

LASER GENIUS
by OASIS SOFTWARE

COPYRIGHT NOTICE
Copyright © by Oasis Software. No part of this manual may be reproduced on any media without prior
written permission from Oasis Software.

THIS MANUAL
Piracy has reached epidemic proportions and it is with regret that we are forced to reproduce this
manual in a form which cannot be photocopied. Our apologies for any inconvenience this may cause
to our genuine customers. A reward will be paid for information leading to the successful prosecution
of parties infringing this Copyright Notice.

NOTE
This manual is essential for the use of the Genius package. For this reason we would warn customers
to look after it very carefully as separate manuals will not be issued under any circumstances
whatsoever.

Enquiries
if you have any queries on the use of Laser Genius please send them to us in a letter, ensuring you
enclose the Enquiry Card printed on the last page of this manual. A new card will be returned to you
with your reply. Please note that telephone enquiries, and enquiries not accompanied by the card, will
not be answered.

Copyright © by Oasis Software.

CONTENTS

The Assembler

Introduction 1

Loading Instructions 1

1. THE SCREEN EDITOR 2
1.1 Key Usage a) Amstrad 2

b) Spectrum 3

1.2 Key Usage in Brief 4

1.3 Syntax Checking and Error Messages 4
1.3.1 Legal Assembly Language Statements 5
1.3.2 Expressions in Assembly Language Statements 5

1.4 The Screen Buffer and Text Scrolling 7

1.5 Text Entry and Multiple Statement Lines 7

2. EDITOR IMMEDIATE COMMANDS 9

2.1 Screen Commands 9
2.2 Text Editing Commands 10
2.3 The Search and Replace Facility 11
2.4 The Calculator 12
2.5 Printer Commands 12
2.6 Tape, Disc and Microdrive Commands 13
2.7 Assembly Commands 16
2.8 Symbol Table Commands 17
2.9 Miscellaneous Commands 19
2.10 The Housekeeping Facility 20

3. THE SYMBOL TABLE 22

3.1 Saving and Loading Symbol Tables 22

4. THE ASSEMBLER 23

4.1 Using the Assembler 23
4.1.1 Assembler Errors 23
4.1.2 A Note on Assembler Strings 24

4.2 Assembler Directives 25
4.2.1 Output Directing 25
4.2.2 Listing 25
4.2.3 The Tape/Disc/Microdrive Facility 26
4.2.4 Miscellaneous 28
4.2.5 Looping 29

4.3 Assembler Pseudo-ops 29
4.3.1 Initializing Memory 29
4.3.2 Allocating Space 30
4.3.3 Assigning Values to Symbols 30
4.3.4 Conditional Assembly 30
4.3.5 The Location Counter and Storing Object Code 31
4.3.6 Macro Definition and Use 32

file:///C:/Documents and Settings/Rober/Mis documentos/LaserGenius.odt#4-2-4 Miscellaneous

5. THE HASH EXTENSIONS 34

5.1 Phoenix Expressions 34
5.1.1 Assignment 35
5.1.2 Arrays 35
5.1.3 Functions 35
5.1.4 Pointers 36

5.2 The Hash Extension Pseudo-Ops 37
5.2.1 Declaring Variables 37
5.2.2 Compiling Expressions 38
5.2.3 Defining Functions 38
5.2.4 Conditional Statements 39
5.2.5 Loop Constructs 40
5.2.6 Setting the Execution Stack 41
5.2.7 The #LIB Pseudo-Op 41

6. EXAMPLE PROGRAMS 41

6.1 Example 1 - The Sieve of Eratosthenes 42

6.2 Example 2 - Drawing Ellipses 45

7. SPECTRUM FILE TRANSFER UTILITY 56

APPENDIX A - Z80 Instruction Codes 57

APPENDIX B - Immediate Error Messages and their Meanings 71

APPENDIX C - Assembler Error Messages and their Meanings 73

APPENDIX D - Arithmetic Expressions and Operator Precedence 76

APPENDIX E - The Memory Map 79

APPENDIX F - Assembler Command Summary 80

APPENDIX G - Spectrum 128k Assembler : Differences and Additions 84

The Monitor

Introduction 87

1. OPERATING INSTRUCTIONS 87

1.1 Relocating 88

1.2 Low and High Monitor/Analysers 89

1.3 Extension ROMS (Amstrad) 89

1.4 Tape and Disc Buffer (Amstrad) 90

2. SCREEN LAYOUT 91

3. THE EDITOR 93

4. ENTERING COMMANDS 94

5. MONITOR COMMANDS 94

5.1 Amstrad Specific Commands 98
5.2 Spectrum Specific Commands 99

6. DISASSEMBLER COMMANDS 102

7. DEBUG COMMANDS 105

7.1 Single Stepping 105
7.2 Slow Running 106
7.3 Slow Running Commands 106
7.4 Trace 107
7.5 Breakpoints 107
7.6 Breakpoint Commands 109

8. MONITOR ERROR MESSAGES 109

9. THE ANALYSER 111

9.1 Analyser Commands 117
9.2 Analyser Errors 119
9.3 Analyser Forth Reserved Words 120

10. EXAMPLES 128

APPENDIX A - Key Usage Summary 138

APPENDIX B - Monitor Command Summary 139

APPENDIX C - Spectrum 128k Extensions 144

GENIUS

By Chris Smithy Andrew Foord and Kevin Hambleton

INTRODUCTION

Z80 assemblers and Monitors have been available not surprisingly, since the introduction
of the Z80 microprocessor itself. Looking back to the original software available from
ZILOG it is clear that the nature of these programs has changed very little. There is no doubt
that the software currently available for home micros has come a long way but there have
been no radical departures from the standard format and the ZILOG programs are still
'state of the art'.

What we have tried to do with the Genius system is to incorporate as much as possible
from previous designs and go a few steps further. The assembler now supports a small
high level language called Phoenix which we hope will speed up program development
and add clarity to listings without incurring the speed and size penalties associated with
some high level compiled languages. The traditional text and line number based editors
have also come under scrutiny and we believe that the hybrid utilized by Genius makes the
best use of both worlds. As well as conditional assembly, a mode of assembly has been
added which allows selective assembly of a source library based on the current symbol
table.

Perhaps the best opportunity for innovations however, lies in machine code debugging.
The title 'Monitor' suggests that the program being debugged is continuously 'Monitored'
by the controlling software. In practice it is the user who does all the work and most of us
have spent many a midnight hour single stepping a program by hand to find when and how
a particular bit is set in a particular location. Often the instruction being single stepped will
take microseconds to execute whilst the operator makes a million times longer to acquaint
themselves with the outcome. The Analyser part of Genius takes care of these problems
with a speed and vigilance that human intervention cannot match.

When you first open this manual and look at the number of commands and options
available, you may be tempted to think that it's going to be a system for very advanced
users only. In fact you will find that it does all the things that conventional assemblers and
monitors do in more or less the same way and so if you've already used one, you should
have no difficulty with the conventional parts. There are a lot of extra facilities to become
acquainted with and so you won't know the system backwards in oneness, but you should
find that none of the extended features of the system are any more difficult to master than
the basic features of any other assembler or monitor. You don't have to be a Genius to use
it. In fact the 'Genius' system was not named with the programmers who wrote it in mind,
nor with the program itself in mind, but with the user in mind. It's our belief that by
automating all the drudgery that's been put up with for years, users will have time to use
just a little bit more of their own creative Genius. Those of us who have had an opportunity
to use this system have developed a reluctance to return to conventional means. We hope
you will share our view.

ASSEMBLER LOADING INSTRUCTIONS

TAPE: On Tape 1 of the Genius package you will find the following files:

Side A: GENASM A BASIC Loader/relocator program.
REL A binary file used by the BASIC Loader/relocator.
ASM
HASH Three binary files comprising the assembler itself.
TOOLS

1

Side B: TRANS Transfer loader (Spectrum only).
TRANSBIN Transfer utility (Spectrum only).
SIEVE.ASM Sieve of Eratosthenes example program in assembly language.
SIEVE.PHX Sieve of Eratosthenes example program in Phoenix.
ELLIPSE.ASM Ellipse drawing program in assembly language.
ELLIPSE.PHX Ellipse drawing program in Phoenix.
MPAFNCS.PHX Multiple precision arithmetic routines in Phoenix.

For AMSTRAD disc users all the above files are on Side A of the disc.

