Z80 timings on Amstrad CPC - Cheat sheet

This document is a visual layout made by cpcitor/findyway from data at http://www.cpctech.org.uk/docs/instrtim.html / https://cpctech.cpcwiki.de/docs/instrtim.html Cross-checked with https://borilla.co.uk/z80.html

Instruction timings

The main clock in the CPC is 16Mhz This is provided to the Gate-Array which generates the other clocks.

The Gate Array has the following roles:

generation of a 1 Mhz clock for the CRTC and AY-3-8912
generation of a 4 Mhz clock for the CPU
arbitrates access to the RAM between the CPU and the video hardware (CRTC and Gate-Array)

Every microsecond:

The CRTC generates a memory address using it's MA and RA signal outputs

The Gate-Array fetches two bytes for each address

The video hardware is given priority so that the display is not disrupted

The Gate-Array generates the "READY" signal which is connected to the "/WAIT" input signal of the CPU. This signal is used to stop the CPU accessing while the video-hardware is accessing it. As a result, all instruction timings are stretched so that they are all multiples of a microsecond ($1 \mu \mathrm{~s}$), and this gives an effective CPU clock of 3.3Mhz.

Key:	
cc	condition code (z,nz,c,nc,p,m,po,pe)
r	8 -bit register (B,C,D,E,H,L,A)
b	Bit number (0,1,2,3,4,5,6,7)
n	8 bit value
nnnn	16 bit value
dd	8 bit displacement
nc	condition not satisfied
c	condition satisfied

Other timings

Time between acknowledge of a interrupt and execution of a interrup

Mode 0: (depends on instruction)
Mode 1: 5

Mode 2: 19

1 monitor scanline: 64 microseconds
1 50Hz monitor frame: 19968 microseconds.

NOTES:

(note 1) This timing applies when there are multiple DD or FD prefix's together.

The timings for IY index register pai are identical to the timings for IX register pair.

The table on next page gives the complete execution time for all CPU instructions "These timings have been measured" (dixit http://www.cpctech.org.uk/docs/instrtim.html)

Credits: CPCWiki community Arnoldemu Executioner, db6128, TFM, Axelay, Optimus, and the ones I forgot.

1 NOP		2 NOPs		3 NOPs	4 NO	OPs	5 NOPs	6 NOPs	7 NOPs
ARITHMETIC \& LOGIC									
ADD A,r ADC A,r SUB r SBC A,r	ADD A,n ADC a,n SUB n SBC A,n	$\begin{aligned} & \text { ADD A,(HL) } \\ & \text { ADC A,(HL) } \\ & \text { SUB A,(HL) } \\ & \text { SBC A,(HL) } \\ & \hline \end{aligned}$	ADD A,HIX ADC A,HIX SUB HIX SBC A,HIX	ADD HL,BC ADD HL,DE ADD HL,HL ADD HL,SP	$\begin{aligned} & \text { ADD IX,BC } \\ & \text { ADD IX,DE } \\ & \text { ADD IX,IX } \\ & \text { ADD IX,SP } \\ & \hline \end{aligned}$	ADC HL,BC ADC HL,DE ADC HL,HL ADC HL,SP	$\begin{gathered} \text { ADD A,(IX+dd) } \\ \text { ADC A,(IX+dd) } \\ \text { SUB (IX+dd) } \\ \text { SBC A,(IX+dd) } \end{gathered}$		
AND r XOR r OR r CP r	AND n XOR n OR n CP n	$\begin{aligned} & \hline \text { AND (HL) } \\ & \text { XOR (HL) } \\ & \text { OR (HL) } \\ & \text { CP (HL) } \\ & \hline \end{aligned}$	AND HIX XOR HIX OR HIX CP HIX			SBC HL,BC SBC HL,DE SBC HL,HL SBC HL,SP	$\begin{aligned} & \text { AND (IX+dd) } \\ & \text { XOR (IX+dd) CPI } \\ & \text { OR (IX+dd) } \\ & \text { CP (IX+dd) } \\ & \hline \end{aligned}$		
RLCA RRCA RLA RRA	RLC r RRC r RR r RL r	$\begin{aligned} & \text { SLA } r \\ & \text { SLL } r \\ & \text { SRL } r \end{aligned}$			$\begin{array}{r} \text { RLC (HL) } \\ \text { RRC (HL) } \\ \text { RR (HL) } \\ \text { RL (HL) } \end{array}$	$\begin{aligned} & \text { SLA (HL) } \\ & \text { SLL (HL) } \\ & \text { SRL (HL) } \end{aligned}$	RLD RRD		RL/RLC (IX+dd) RR/RRC (IX+dd) SLA (IX+dd) SRA (IX+dd) SLL (IX+dd) SRL (IX+dd)

BITS	\& SPEC				
$\begin{aligned} & \mathrm{SCF} \\ & \mathrm{CCF} \\ & \mathrm{CPL} \end{aligned}$	$\begin{aligned} & \text { BIT b,r } \\ & \text { RES b,r } \\ & \text { SET b,r } \end{aligned}$	BIT b,(HL)	$\begin{aligned} & \text { RES b,(HL) } \\ & \text { SET b,(HL) } \end{aligned}$	BIT r,(IX+dd)	$\begin{aligned} & \text { RES r,(IX+dd) } \\ & \text { SET r,(IX+dd) } \end{aligned}$

