

10

We pick up where we left off last time from our C4CPC feature, and show you how to

convert your own titles so that they’re playable on a GX4000 console.

FEATURE—C4CPC

A
s promised all the way back in issue 1, we’ll be taking

you through the process of converting a game to

the .CPR format for use with the C4CPC device.

A huge amount of CPC games have already been converted,

but of course there are still some exceptions among the

thousands of titles released for the CPC and it’s quite possi-

ble that one of your favourite games hasn’t made it yet. Also,

I imagine that there are some of you who are just curious

about the process.

To find the full list of what has been converted so far,

check the ‘Converted GX4000 Software’ page on the

CPCWiki (of course) at: http://www.cpcwiki.eu/index.php/

Converted_GX4000_Software

If you’ve found that one of your favourite titles is not on

that list and you’re dying to get it up and running on your

GX4000, then read on…

For this process you will need:

¶ A .DSK image of the game – preferably without

copy protection (i.e. a cracked version)

¶ An emulator with debugging functionality such as

WinAPE, that also supports .CPR images for you to

perform an initial test of the game (we’ll be using

WinAPE in this guide, but the principles should

apply to other emulators).

¶ A HEX/sector editor tool – e.g. HxD or CPCDiskXP.

¶ NoCart application by Kevin Thacker

¶ A basic knowledge of Hexadecimal and memory

addresses.

¶ A C4CPC if you want to play it on a GX4000

Step One - Find a .DSK & perform a test conversion

So, you’ve decided on the game that you want to con-

vert and have downloaded a .DSK image. Ideally this will be

a version of the game without copy protection and without

using compression. If there are intros/trainers then there may

be extra work to remove these or remap keys to the joystick.

Before we attempt anything else, we will perform a test

conversion using the NoCart tool. Why? Because I don’t want

you to spend ages working away on a game that won’t con-

vert or run afterwards. If you’re very lucky and the game

you’ve chosen is completely playable with a joypad/stick then

you won’t even need to do anything else!

If you have any experience with running tools from a

command line then NoCart is a piece of cake to use. Just put

the .DSK image in the same folder as the NoCart tool, and

from the command line type nocart64 <name>.dsk

<name>.cpr <run filename> where <name> is obviously

the name of the disk image and <run filename> is the file that

you run on the disk to start the game. If you are running a 32-

bit version of Windows then use nocart32 instead. If all goes

well then you will have a .CPR image ready to test with a

C4CPC or in an emulator. If you receive errors during the

process then see if you can track down another version of

the game, many will have multiple cracked versions available

online.

Step Two - Play and study the game

The next step is to try running your new .CPR image in

either a real GX4000/Plus via a C4CPC or in an emulator

(with only 64KB and Plus features enabled). Even if you

know that the game you’re trying is not 128KB only, some

cracked versions need 128KB even if the original ran in

11

FEATURE—C4CPC

Feel at home with the WinAPE Debugger

Even if you’ve never used the Debugger functionality of

WinAPE before, it won’t take long to familiarise yourself

with it. Pressing F7 at any time will pause the emulation

and allow you to view a disassembly of the currently

running program and examine the contents of the

memory or registers. Pressing F7 further times will

execute the code, one instruction at a time. Breakpoints

can be set, either at a set point in memory (by highlight-

ing the address and pressing F5) or when an I/O port is

accessed which mean that the emulator will pause at

that point, opening the debugger automatically for you.

There are a couple of other useful key combinations to

remember. Ctrl+G will allow to enter a memory address

to jump to in either the Disassembler Pane or the

Memory Dump Pane. Ctrl+F allows you to search for

Text, Hex values or Assembler commands. Pressing F5

will set a breakpoint at the currently selected line in the

Disassembler Pane.

64KB. If the game does not run, then once again, try to see if

you can find another version.