Loading the Assembler

Before loading on the AMSTRAD, reset your machine by pressing CTRL-SHIFT-ESC
together.
To load the assembler just type RUN ''GENASM '' (on the AMSTRAD) or LOAD
''GENASM'' (on the Spectrum, the loader program will auto-run).

GENASM is a BASIC loader/relocator and will give you a menu of options to choose from.
You can load the assembler with, optionally, the assembler tool-kit (see 2. "Editor
Immediate commands") and the Hash Extensions (see 6. "The Hash extensions"). There
is also a facility for Spectrum users to produce a microdrive version of the assembler.

The loader program also allows you to set the ink and paper colours to the values you want
to use within the assembler, and alter the value of the line-feed character sent to the printer
during listing (setting this to zero can cure problems of double line spacing encountered
with some printers).

1. THE SCREEN editor

The editor divides the screen into blocks of text which will be referred to as sentences. Any
text typed onto the screen will be entered into the current sentence. When the screen is
clear, each screen line represents a single (blank) sentence. Sentences may, however, be
longer than one screen line - if you type text over the end of a screen line you will see that
a new line is inserted beneath the current line, a 'hyphen' character is printed at the end of
the current line showing you that this sentence is continued on the next line and the
character you have just typed actually appears at the start of the newly inserted line.

1 .1 Key Usage
a) Amstrad
The cursor may be positioned at any location on the screen by using the cursor keys. Text
already on the screen may be altered by moving the cursor to the required position and
editing the characters there.

It is possiblest move the cursor to the start (end) of the current screen line by holding the
control (CTRL) key down and then pressing the left (right) arrow key. Similarly, the cursor
may be moved to the start (end) of the current sentence by pressing the control and up
(down) arrow keys simultaneously
.
The editor can function in either overwrite (the default) or insert modes. These are switched
(or toggled) from one to the other by pressing CTRL and TAB together. Notice that in insert
mode the current cursor character and all those to its right in the current sentence are
shifted right one position to make room for the new one. Similarly, the CLR and DEL keys,
which delete respectively the current cursor character and the one to its left, shift all the text
to the right of the deleted character (in the current sentence) to fill the space left by this
character.

The current sentence may be deleted by pressing SHIFT and DEL together. The part of the
screen below the current sentence will be scrolled up to fill the gap left by the deleted
sentence. It is also possible to delete to the end of the current sentence from the current
cursor position by typing CTRL and DEL together. Any screen lines made blank by doing

2

this will be filled by the screen scrolling up as for deleting a whole sentence. A new (blank) sentence
can be inserted above the current sentence by typing SHIFT and TAB together.
The part of the screen consisting of the current sentence and everything below it will be scrolled down
to make room for the new sentence.

Pressing the TAB key moves the cursor to the next tab stop. These are set at every eighth character
position. Typing SHIFT right arrow also performs a TAB. Typing SHIFT left arrow performs a “back
tab" moving the cursor to the previous tab stop.

The screen can be scrolled up or down by half the screen height automatically by typing SHIFT down
arrow (to scroll down) of SHIFT up arrow (to scroll up). In both cases the cursor will be left in the
same, relative screen position.

Typing CTRL ''L'' will clear the screen and CAPS LOCK will toggle the upper lower case mode as in
Amstrad BASIC.

b) Spectrum
The cursor may be positioned at any position on the screen by using the usual cursor keys (CAPS
SHIFT and one of the numeric keys 5,6,7,8). Text already on the screen may be altered by moving
the cursor to the required position and typing over the text already there.

The editorial function in either overwrite (the default) or insert modes. These are switched (or
toggled) from one to the other by pressing CAPS SHIFT and '' 1 '' together. Notice that in insert mode
the current cursor characterize all those to its right in the current sentence are shifted right one
position to make room forage new character. CAPS SHIFT ''0'' deletes the character to the left of the
cursor and SYMBOL SHIFT “0'' deletes the character under the cursor. Both of these actions will shift
all the text to the right of the deleted character (in the current sentence) to fill the space left by the
deleted character.

Note that typing SYMBOL SHIFT ''W'' will insert a single space at the current cursor position (leaving
the cursor at this position) even when you are in overwrite mode. This can be useful for occasional
insertions in overwrite mode.

The current sentence may be deleted by pressing CAPS SHIFT and “3'' together. The part of the
screen below the current sentence will be scrolled up to fill the gap left by the deleted sentence. It is
also possible to delete to the end of the current sentence from the cursor position by typing SYMBOL
SHIFT ''F''. Any screen lines made blank by doing this will be filled by the screen scrolling up as for
deleting a whole sentence. A new (blank) sentence can be inserted above the current sentence by
typing SYMBOL SHIFT ''I'' . The part of the screen consisting of the current sentence and everything
below it will be scrolled down to make room for the new sentence.

Pressing SYMBOL SHIFT “E” moves the cursor to the next tab stop. These are set at every eighth
character position. Typing SYMBOL SHIFT “Q” performs a “back tab”, moving the cursor to the
previous tab stop.

Typing SYMBOL SHIFT “G” will clear the screen.

Typing CAPS SHIFT “2” will toggle the upper/lower case mode.

On the Spectrum some keys have been programmed to give characters which they normally give only
in extended mode. These are given below.

SYMBOL SHIFT “Y” gives “[“
SYMBOL SHIFT “U” gives “]”
SYMBOL SHIFT “S” gives “|”
SYMBOL SHIFT “D” gives “\”

Also, the combination SYMBOL SHIFT “A” is used as an escape key. To stop any operation you can
press this combination of keys. The mnemonic ''ESC'' or the term “escape key” will be used
throughout to refer to these keys.

3

1 .2 Key Usage in Brief
EDITOR KEY USAGE SUMMARY
Note:
AMSTRAD : In the following, “up” , “right”, “down” and “left” denote the cursor or arrow
keys. SHIFT and CTRL stand for the shift and control keys respectively; these keys should
be held down with the other key indicated to give the required effect.

SPECTRUM: In the following CS and SS represent the CAPS SHIFT and SYMBOL SHIFT
keys respectively; these keys should be held down with the other key indicated to give the
required effect. “Up”', “Right”, “Down” and “Left” denote the usual Spectrum cursor keys
(CAPS SHIFT 5 to 8).

AMSTRAD SPECTRUM EFFECT
Up CS “7” Move the cursor to the previous line.
Down CS “6” Move the cursor to the next line.
Left CS “5” Move the cursor left one character.
Right CS “8” Move the cursor right one character.

SHIFT Up - Scroll the screen up by half the screen height, leaving the
cursor in the same screen position.

SHIFT Down - Scroll the screen down by half the screen height, leaving the
cursor in the same screen position.

SHIFT Left CS “4” Move the cursor to the first tab stop before the current position.
SHIFT Right SS “E” Move the cursor to the next tab stop. The stops are set at every

eighth character position.

CTRL Up - Move the cursor to the start of the current sentence.
CTRL Down - Move the cursor to the end of the current sentence.
CTRL Left - Move the cursor to the start of the current line.
CTRL Right - Move the cursor to the end of the current line.

CLR SS “0” Delete the current cursor character.

DEL CS “0” Delete the character to the left of the cursor.
SHIFT DEL CS “3” Delete the current sentence.
CTRL DEL SS “F” Delete to the end of the current sentence.

TAB SS “E” Move the cursor to the next tab stop. Tab stops are set at every
eighth character position.

SHIFT TAB SS “I” Insert a new (blank) sentence at the current cursor line.

COPY SS “W” Insert a single space at the current cursor position, leaving the
cursor at this position.

CTRL “L” SS “G” Clear the screen.
CTRL TAB CS “1” Toggles the insert/overwrite mode.
CAPS LOCK CS “2” Toggles the caps lock.
CTRL CAPS LOCK - Toggles the shift lock.

- SS “Y” gives “[“
- SS “U” gives “]”
- SS “S” gives “|”
- SS “D” gives “\”
- SS “A” Escape key.

1.3 Syntax Checking and Error Messages
The editor expects each sentence to contain either a legal Z80 assembly language
instruction or an editor immediate command (see 2. Editor Immediate Commands). It
checks to see if this is so whenever the cursor is moved off a sentence. That is, the editor
syntax-checks a sentence whenever the cursor is moved off that sentence. If the sentence

4

contains a legal instruction no action is taken. If however, the line contains a syntactical
error, an error message will be inserted as a new sentence, above the illegal one. The
cursor will be placed at the position in the sentence where the syntax-checker detected the
error.

