ROM select Centronics latch µPD8255 port A data µPD8255 port B data µPD8255 port C data µPD8255 control Expansion bus Expansion bus Expansion bus

Disc Interface

#FA7E	Motor Control	** Not used **
#FB7E	** Not used **	µPD765A Status Register
#FB7F	µPD765A Data Register	µPD765A Data Register

Serial Interface

SIO Channel A Data
SIO Channel A Control
SIO Channel B Data
SIO Channel B Control
8253 Load Counter 0
8253 Load Counter 1
8253 Load Counter 2
8253 Write Mode Word

SIO Channel A Data SIO Channel A Control SIO Channel B Data SIO Channel B Control 8253 Read Counter 0 8253 Read Counter 1 8253 Read Counter 2 ** Not used ** Expansion bus I/O channels in the address range #F800 to #FBFF are reserved as follows:

ADDRESS (A0A7)	USE
#00#7B #7C#7F #80#BB #BC#BF #C0#DB #DC#DF	 ** Do not use ** Reserved for Disc Interface. ** Do not use ** Reserved for future use. ** Do not use ** Reserved for communications interfaces.
#E0#FE #FF	Available for user peripherals. Reset peripherals.

L. Hardware Variants

There have been slight differences with the circuitry concerning the ULA in some of the CPC range of computers, but as long as legal values are used when accessing them, there should be no noticeable difference.

The firmware has been altered for a few foreign computers. The major changes have been to the character set (to provide a few new national characters) and to the characters available on the keyboard (to allow new characters to be entered), also some messages and version numbers have been changed. These foreign changes are detailed below.

ł

Spanish System

Character set

#A1 matrix is set to Ñ #AB matrix is set to ñ #A3 matrix is set to Pts

Keyboard

- now generates Ñ
- : now generates ñ
- + now generates :
- { now generates *
- } now generates +
- £ now generates Pts
- (with control now generates
-) with control now generates }
- ! with control now generates ;
- ? with control now generates ¿

Start Up Message

The V1 or V3 message at start-up has been changed to S1 or S3.

Identification

The ROM modification byte (at location #C003 in the on-board ROM) is now 1, not 0.

Printer

Certain Codes have been changed for the printer translations. CPC6128 printer codes are unchanged.

CPC464 translations changed are	:	#A1 -> #5C
		#AB -> #7C
		#AE -> #5D
		#AF -> #5B

Danish System

Character Set

#30 matrix is now	0	(i.e. slash removed from zero)
#5B matrix is now	Æ	
#5C matrix is now	Ø	(i.e. letter O with slash through it)
#5D matrix is now	Å	(i.e. letter A with ° accent)
#7B matrix is now	æ	(i.e. lower case of #5B above)
#7C matrix is now	ø	(i.e. lower case of #5C above)
#7D matrix is now	å	(i.e. lower case of #5D above)

Keyboard

now generates	Å
now generates	å
now generates	`
now generates	(a)
now generates	Æ
now generates	æ
now generates	Ø
now generates	ø
now generates	*
now generates	:
now generates	+
now generates	;
	now generates now generates

Control versions have moved with keys/chars (as expected).

Start Up Messages

The V1 or V3 message at start-up has been changed to d1 or d3.

Identification

The ROM modification byte (at location #C003 in the on-board ROM) is now 2 and not 0.

French System

Character Set

#40 matrix is now (i.e. a grave) à #5C matrix is now (i.e. c cedilla) ç #5E matrix is now (i.e. circumflex) #7B matrix is now è (i.e. e grave) #7C matrix is now ù (i.e. u grave) #7D matrix is now é (i.e. e acute) #A2 matrix is now ° (i.e. degrees sign)

Keyboard

So many characters have been moved around that it is easiest to show the changes with the following diagram. The control versions have moved with the keys/chars (as expected).

[insert diagram here]

Start Up Message

The V1 or V3 message at start-up has been changed to f1 or f3.

Identification

The ROM modification byte (at location #C003 in the on-board ROM) is now 3, not 0.