As a real GX4000 doesn’t have a keyboard it is important

to check to see if the game is playable from joystick alone;

many games require key presses to get through the menus

or enter a high score even if the game itself is playable with

only a joystick.

Make a note of any keypresses that you are required to

make to get into and play the game. If you find that a key-

press is required on the title screen to switch to joystick or

start the game then make a note of this along with the key-

presses for other things like ‘redefine keys’. In the game itself

make a note of the default keyboard controls and also the

keys for things like pause and quit.

Step Three - Re-map any required keyboard inputs

For us to map the keyboard input to the joystick, it is

useful to understand a little bit about how keyboard input is

read on the CPC. As far as the CPC is concerned, each of

the possible joystick inputs (Joy Up, Joy Down, Joy Left , Joy

Right, Joy Fire 1 and Joy Fire 2) are handled as if they were

just another key on the keyboard. If you look at the table

(opposite-bottom) then you’ll see that there are a total of 80

keys that can be recognised; 10 lines labelled &40 to &49

with 8 bits on each labelled bits 7 down to 0. So what we

want to do is change the expected keyboard input to one of

the available buttons on the joypad. If the game requires the

player to press ‘1’ to start (such as in Potsworth & Co, which

we’ll be using as an example) which is bit 0 of line &48, we

would want to map this to bit 4 of line &49 which is the prima-

ry fire button of Joystick 1.

Bizarrely, it is actually the CPC’s sound chip (AY-3-

8912) that is responsible for scanning the keyboard. The AY

chip is accessed via a chip known as the 8255 PPI. This is

an interface chip that lets the CPC’s Z80 CPU communicate

with different elements of the CPC’s hardware, and that is

done via three ‘ports’ labelled A-C (F4, F5, F6) and a control

register (F7) with values sent to these using the OUT com-

mand. When this command is used, register B will contain

the value of port/control register (i.e. F6) and another register

will contain the value to be sent (e.g. ld bc,#f782 followed by

out(c),c will send the value #82 to the control register #F7).

To read the keyboard, the code will set the PPI for

Output on ports A & C (#82 to #F7) as we’re sending data to

the PSG, then it will select register 14 of the PSG (the IO

register used for reading keyboard inputs) by writing 14 to

Port A (#0E to #F4) followed by #C0 to Port C (#C0 to #F6)

before writing 0 to Port C (#00 to #F6) to set the PSG to

inactive (this prevents it going funny when switching from

output to input). Next, Port A of the PPI is set to input by

sending #92 to #F7 (the control register). The value of the

keyboard line to read (e.g. #40) is then sent to Port C (#F6)

before finally the keyboard value is read from port A into a

register, this time using the in command.

Does that make an ounce of sense? We only have

space here to go briefly into how the CPC reads the key-

board input, so we suggest that you swot up with some

Register Values Disassembler Pane

Memory Dump

12

FEATURE—C4CPC

further reading if you’re keen on attempting this yourself (see

‘further reading’ at the end of the article).

Unfortunately, there’s no one way that the keyboard

scanning code will appear, although you may learn to spot it

after a while. Luckily, WinAPE can set a breakpoint on I/O

reads so you don’t have to understand it too much.

In WinAPE, whilst on the title screen of the game, we

will press F7 game to enter the debugger and click the small

Red circle at the bottom of the window to bring up the Break-

points window. Click the ‘Input/Output’ tab and click ‘Add’,

then select ‘Keyboard Read’ under type and click OK. Close

the debugger window and it will start the emulation again.

The emulator will stop when it detects that keyboard input is

being read and bring the debugger back up. You’ll need to

clear the breakpoint to be able to continue as normal.

Once in the debugger you can press (or hold) F7 to

cycle through the code a single instruction at a time. The title

screen is a great place to see the keyboard scanning in

action because quite often that’s pretty much the ONLY thing

happening on the title screen.

If it’s reading multiple lines then it will likely store the

current key status in an area of memory, ready to be read by

the game code to determine what to do next.