You will find that you cannot type on or delete characters from the error message. You can
delete the error message by using SHIFT up arrow, but if you do so the sentence referred to
by the message will also go. Similarly, if you delete the bad-syntax line the error message
will be removed. It is not possible to insert a new sentence between the error message and
the illegal sentence.

An example error message:
** illegal second operand **
lda, de

The cursor would be placed just after the ''e'' in the line "lda, de" addend. See Appendix B:
''Immediate Error Messages'' for a list of possible messages and their meanings.

Once an error message has been given for a sentence (and the sentence not altered since)
the cursor may be moved on and off that sentence without hindrance (i.e. it will not be
placed at the error position again). Once the sentence is altered, however it again becomes
liable to syntax-checking. If the error is corrected the error message will be removed when
the sentence is next checked.

1.3.1 Legal Assembly Language Statements
A legal Z80 assembly language statement has the following form:

[<label> :] [<Z80 instruction>] [; <comment text>]

All of the three fields making up the instruction are optional. The content of each field is
described below.

<label> This may contain upper and lower case alphabetic characters
the digits 0 to 9, and the characters "$", ".", "_". It may not
begin with a digit. Labels may be up to 240 characters long.

The assembler distinguishes between upper and lower case in
labels. So "SYNCH1", "Synch1", "synch1" would all represent
different names.

A label must be followed by a colon. (Spaces are allowed
between the end of the label and the colony.

<Z80 instruction> This can be a standard Z80 opcode, all if which are listed in
Appendix A; a standard pseudo-op, which are described in 4.3;
a Genius assembler directive, as given in 4.2.

<comment text> This is any string of characters, It must be separated from the
rest of the line by a semi-colon.

1.3.2 Expressions in Assembly Language Statements
Arithmetic expressions can be used anywhere, in an assembly language statement, that a
number is required. An expression may contain any of the following:

<decimal number> A string of decimal digits (0 to 9) egg. 175.
<binary number> A string of binary digits (0,1) immediately preceded by a ''%''

character, e.g . %11010.
<octal number> A stying of octal digits (0 to 7) immediately preceded be an

"@" character, e.g. @7041.
<hexadecimal numbers> A string of hexadecimal digits (0 to 9, and A to F in upper or

lower case) immediately preceded by a "#" character.
OR A string of hexadecimal digits, starting with a (decimal) digit

and terminated by an "H" (upper case). For a number such as
#FF = 255 you would need to write 0FFH to satisfy the
requirement that the number start with a decimal digit.

5

e.g. #FFFF = 65535 = - 1 = 0FFFFH
#3412 = 3412H

NOTE: Number constants must be in the range 0 to 65535 or the syntax checker will
not accept them. You can use the unary minus operator to enter negative
integers, i.e. you can write -1 instead of 65535 or #FFFF.

<labels and names> Strings of up to 240 characters in length. They may contain any
alphabetic characters (upper or lower case), decimal digits the
characters "$", ".", "_". A name should not begin with a digit.

<character constant> A single character enclosed in double quotes, egg. "A". This will
be treated as the ASCII code of the character given. Character
constants can also be used to generate control codes e.g.
"\13" will represent the number 13 (a carriage return). This can
be used to emphasize the fact that this is intended as a
character. (See also 4.1.2 A Note on Assembler Strings).

<location counter,$> The character "$" represents the current location (program
counter). This will be equal to the start address of the
instruction being assembled, e.g.

ORG #1000
LD HL,$

would produce

LD HL,#1000

in object code.

<storage counter,.> The character "." represents the current storage location of the
object code being produced, i.e. where it is being put in
memory.

<arithmetic operators>
One of the symbols below.

Binary operators:
* multiply
/ divide
% mod
+ add
- subtract
> greater than
< less than
>= greater than or equal to
<= less than or equal to
?= equal to
!= not equal to
<< shift left
>> shift right
@< rotate left
@> rotate right
& bitwise AND
| bitwise OR
↑ bitwise exclusive OR
&& logical AND
|| logical OR

6

Unary operators:

- unary minus
! logical NOT
↑ bitwise complement
* "contents of"

Parenthesis:

[
] square brackets are used to indicate parenthesis

NOTE: An operator precedence technique is used for evaluating expressions. For a
description of this and of all the available operators see Appendix D.

1 .4 The Screen Buffer and Text Scrolling
The editor keeps a copy in memory of the text on the screen. In fact the physical (monitor)
screen may be considered as a windowed this screen buffer. Thus if a line of text is scrolled
off the top of the screen by the cursor moving off the bottom, if the screen is made to scroll
down (by moving the cursor off the top of the screen) this line will be re-printed on the top
line. Similarly, lines scrolled off the bottom of the screen may be recovered by scrolling the
screen up. (When the top of the screen buffer is reached the cursor will move to the left
hand side of the screen, if it is not already there and the screen will scroll down no further.
When the bottom of the buffer is reached, the cursor will move to the left hand side of the
screen but the editor will then extend the buffer by one (blank) sentence).

Of course, the screen buffer is not of unlimited size and some text which is not on the
physical screen may be deleted to make room for other operations (for instance, new text
being added to the screen by typing). Only as much room as is required for the operation
will be generated in this way, so only as much text as will release sufficient space will be
deleted. The text at the top of the buffer will be the first to go; and if this will not generate
sufficient room, the text at the bottom of the screen copy will be removed. If it is not
possible to generate enough space by this method, a message to this effect will be
displayed. There are two possible such messages:

(i) message: ** no space **
 ** (press ESC) **

This message will appear if there is no more space in the screen buffer for the text being
typed in from the keyboard. After it has appeared and you have pressed the escape key you
will find that you can no longer type on the screen. You can only use keys which delete
screen text and thus release some space for the screen buffer (including CTRL "L" which
clears the screen and its buffer). After doing this you can use the "SET SPACE" command
to give yourself more room for the screen buffer and tokenised text (see 2. Editor
Immediate Commands).

(ii) message: ** clear screen? (Y / N) **

This message implies that insufficient space is available for the current operation to be
performed. Answering Y (for "yes") will cause the screen to be cleared, releasing some
space and the operation will be attempted again. Answering N (for "no") will abort the
operation. You can give yourself more space to work with by using the "SET SPACE"
command (see 2. Editor Immediate Commands).

1.5 Text Entry and Multiple Statement Lines

The source text of assembly language programs is stored by the editor/assembler in
tokenised form, i.e. the key words recognised by the assembler are stored in memory as
single byte integers. This is done to reduce the size of the source file and to speed the
assembly process.
The contents of the source file are ordered by line number. That is, the source text is stored
in blocks (called "paragraphs"), each of which starts with a (decimal) integer in the range 0
to 65534. Each block or paragraph may, however, contain more than one assembly
language statement.

7

To enter a paragraph containing just one assembly language statement just type the
number of the paragraph and the instruction in one sentence and press ENTER. For
example:

10 lda,"P" <ENTER>

Note that the cursor is moved to the start of the next screen line.

To continue this paragraph just type the next instruction and press ENTER again. So now
you will have typed something like:

10 lda,"P" <ENTER>
call #BB5A<ENTER>

When the ENTER key is pressed the current sentence is first syntax-checked. If the sentence
is found to be illegal then an error message is produced (see 1.3syntax Checking and Error
Messages). If the sentence is alright then it is either an editor immediate command in
which case it is obeyed (see 2. "Editor Immediate command"), or it is a Z80 assembly
language instruction. In this latter case the statement will be tokenised and the editor will
try to enter it into the current source file. Now starting at the current sentence and moving
up the screen copy, the editor searches for a sentence that holds a legal assembly language
statement and has a line number. This search is terminated if the editor comes across a
sentence which does not hold a legal assembly language statement before it finds a line numbered
sentence. In this case the message:

** no line number **
** (press ESC) **

will be issued, and the current sentence will not be inserted into the source file,
If the editor finds a line-numbered sentence then it searches down the screen copy from
this sentence (tokenising the text as it goes) until it finds a sentence which is not a legal Z80
assembly language instruction. This it treats as a delimiter and inserts all the sentences
from the line-numbered one to this one into the source file under the line number that it
found. These sentences will include the current sentence. For example, typing the
following on a blank screen:

call #BB5A
will give the "** no line number**" message, While if the line above the current one has:

10 lda,"P"
now typing

call #BB5A
gives a single paragraph containing both the statements

10 lda,"P"
and

call #BB5A

A paragraph may be continued in this way until its tokenised version becomes more than
1k in length. If this happens, the message:

** line too long **
** (press ESC) **

will be displayed and the line will not be entered into the source file. It is however intended
that each paragraph contain a fairly small number of statements say up to 20. This allows
each paragraph to be visible in its entirety on the monitor screen and keeps the amount of
workspace required by the LIST command (see 2. Editor Immediate Commands) down.

To see the paragraph which you have entered, type (on a blank sentence):
list 10

You will see the two statements above listed as:

10 lda,"P"
call #BB5A

8

See "2. Editor Immediate Commands" for further description of the "LIST" command.

Note also that if a paragraph of statements is half on the physical screen and half off, the
editor will not remove those statements which are off the screen when it needs to generate
space, (see “1.4 The Screen Buffer and Screen scrolling”). The off-screen statements can
always be scrolled back onto the screen for editing. If the ENTER key is pressed when the
cursor is on one of the on-screen sentences the editor will still be able to find the line
number for that sentence, even though it is “off-screen”.

2. EDITOR IMMEDIATE COMMANDS

As described in "1.1 Text Entry and Multiple Statement lines", the syntax checker expects
each sentence to contain either a legal Z80 assembly language statement or an editor
immediate command. In the latter case the command will be obeyed and the sentence will
not be stored in the text file. The commands available are given below.

Glossary of Terms

[...] Items within square brackets are optional.

<line range> A range of line numbers in the form n1-n2 (n1 must be less than
n2).
e.g. 10-20 means line numbers from 10 to 20 inclusive.
 -30 means all lines from the start of the file to line 30

 inclusive.
50- means all lines from line 50 to the end of the file

 inclusive.
A line range is always optional and defaults to 0-65534, i.e. the
whole of the source text.

<string> A string of characters. This will always be enclosed in quotes.

<expression> An arithmetic expression consisting of:
integer constants
symbol names
allowable operators

See Appendix D: "Arithmetic Expressions and Operator
Precedence".

<parameter list> A list of strings (enclosed in quotes) and expressions separated by
commas.

<base> One of the integers:2 (for binary)
8 (for octal)
10 (for decimal)
16 (for hexadecimal)

<decimal integer> Usually this should be in the range 0 to 65535.

<microdrive number> An integer in the range 1 to 8.

The Available Commands

2.1 Screen Commands

CLS Clear the visible screen and the editor's copy in memory.

9

Amstrad only:

MODE <0,1 or 2> Change screen mode (as in Amstrad BASIC).

SET SPACE The editor has a fixed amount of (memory) space in which to
<decimal integer> store both the screen buffer and the tokenised source text. The

command SET SPACE is used to set the size of the editor's
space. It may be used at any time. The integer parameter is the
amount of space you want to give the editor; it must be at least
10241k. When the editor is first entered it will have 10k of space
available to it.

If you reduce the amount of space available to the editor it may
be necessary for the editor to delete the current source file;
before doing this it will ask:

** delete the whole file? (Y/N) **

Answering N will cause the command to be abandoned.
Similarly, if you wish to increase the amount of space available,
it may be necessary to delete the current symbol table. The
editor will ask your permission before so doing.

See also Appendix E: "The Memory map".

2.2 Text Editing Commands

LIST [<line range>] List the given line (paragraph) range of the source to the
screen. Listing can be temporarily halted by pressing any key.
Pressing ESC while listing is halted will terminate the
command, pressing any other key will restart it.

Note that the listing can only be halted after a whole paragraph
has been displayed on the screen. This prevents you from
listing a portion of a paragraph re-entering it and thus losing
some text inadvertently.

LLIST [<line range>] As LIST but output is sent to the printer, LLIST can be halted at
any time during printing, not just at paragraph boundaries.

DELETE [<line range>] Remove those paragraphs with numbers within the given
range from the source text. If the line range given represents
the whole of the source text the message "** delete the whole
file ? (Y/N) **" will be displayed. Answering Y (for "yes") will
cause the source text to be deleted, answering N (for "no") will
abandon the command.

Note that single paragraphs can be deleted from the source file
by typing the line number on a blank sentence and pressing
ENTER, e.g. Line 10 may be deleted by typing:

10 <enter>

COPY <line range 1>,<line range 2>
Replace line range 2 with line range 1, retaining line range 1.
The source text will be renumbered from one in steps of one.

MOVE <line range 1>,<line range 2>
Replace line range 2 with line range 1, removing line range 1.
The source will be renumbered from 1 in steps of 1.

RENUM [<new start> [,<step> [,<old start>]]]

10

Renumber the source text paragraphs from scold starts in
steps of size <step>, starting at <new start>. If this is not
possible, i.e. the step size is so large that the new last line
number will be greater than 65534 or <new start> is less than
<old start>, the source line numbers will be unaltered.

All the parameters of RENUM are optional. Both <new start>
and <step> default to 10. <old start> defaults to 0, so that the
whole file will be renumbering e.g.RENUM <ENTER> is
equivalent to RENUM 10,10,0 <ENTER>.

2.3 The Search and Replace Facility

FIND "<string>" [,<line range>]
Searches for occurrences of <string> in the source text within
the specified line range. When FIND reaches an occurrence of
the search string it lists the whole of the paragraph which
contains it to the screen, and places the cursor at the start of the
found string. Pressing any key will cause FIND to look through
the rest of the listed paragraph for further occurrences, again
placing the cursor at the start of the string if it finds one and
waiting for a key press.

When the end of the paragraph is reached (i.e. there are no
more instances of the search string in the line) FIND again waits
for a key to be pressed. This time pressing escape will
terminate the search while pressing any other key makes FIND
continue its search with the next paragraph.

A single space in the search string can be used to represent any
number of spaces in the source file. The search routine
differentiates between upper and lower case. Opcode
mnemonics and Z80 operands should be entered in upper
case. The search string cannot contain the double quote
character.

REPLACE "<string1>","<string2>" [,<line range>]
Searches for occurrences of <string1> in the source text
(within the specified line range) and gives you the opportunity
to replace each instance found with <string2>. REPLACE does
this by first finding an occurrence of <string1> and listing the
paragraph containing it to the screen (just as in FIND). Then the
message

** replace? (Y/N) **

will be inserted above the statement in which <string1> has
been found and the cursor placed at the start of the string.
Answering "Y" (for "yes") will cause the string to be
exchanged for <string2>. Answering "N" (for "no") will make
REPLACE search the rest of the listed paragraph for further
occurrences of <string1>.

Replacement as described above can create syntax errors in
the altered statement. Should this occur, the usual syntax error
message for the error will be inserted above the bad statement,
REPLACE will move onto the next statement, and the new
version of the line will NOT be inserted into the source text.
(The old version will remain).

REPLACE can be halted it the end of a paragraph by pressing
escape (as for FIND).

11

NEXT This command may be used to continue a FIND or REPLACE
which has been halted by pressing the ESC key. The search is
continued from the paragraph after the last one listed. NEXT
will continue in FIND or REPLACE mode according to which
was the last executed. The search and replace strings will be
the last ones specified, and the line range bounding the search
will be that given in the last FIND or REPLACE command.

2.4 The Calculator

PRINT <expression> [,<base>]
The PRINT command gives you a calculator facility from within
the editor. It prints the value of the expression given in the base
specified (if no base is specified then the default value set by
the BASE command is used). PRINT uses twos complement
signed arithmetic to evaluate the expression. The result is
given in the range -32768 lo 32767.

NOTE: Expressions are evaluated using an operator precedence
technique, for instance:

2 + 3 * 4
is evaluated as:

2 + (3 * 4)

For a full description of the available operators and their
precedences see Appendix D.

UPRINT <expression> [,<base>]
As for PRINT but uses unsigned arithmetic and gives the result
in the range 0 to 65535.

NOTE: Both the commands PRINT and UPRINT have access to the assembler symbol
table (see 3. The Symbol Table and 4. The Assembler) and can be used to find the
values of any of these symbols or expressions involving them.

BASE <2,8,10 or 16> Set the default base used by PRINT and UPRINT. This will be 16,
hexadecimal if the BASE command has not been used. Only
the integers 2, 8, 10 and 16 will be accepted as legal bases.

2.5 Printer Commands

FORM Issue a form feed to the printer.

WIDTH [<decimal integer>]
Set the width of the printer page in characters. This defaults to
65536.

LENGTH [<decimal integer>]
Set the length, in lines, of the printer page. This defaults to
65536. A form feed is issued after the given number of lines
have been printed.