This is what both Potsworth & Co and Scooby Doo &

Scrappy Doo do (don’t step in it). Both titles were coded by

the same author so work in a very similar way. In the code

below that we found by setting the breakpoint in Potsworth, it

sets the start location for the keymap in memory at #FFF6,

reads the first keyboard line (&40) into that memory address,

increases the above values to #FFF7 and &41 and continues

in a loop reading each line of the keyboard until the memory

address attempts to go past #FFFF (to 00), at which point it

exits the loop.

So now that we know how the game reads the input

from the keyboard, we need to change how it behaves when

it receives that input. As per the keyboard matrix table, by

checking which bits are set for each line the CPC can deter-

mine which keys are currently being pressed. We know that

on the title screen of Potsworth it expects the user to press

‘1’ to start the game (bit 0 of line &48), which we want to

change to ‘FIRE1’ on Joystick/Joypad 1. ‘We know that the

game is storing inputs from line &48 in #FFFE, so we can

search for LD A,(#FFFE) in the debugger (Select disassem-

bler window, Ctrl+F and then search for that under the

‘Assembler’ tab) to see where it attempts to use that value. In

your game it might be worth searching for the BIT instruc-

tions instead, particularly if you know which keys it is looking

for.

We soon find that instruction at address #80DC (below-

right) which is followed by BIT 0, A and JP Z,#4F00. This

looks exactly what we’re after, but we set a quick breakpoint

to confirm that this code is executed on the title screen (it is).

So what is it doing? After loading the value of the keyboard

line &48 from #FFFE the code is checking if bit 0 is set and if

so jumps to #4F00 (to start the game).

So how do we set this to use FIRE 1? We simply need

to amend the line and bit that it is reading to #FFFF (line

&49) and bit 4 (Joy 1 FIRE1). Just be aware that this will

also impact the next part of the code, as where it previously

looked for bit 1 of line &48 (‘2’ on the keyboard) to redefine

the keys, this will now be looking at be looking at line &48 as

well.

When making changes, take before and after screen-

shots of each part of the code that you amend so that you

have a record of what has been changed.

To make the amendment in WinAPE, you will need to

jump to the instruction in the Memory Dump pane (click in

the pane, press Ctrl+G and enter 80DC jump to that part of

the code. We want to amend 3A FE FF to read 3A FF FF so

we will click in the location that needs changing and just

enter the change. The Hex values that you see are transla-

tion of the ld a,(#FFFE) command. Each Z80 instruction is

represented by a Hex value known as an ‘Opcode’ which is

followed by an operator if required, such as the memory

address. In this case, the Opcode for ld a,(**) is 3A and the

memory address is FF EE. You’ll noticed that the bytes in the

address are reversed (FE FF rather than FF FF). This is

because the Z80 follows a ‘little-endian’ format, where it

-Set first address to read into

-Tell PPI that Port A is input &

Port C is output.

-Send keyboard line value to

Port C

-Read data from PPI port A

- Store value in current keymap

address

- Increase keymap address and

keyboard line

- Loop until end of keymap area

is reached

- Return PPI port A to output

mode

- Load the value of #FFFE (line

&48) into the accumulator

- Check to see if bit 0 of that

line is set (‘1’ on the keyboard),

if so jump to #4F00.

- Check to see if bit 1 of the

same line is set (’2’ on the

keyboard), if so jump to #8147

13

FEATURE—C4CPC

stores the least significant byte first. Since you may need to

amend some Opcodes (particularly when amending the bit

command below), we advise having a browser tab open at

http://clrhome.org/table/ for reference; this site lists all of

the available Z80 Opcodes in a handy table format. As soon

as the change is made you should see the disassembly

window update with the new instruction.