MARGIN [<decimal integer>]
This sets a left hand margin so that when a line reaches the
width of the page it is continued on the next line but starting at
the margin position given.

12

2.6 Tape, Disc and Microdrive Commands

All the commands in this section require a filename as one of the parameters. This is
represented in the text by "<string>". The commands refer to tape, disc and microdrive.
Input and output devices are selected by the commands given at the end of this section or
by filename specifiers included in the filename string. These take the following form :

a) Amstrad Users
"A:filename" Use drive A
"B:filename" Use drive B

b) Spectrum Users
"1:filename" Use microdrive 1
"2:filename" Use microdrive 2

"8:filename" Use microdrive 8

NOTE: Using the above file specifiers overrides the default input/output selections but
does not affect them. There should be no space between the drive specifying
letter/number and the colon.

For Spectrum users: Should an error occur during tape or microdrive
operations control will return to BASIC. To re-enter the assembler, type:

RANDOMIZE USR 65533

All tape/microdrive commands can be halted by pressing the SPACE
key.

The following commands refer to tape, disc and microdrive.

SAVE ["<string>" [,<line range>]]
Saves the given range of source text to a file named <string> on tape
disc or microdrive.

If no file name is given then the name used will be that specified in the
last LOAD command executed.
If the LOAD command has not been used then the message:

** no file loaded **
** (press ESC) **

will be issued.

For Amstrad users: Should an error occur during saving an error
message of the form:

** tape/disc message **
drive A: disc full
** (press ESC) **

will be issued. The message will be deleted when you press the escape
key.

LOAD "<string>" [,<line range>]

Attempts to load a file named <string> from tape/disc or microdrive and
replaces the text in <line range> with the contents of this file. If there is
insufficient space for this an error message will be issued. You can allot
more space for source text using the SET SPACE command if necessary.

13

If the line range is not given then it defaults (as usual) to 0-65534, thus
causing the whole of the current text file to be replaced.

If the line range given does not represent the whole of the current source
text, then after loading the source will be renumbered from 1 in steps of
1, to prevent inconsistencies in the line numbering.

VERIFY "<string>" [,<line range>]
Attempts to verify a source file named <string> or a section of
a source file named <string>, against the source file in
memory or part of the source file In memory. If verification fails
then an error message is displayed:

** verification failed **
** (press ESC) **

CODE "<string>", <expression1>, <expression2>
Saves a block of memory to tape/disc or microdrive as a binary file
named <string>. Expression 1 is the start address of the block
expression 2 is the end address, These expressions may contain label
references from the last piece of code assembled. Thus if you have a
label "start" at the start of your code, and a label "finish" at the end, you
can write:

CODE "file", start, finish

to save it. However please note that if you have used the PUT assembler
directive (see 4. The Assembler) then you will have to adjust the label
values to point to the position of the generated code in memory, rather
than the execution position of the code.

LOAD ASCII "<string>" [,<options> [,<decimal integer>]]
NOTE: This is a tool-kit command: it is only available if you loaded

the tool-kit with the assembler/editor.

This command is provided to allow you to load source files which are not
in the editor's tokenised form. In particular it allows you to convert
source files written for other assemblers to Genius files.

The command attempts to open a file named listings for input from
tape, disc or microdrive. The <options> parameter is a decimal integer
telling LOAD ASCII the format of the file to be loaded. This integer is
constructed as follows: Add together the values describing your source
file from those below.

1 File is "pure ascii", i.e. do not add 1 into your options if your file
contains line numbers in hex/ binary. Note that if you select this
option LOAD ASCII will treat #1A. the CP/M end of file marker, as
the end of file.

2 Add 2 to your options if the lines in your file are terminated by a
carriage return (ascii 13) and a line feed. Otherwise LOAD ASCII
assumes that each line is terminated by a carriage return alone.

4 Add 4 to your option integer if your file does not have colons after
its labels. This will allow-the syntax checker to accept such
statements.

8 Add 8 to your options to make LOAD ASCII skip the first four bytes
of the input file.

Example option integers:
Option 7 will load pure ascii files with lines terminated by both a carriage return

and line feed, such as those produced by ARNOR'S MAXAM for the
Amstrad.

14

Option 8 will load files with hex line numbers and lines terminated by just a
carriage return such as those produced by HI-SOFT'S DEVPAC for the
Amstrad.

Option 4 will load files with hex line numbers and lines terminated by first a
carriage return. Colons will not be expected after labels. This option will
cover files produced by the Picturesque assembler for the Spectrum.

The file being loaded is listed to the screen as it loads. If any of the
statements found in the file is illegal then the usual message for the
error will be issued and loading will be halted. Pressing ESC will
terminate LOAD ASCII. Pressing any other key will cause a semi-colon
and the message "** bad line **" to be printed a! the start of the
incorrect statement and it will then be entered as a comment. Loading
will then continue. The "** bad line **" message allows you to find
such lines later using the FIND command.

CAT Display the current tape/disc/microdrive directory in alphabetical order
(not Spectrum tape).

The following commands are available only to disc/microdrive users. For more
information AMSTRAD users should refer to the disc operating manual.

ERA "<string>" Erase files whose names match <string> (Amstrad users may
incorporate wildcards, see your AMSTRAD disc operating manual).

TAPE.IN Direct the firmware to take input from tape.

TAPE.OUT Direct the firmware to write to tape.

TAPE Direct the firmware to read from and write to tape.

The following commands apply to Amstrad disc only:

REN "<string1>", "<string2>"
Rename a file named <string2>, <string1>. Neither string may contain
wildcards (Amstrad disc only).

DRIVE A Set the current drive to "A".

DRIVE B Set the current drive to "B".

DISC.IN Direct the firmware to take input from disc.

DISC.OUT Direct the firmware to write to disc.

DISC Direct the firmware to read from, and write to, disc.

The following commands refer to Spectrum microdrive only:

MDRV [<microdrive number>]
Direct the firmware to read from and write to the selected microdrive.
If no microdrive number is specified, input/ output defaults to drive 1.

MDRV.IN Direct the firmware to take input from microdrive only.

MDRV.OUT Direct the firmware to send output to microdrive only.

15

2.7 Assembly Commands

ASSEM Command to assemble the current source text. Assembly is controlled
by "assembler directives" embedded in the source text. See 4. "The
Assembler" for a full description of this command.

The current symbol table is cleared (i.e. made empty) before assembly
starts.

ASSEMC This command is the same as ASSEM except that the assembler's
symbol table is not cleared before assembly starts. This allows you to
continue a previous assembly or to ''link'' pre-written and assembled
routines into the current source. (See "2.8 Symbol Table Commands"
especially EXPORT, IMPORT, REDUCE, CLEAR).

ASSEML This command assembles selected routines from a subroutine library.
The procedure for using ASSEML and the circumstances under which it
should be used are now described in detail.

NOTE: This is a tool-kit command: it is only available if you loaded the tool-kit
with the assembler/editor.

2.7.1 Selective Assembly

Most assembly language programmers find that when starting a new project there are a lot
of routines required that have been written for use with previous programs. It is quite
common to build up a subroutine library and then just pull out those routines that are
required. Sometimes the subroutines are split into distinct chunks but more often than not
there is a hierarchical structure to the program which requires a painstaking and time
consuming search through the code followed by an equally painful session with the editor.
This facility is provided to automate the whole process. The graphics library used by Laser
BASIC will shortly be available for use with the Genius system.

ASSEML selectively assembles the current source file according to the contents of the
current symbol table. It is probably best to illustrate its use by example. Suppose you are
embarking on a project that uses the GTBL, PTBL, INVV and MIRV Laser BASIC routines.
The procedure is as follows:

(i) Load the main program containing the references to GTBL, PTBL etc.
(ii) Assemble in the normal way using ASSEM or ASSEMC. In fact pass 2

should throw up symbol undefined errors for each of the labels GTBL,
PTBL etc. so it's worth putting a *report off directive at the start of your
file before assembling (see Section 4.2).

(iii) Load the subroutine library sources file in the normal way.
(iv) Assemble using ASSEML (assemble library). Note that the library file

should contain a valid ORG and that object code output is controlled by
the usual directives. The library file may contain includes and any other
directives required (see 4. The Assembler).

(v) When assembly is complete an object file will have been produced in the
normal way but the symbol table will contain only those labels that were
passed as "missing" by the main program. This symbol table should be
saved off using the EXPORT command (see Section 2.8).

(vi) The main program (containing references to the library) can now be
assembled by loading the symbol table (which was EXPORTed after the
ASSEML), unless it is already in memory, and then assembling with the
ASSEMC command. Any further assemblies of the main program will
not require steps (i) to (v) but instead only the symbol table need be
loaded.

NOTE:
(i) After assembly, the main program cannot be executed unless the object

code produced by the assembly of the library routines is resident in
memory.

16

(ii) If you wish the two assembled files to run contiguously then you will
need to know the end address of one of the assembled files. It is easier to
configure the final program so that the library code precedes the main
program code. If you wish to do this then type: PRINT $ after assembling
the library routines and ORG your main program to this value. This will
mean that you can edit and assemble the main program without reassembling
the library.

(iii) Assembling a subroutine library may take a considerable number of
passes. In fact the number of passes required depends on the nesting
depth of backward references in the subroutine library. For this reason
subroutine libraries should be designed to minimise backward
references. If your subroutine library does not contain any include
directives then assembly can take place entirely in memory which will
greatly speed up the process. Tape users assembling files which contain
include directives will need to rewind the tape after each pass so
particular note should be taken of these points. The end of each pass is
indicated in the normal way.

(iv) This process can be used to check if a program contains any redundant
code. Most programs have only one entry point and so if the main
program is merely a call to this entry point and the program itself is
treated as a subroutine library then the assembled code will be at
variance with a straight assembly if any redundant code were contained
within it.

2.8 Symbol Table Commands

The following commands allow you to view and alter the contents of the symbol table
produced by the last assembly of source code. For more information on the symbol table
and how it is produced see "4. The Assembler" and "3. The Symbol table".

TABLE [<decimal integer>]
Lists the current symbol table in ASCII order (i.e. ordered lexically by
ASCII code of the characters in the names). Each symbol has an entry of
the form:

<symbol> 5FFE

The number on the right of the entry is the value of the symbol in
hexadecimal. Only those symbols which the programmer has
attempted to define in the source code will be listed by TABLE i.e.
symbols which are referenced in the source but not defined anywhere
will not appear (see the command MISSING). Symbols which the
programmer has unsuccessfully attempted to define will appear with an
asterisk before their value. For instance, if the statement:

name3:EQU name1 / name2

appears and "name2" has value zero, then name3 will be undefined and
will be listed by TABLE as:

name3 *0000

The integer which may be given as part of the TABLE command sets the
width of the field in which each symbol is printed. If a symbol is longer
than the field given it will be truncated to fit. The field width defaults to
16. TABLE will list as many symbols on one line as will fit with the current
field.

LTABLE [<decimal integer>]

As for TABLE but sending its output to the printer.

TABLEN [<decimal integer>]

17

Lists the current symbol table in numerical order (i.e. ordered by the
values of the symbols in the table).

The optional integer sets the field width in which each symbol will be
listed (see TABLE).

LTABLEN [<decimal integer>]
As for TABLEN but sending its output to the printer.

MISSING [<decimal integer>]
MISSING lists to the screen all those symbols which the programmer
has referenced but not defined in the last piece of source code
assembled. The optional integer sets the field width in which each
symbol will be listed (see TABLE).

LMISSING [<decimal integer>]
As for MISSING but sending its output to the printer.

UNUSED [<decimal integer>]
UNUSED lists to the screen all those symbols which the programmer
defined (or attempted to define) in the last piece of source code
assembled, but did not actually reference. The optional integer sets the
field width in which each symbol will be listed (see TABLE).

LUNUSED [<decimal integer>]
As for UNUSED but sending its output to the printer.

CLEAR Clears the current symbol table i.e. makes the current symbol table
"empty".

NOTE: The following three commands are tool-kit commands: they will not be
available unless you loaded the tool-kit with the assembler.

EXPORT "<string>"
Saves the current symbol table to a tape, disc or microdrive file named
<string>, This can be reloaded using the IMPORT command. For more
information and possible uses of this command see "3. The Symbol
Table".

IMPORT "<string>"
Merges a previously EXPORTed symbol table with the current table. If in
doing this a name is multiply defined a message of the form:

** multiple name definition : <name>

will be issued and the current value of the symbol will remain in the
table.

For more information on this command see "3. The Symbol Table".

REDUCE This command is used in conjunction with the CARGO assembler
directive to select certain symbols in the current table for EXPORTing.

REDUCE removes all symbols which were not specified as CARGO
during the last assembly. This allows you to save principal entry points
(and macro definitions) only, instead of the whole table which may
contain many labels only of use within the program and not as entry
points.

For more information on this command see "3. The Symbol Table".

18

2.9 Miscellaneous Commands
EXECUTE <expression> [,<parameter list>]

Call the code at the address to which the expression evaluates. As usual
the expression may contain label references, so that you can call a
particular routine in your code easily.

If a parameter list is given then the values of the parameters are made
available to the code being EXECUTEd. This is done in the same way as
AMSTRAD BASIC'S CALL command passes parameters.

Each parameter is passed as a 16 bit integer. For an expression
parameter this is the twos complement value of the expression. For a
string parameter it is the address of a descriptor for the string.

A string descriptor is three bytes long. The first byte contains the length
of the string. The following two give the address of the start of the string.

On entry to your code the A register will hold the number of parameters
given to the EXECUTE command. The IX index register will contain the
address of the parameters. The parameters are stored in reverse order;
so that, if n parameters are given, the ith one will be at IX+2*(n-i) (low
byte) and IX+2*(n-i) + 1 (high byte). (Where i runs from 1 to n).

As an example we will pass one string parameter and one number to a
piece of code.

The command typed might be
EXECUTE #1000,"Call me",39

Then the code at #1000 could be as below:

CP2 ; Make sure that two
JPNZ,error ; parameters have been given.

LDL,(IX+2) ; HL = address of string
LDH,(IX+3) ; descriptor

LDB,(HL) ; B = length of string.
INCHL
LD,A,(HL)
INCHL
LDH,(HL)
LDL,A ; HL points to start of string.

LDE,(IX+0)
LDD,(IX+1) ; DE = value of second parameter.

The address given is executed using a Z80 "CALL" instruction and
control should therefore be returned to the editor by a "RET" instruction.
If this is done successfully the editor will print the message "** (press
ESC) **" in the bottom left corner of the screen. When you press the
escape key the screen will be cleared and the editor will reprint the
contents of the screen as it was before EXECUTE was used.

STATS This command lists some information on Genius' memory map to the
screen. The data given is as follows:

** buffer <addr>
** screen <addr>
** file <addr>
** table <addr>
** low <addr>

buffer: The address of the start of Genius' tape/disc buffer above
which the program starts.

screen: The address of Genius' screen buffer.
file: The address of the current source file.

19

table: The address of the current symbol table.
low: The low limit, below which the assembler will not let you

PUT object code.

NOTE: Memory between low and table is available for assembling
into memos (see PUT - Section 4.3.5).

EXIT Returns control to the program which called Genius (usually BASIC).
OR exits from the housekeeping facility and returns to the main editor
(see 2.10).

2.10 The Housekeeping Facility
HOUSEWORK Enters the housekeeping facility. Use the command EXIT to return to the

main editor.

This facility is provided to allow you to look after the contents of your discs/microdrives.
When you enter the HOUSEWORK command the screen will be split into two windows.
The bottom four lines of the screen will now be used for command entry; the usual full-screen
editor runs in this four line window. The top part of the screen is now used for
output, initially the current disc/microdrive (or tape on the Amstrad) is CATed into this
window.

The following commands from the main editor's immediate mode are still available to bog
in the housekeeping facility. Their syntax of use is the same as in the main editor (see 2.6).

AMSTRAD CAT
ERA
REN
TAPE
TAPE.IN
TAPE.OUT
DISC
DISC.IN
DISC.OUT
DRIVE.A
DRIVE.B

SPECTRUM CAT
ERA
TAPE
TAPE.IN
TAPE.OUT
MDRV
MDRV.IN
MDRV.OUT

The following new commands are available to you in the housekeeping facility:

COPY "<filename1>","<filename2>"
Copies <filename2> to a new file named <filename1>. You will be
prompted for source and destination disc/tape or microdrive as
necessary.

20

On the Amstrad: ASCII files will be copied character by character.
Other files will be loaded into memory and saved under the new name.
The file will be loaded from #40 upwards and will therefore overwrite
anything in memory from this address to the bottom of the symbol table.
If there is not enough room to load the file here you will be asked if you
want to delete the symbol table to release some space for the load. If this
does not make enough room, the file cannot be copied.