The Opcode for bit 0, a is CB 47 but we want to read

the value of bit 4 instead. A quick glance at the reference

table tells us that the required Opcode is CB 67 so we make

the amendment in the same way as above. You’ll then want

to test the change, but before you do we recommend that you

save a snapshot (F6) so that you can get back to the title

screen easily. With that done, trying the Fire button reveals

whether the change has worked or not (it has, yay!). Using

the same method, you’ll want to move any other inputs on the

title screen to the Joypad as required.

With everything working as it should, we attempt to go

into the game to redefine the main controls. As we did for the

title screen, set an I/O breakpoint on Keyboard read. As it

turns out, the game uses the same code as the title screen

(very efficient) storing a keymap in the same location (#FFF7-

#FFFF). The default keys are Q, A, O, P, so we start by trying

to find where it checks for the ‘Q’ key (Up). Back to the table

on page 10, we know that Q is on line &48 which is stored in

#FFFE so we will search in the disassembler for the com-

mand ld a,(#FFFE). This takes us to #6F7B, but what we find

here rather than a BIT command following the LD A,(#FFFE)

there is AND #08.

This is another way of checking which bits are set, by

comparing a number against the accumulator.

Seeing AND #08, it may not be immediately obvious

which key is checking for, but if you were to convert the

number to binary it would shed some light. It becomes AND

%00001000 - i.e. it’s checking if Bit 3 has been set on line

&48, which looking back at the table is the Q key, represent-

ing Up in the game. We want to change this to Joystick/

Joypad Up which is line &49, bit 0 so we need to change LD

A,(#FFFE) to LD A,(#FFFF) and AND #08 to AND #01

(representing %00000001, so the 0 bit is set) in the same

way as we did before, taking a screenshot before we make

the change. Carry on and do this for each of the controls,

saving a screenshot of the changes and a snapshot when

done. Start the game again and test out your new controls. Is

something not quite working as expected? Reload the snap-

shot, go back to your changes and see if something needs

amending.

If it does appear to be working, play the game thorough-

ly and confirm that you can indeed play the game properly

with just a joypad/stick. Remember things like high-score

tables when you die or level code entry. If there is one of

these can the letters be inputted without a keyboard? If not,

you’ll need to go through the process again and work out a

way so they can (or at least to skip past the entry).

If you’re not having any luck finding the keyboard rou-

tines in a game, it may be that it is using the firmware rou-

tines for this instead. Call &BB1E (KM TEST KEY) checks to

see if a particular key has been pressed, with the accumula-

tor (A) containing the key reference, The key references it

uses are in the user manual, or can be calculated from our

key matrix table. For example, Q is key 67, which can be

calculated from our table by taking the last digit of the line

number (8), multiplying that by 8 (giving 64) and finally add-

ing the bit (3), giving a grand total of 67.

Step Four - Make the changes with a disc/file editor

So, if you paid attention in Step Three you should not

have some screenshots of the code before and after your

changes (well, it’s actually the hex values just to the right that

we’re after). Rather than attempting to save a new binary file

with our changes, we are going to edit the .DSK file directly.

There are different ways that this can be done, but we tend to

use a tool called HxD which is available for free from http://

www.mh-nexus.de. Using this tool, you will need to search

for the pre-modified hex values from your screenshots and

apply the same modifications to them. After opening

the .DSK image in HxD, press Ctrl+F to search for the series

of hex values (make sure to change the datatype to ‘Hex

Values’). The more values you enter, the greater the chance

of you finding the right area of code.

When you’ve found the area to change, overwrite the existing

values with your new ones. Once complete, save the .DSK

with a new filename and check it with your emulator to make

sure it works as expected. All that’s left now is to convert the

DSK image again as we did in Step 2 and copy the game to

your C4CPC. Congratulations, you’ve just expanded the

games library of the GX4000!

Further reading:
http://www.wacci.org.uk/magazine/138/138_06.html

http://www.cpcwiki.eu/index.php/Programming:Keyboard_scanning

http://lronaldo.github.io/cpctelera/files/keyboard/keyboard-txt.html