On the SPECTRUM: On tape COPY will only copy files produced by the
Genius assembler (source, object or name table).

On microdrive the file will be loaded from RAMTOP upwards and will
therefore overwrite anything in memory from this address to the bottom
of the symbol table. If there is not enough room to load the file here you
will be asked if you want to delete the symbol table to release some
space for the load. If this does not make enough room, the file cannot be
copied.

AMSTRAD only:

|<RSX name> [,<parameter list>]
This command gives you accessed any RSXs which are currently logged
on, including tape and disc commands. See your Amstrad manuals for
the syntax of these RSXS.

CPC 464 users should note that string parameters must be passed
directly as in the following example.

|REN,"PEQUOD","ACUSHNET"

(In BASIC this would have to be done as below:

A$ = "PEQUOD"
B$ = "ACUSHNET"
|REN,@A$,@B$).

21

3. THE SYMBOL TABLE

NOTE: In the following the terms "symbol", "name" and "label" are used
interchangeably. Names can consist of alphabetic characters (upper and lower
case); (decimal) digits; the characters "$", ".", " ". A name may not start with a
digit. Names may be up to 240 characters in length.

The Genius assembler makes two passes over source code which it is assembling. On the
first pass it constructs a table of all the names which you have defined or referenced in the
source, As far as possible the assembler will give each of these symbols a value. (In the
case of a label on an ordinary Z80 instruction this value is the current location i.e. the
address at which object code is being assembled; in the case of an EQU pseudo-op it is
whatever the expression operand of EQU evaluates to).

On the second pass the assembler will fill in the values of any symbols which it could not
calculate on pass 1 and use the final values to generate the object code.

The Genius assembler actually creates more than one symbol table in certain
circumstances. Usually all names are inserted into a "global" table; however during
macro expansion and (hash extension) function definition a "local" table is used. A new
local table is created for each use of a macro, and for each function. This prevents different
expansions of a macro in which a symbol is defined from producing multiple definition
errors. It also means that different functions can use the same names for local variables.

Macro definitions are also stored in a special type of local table.

The symbol table remains in memory even after assembly has finished. You can access the
table and the values of symbols in it using various immediate commands. For example,
you can PRINT the value of a label or an expression involving symbols (see 2.4). You can
view the whole table by use of the TABLE or TABLEN commands (see 2.8).

These facilities are useful for debugging purposes when you may need to know the
address of a particular piece of your code for single stepping or setting a breakpoint.

3.1 Saving and Loading Symbol Tables
Suppose you have written a library of useful machine code routines which you want to use
in a program you are writing. You could do this by merging the source of the library with
that of your program (using LOAD see 2.6), or you could use the *include directive (see
4.2.3). With both these methods the assembler has to cope with the extra source at each
assembly.

An alternative to these methods is given by the immediate commands EXPORT and
IMPORT. The EXPORT command will save the current symbol table to backing store, and
importing merge a previously EXPORTed table with the current one. So after assembling
your library routines you can save the symbol table generated using EXPORT. Then before
assembling your program which uses the library you can IMPORT the library's symbol
table. Assemble your program's source using ASSEMC instead of ASSEM to prevent the
symbol table being cleared. Your source can refer to symbols in the library source and
since they now appear in the symbol table this will be acceptable to the assembler.

Many routines contain labels only of use within the routine itself (for instance, loop start
markers). Your library of routines may contain only a small number of labels which you
want to be able to refer to in other programs (the main entry points to the routines in the
library). EXPORT however, saves the whole symbol table including these unwanted
labels. It is possible to save just the labels you want as entry points to your routines by
using the CARGO assembler pseudo-op and the REDUCE immediate command.

For every symbol in the library that you wish to save an entry for in an EXPORTed table you
should include a statement of the form:

<label>: CARGO
in the source. (Note that this will not cause a multiple definition error when the symbol is
actually defined elsewhere).

22

The REDUCE command will remove from the symbol table any name that has not been
declared as CARGO during assembly. EXPORT can now be used to save off the table
consisting of just CARGO labels.

EXPORT also saves information recording those Phoenix Libra routines which have
already been referenced. Thus you can EXPORT a table generated by the assembly of some
Phoenix routines and use them in later programs without the compiler including extra
copies of its run-time library routines.

(See "6. Example Programs" for an example of using CARGO, REDUCE, EXPORT and
IMPORT).

(See 2.7.1 for an alternative method of dealing with a library of routines).

NOTE: This section is included for interest only. It gives a little more detail on the actual
format of the symbol table.

Each name has an entry in the table of the following form. A string of characters
representing the name itself; two bytes of flags giving the type of the name and its status
(well-defined, unused etc.); two bytes containing the value of the name. So each name
requires its own length plus 4 bytes of symbol table space.

Each table is kept in ASCII order. A name is inserted by finding the position at which it
should be inserted (this is done by the symbol table search routine). Then inserting enough
room for it by block moving the part of the table below the insertion position down in
memory (see Appendix E). The new name is then copied into the space made for it.
Since each table is kept in ASCII order it is possibles to use a fast binary search technique for
looking up names in a table.

4. THE ASSEMBLER

4.1 Using the Assembler
The assembler is invoked using the ASSEM, ASSEMC or ASSEML commands from within
the editor. It assembles the current source in two passes, writing object code to memory,
tape, or disc (microdrive for the Spectrum versions) as specified by assembler directives
embedded in the source text. Source files on tape, disc (or microdrive) can also be
assembled by use of the "*include" directive. (See "4.2 Assembler directives").

Assembly can be temporarily halted at any time by pressing any key. It can then be stopped
by pressing ESC or continued by pressing any other key.

4.1.1 Assembler Errors
The assembler informs you of any errors it has found by displaying a relevant message; a
line giving the type of error, the line number and the number of the statement within that
line in which the error was detected; the statement at that line.

For example: ** multiple name definition
** error in line 20: 1

20 label:equ #1234

After the error message has been issued the assembler rings the bell (beeps). It will now
either wait for you to press a key or just continue assembly. The default behaviour being to
wait for a key press. Pressing ESC will abandon assembly, pressing any other key will make
the assembler continue. The "*report" directive can be used to stop the assembler waiting
after a message has been written. (See "4.2 Assembler directives").

The possible error types and their meanings are given below.

warning: Indicates that the code produced may not be what was intended.
Assembly will go through to the end.

23

error: Indicates a more serious fault than a "warning" . The resulting code
would probably not be usable if assembly continued, so if any errors
have been detected on pass 1 assembly will be halted at the end of this
pass.

fatal error: The assembler cannot continue, assembly is stopped immediately. This
can occur, for instance, if time disc becomes full whilst writing object to to
file, or the assembler runs out of space for the symbol table.

For a complete list of assembler errors and their meanings see Appendix C.

At the end of each pass the assembler issues a message telling you the pass number; how
many warnings were given during the pass; how many errors were detected during the
pass; as below.

** pass <pass number>
** warnings <warning count>
** errors <error count>

A small number of errors can be issued at the very end of pass 1. In this case the error
message is written just before the end-of-pass message above. For instance:

** code in name table **

** pass 1
** warnings 0
** errors 0

The possible errors at this time are:

** code too high **
** code in name table **
** code in program **
** bad nesting **

See Appendix C for the meanings of these messages.

4.1.2 A Note on Assembler Strings

Strings occurring in assembly language statements may contain characters defined by
their ASCII codes rather than the character itself. This is done by preceding the required
code with a of a "\" character as in the following example:

DEFB "Hello, world. \13\10"

The string given here is terminated by a carriage return (ASCII 13) and a line feed (ASCII 10).
Because of this use of the "\" character to include one of these it is necessary to put two in
a row into the string. For example:

DEFB "A string with a \\"
will generate

A string with a \
in object code.

Since the double quote character (") is used as a string terminator, to include one of these
in a string you must also precede it with a "\". For example :

DEFB "A character constant is like \"A\""
will generate

A character constant is like "A"
in object code.

These comments also apply to character constants. So

"\13"

24

is a legal character constant. This can be preferable to just using the number 13 as it
suggests to anyone reading the code that you intended this as a character (a carriage
return).

4.2 Assembler directives
All assembler directives start with an asterisk ("*").

Those directives which act as a switch i.e. turn a facility on or off, have a default setting
which is given in parentheses at the end of the directive's description.

4.2.1 Output Directing
*screen on Allow or disallow output of any kind to the screen (including error
*screen off messages, listing, end-of-pass messages).

(Default is "on").

*printer on Allow or disallow output to the printer. Turning this facility on will direct
*printer off error messages and end-of-pass messages to the printer. This does not

affect output to the screen, i.e. you can have output to the screen and the
printer together or you can turn the screen output off.
(Default is "off")

4.2.2 Listing
*list on Turn listing to the screen of the source code during assembly
*list off on or off.

This option is only effective if output to the screen is enabled. This is the
default case.
(Default is "off").

So to get a listing during assembly of your code (to the screen) you will
just need to have the following :

*list on
 ...
 ...
 ... (your code here)
 ...
 ...
*list off

The "*list off" is not necessary if you want all the code to the end of the
source listed.

The listing produced during assembly by use of a "*list on" directive
contains more information than just your source code. Each statement is
listed in three fields. These are illustrated below.

For statements which generate code:
<current location> <code generated> <the statement>

The current location is given as a hexadecimal word and the code
generated as hex bytes.

Note: Hash extension statements will not have the "code
generated" field as many of them can create a lot of code, e.g.
the #DUE pseudo-op (see 5. The Hash Extensions).

Example:
0100DD360A47 LD (IX + 71), 10

If the statement has a paragraph number attached to it this will be listed
between the code generated and statement fiends.

For statements which generate no code:

<value of the statement> = <the statement>

25

Example:
BB5A = TXT_OUTPUT: EQU #BB5A

As exceptions to this rule *list, *llist and *include will both be listed with
the current location in the left-hand field. This allows you to determine
particular addresses in your code easily.

*llist on Turn listing (to the printer) of the source code during assembly
*llist off on or off. This does not affect output or listing to the screen.

This option is only effective if output to the printer has been allowed by a
"*printer on"
(Default is : "off").

So to get a listing to the printer of some of your code, during assembly,
you will need the following:

*printer on
*llist on
 ...
 ...
 ... (your code here)
 ...

 ...
*llist off
*printer off

The "*llist off" and the "*printer off" are both unnecessary if you want these
options to be "on" to the end of the assembly.

*form Sends a form feed character to the printer if the printer has been enabled
by a "*printer on".

*title "<string>" [,<expression>]
Sets a heading to be printed at the top of each (printer) page to be the
string given. The expression if given will be used to set the current page
number.

*maclist on If listing is on then using "*maclist on" turns on the listing of source
*maclist off smallest off code generated by macro expansions. If this facility is off then just

the statement containing the macro use will be listed.

When macro listing is turned on the statement containing the macro use
will be listed AFTER the source generated by the macro expansion.
(Default is "off").

4.2.3 The Tape/Disc/Microdrive Facility
*include "<filename>"

Causes the assembler to open the specified tape, disc or microdrive file
and assemble its contents at the current location. The file must be a
Genius source file. Includes may not be nested i.e. a source file which
is included should not contain a include directive. The file will be
loaded from the current input device unless a specifier is provided in the
filename to direct otherwise.

Assembly is continued from the statement after the *include when the
file is exhausted.

Any errors detected during a "*include" will be reported in the usual
way but with an extra line giving the name of the file in which the error
occurred. An example error message is given below.

** multiple name definition
** error in line 50: 2
** in file : "phoenix2"

26

The state of the options already chosen by you (such as *list, *llist) is not
affected by the "*include" command. Thus it is not necessary to put a "*
list" or any other option switch in the included file itself, they can be put
in the main source file.

For example, if you are assembling the source:
10 *include "phoenix1"
 *include "phoenix2"

and you want to list (to the screen) all the source in the two files you
could put the following:

10 *list on
20 *include "phoenix1"
 *include "phoenix2"

If, however, you only want to list the contents of "phoenix1" then you
should put directives in as below.

10 *list on
20 *include "phoenix1"
 *list off
 *include "phoenix2"

Any changes to the switch states made in an included file will remain in
effect after the "*include" is complete. Thus if "phoenix1" contains a "*
list on", the source

10 *include "phoenix1"
 *include "phoenix2"

will give a listing of both files.

If listing to the screen or to the printer is turned on while a file is *
included the statement containing the "*include" will be listed AFTER
the source text in the file.

Using *include with Tape
The file to be included must be read on both passes of the assembly process. Thus the tape
will need to be rewound at the start of pass two. Alternatively you can record two copies of
the source file(s) on your tape one after the other one for each pass.

*openout "<filename>"
Causes the assembler to open an output file and write subsequently
generated object code to that file. Output must be terminated by a "*
closeout". Output will be sent to the correctly selected output device
unless the filename contains a specifier to direct otherwise.

Care should be taken when writing object code to file storage if the
source contains more than one ORG statement (see 4.3 Assembler
Pseudo-ops). The object code will be written to the file as a contiguous
block. In this case it may be better to write blocks of code with different
ORG addresses to different files. If you intended only to separate two
blocks of code by some space then you could use a DEFS pseudo-up
instead of an ORG, and still write all the code to one file.

A warning will be issued on pass one by the assembler if it finds a PUT
directive while sending output to a file. The PUT will be ignored.

*closeout Terminates output of object code to a tape or disc file. This directive
must be specified if an *openout has been employed.

Amstrad Tape Users:
The source file is loaded in 2K sections and between blocks you will be prompted to "press
PLAY then any key". Filenames which are preceded by an exclamation mark will load
without prompts.

27

If you are also outputting the assembled file to tape then the object code will also be written
out in 2K blocks. Before the assembler writes out object code you will be prompted with
"press REC and PLAY then any key". You should now insert the tape you are saving the
object code onto and press REC and PLAY followed by any key. Once this is complete you
will be prompted again for more source code (unless the file is exhausted) i.e. "press PLAY
then any key". This cycle is repeated until assembly is complete but you will probably find
that you are prompted more frequently to load source, than save object.

Spectrum Tape Users:
The source file is loaded in 2k sections and between blocks you will be prompted to "**
insert source tape, press a key **". You should insert the source tape, press PLAY on your
tape recorder and then press any key. If you delay too long before pressing a key, the tape
may run over the start of the block. If this happens the block will not load. You will need to
rewind the tape a little and attempt to load the block again. Once the block has loaded you
will be prompted to "** stop tape **" again you should respond as soon as possible. After
a delay, the block will be assembled and you will be prompted for the next block with "**
insert source tape, press any key **" and so on.

If you are also outputting the assembled file to tape then the object code will also be written
out in 2k blocks. Before the assembler writes out object code you will be prompted with "**
insert object tape, press any key **". You should now insert the tape you are storing the
object code onto and press REC and PLAY followed by any key. Once the block has been
written out you will be prompted with "** stop tape **". You should now remove the
object tape and re-insert the source tape ready for the next block of source code (unless the
source file is exhausted). This cycle ls repeated until assembly is complete but you will
probably notice that you are prompted more frequently to load source, than save object.

*prompts on (Spectrum only). This option can be used to enable or disable prompts
*prompts off for source and object microdrives. If you want to read source from and

write object to the same microdrive(s) throughout assembly AND these
microdrive(s) both have the correct cartridges in them when you type
your assembly command: then you will not need to be prompted to
insert the source/object microdrive(s). In this case you should put a "*
prompts off" in your source.

Otherwise whenever the assembler needs to open a file it will prompt
you to insert the correct cartridge. If you are writing to and reading from
the same microdrive then you will be prompted for the correct cartridge
every time the assembler needs to read/write a 2k block of source/object.

(Default is "on").

4.2.4 Miscellaneous
*count on If this option is specified and the listing is off a continuous display of
*count off the number of the line currently being assembled will be given. If the

listing is on, this directive is not effective.
(Default is "off").

*report on If this option is specified the assembler will wait for a key to be pressed
*report off after it has generated an error message to give you time to take note of

the content of the message. If this option is off the assembler will just
continue. The assembler always rings the bell when an error is detected.

(Note that assembly can be paused at any time by pressing a key, and
terminated by pressing the ESC key while the assembler is pausing).
(Default is "on").

*code on This directive causes the assembler to switch its production of object
code

*code off on and off. A "*code off" directive will halt the production of object code
when it is encountered.
This facility can be used to see if your source assembles correctly
without actually generating any object code. Doing this can speed the

28

assembly process when you would normally be writing the object code
to tape, disc or microdrive; as these devices will not need to be accessed
for output.
(Default is "on" i.e. object code will be produced).

print "<string>" This directive will print the string given to the screen and printer (if they
are enabled see 4.2.1) on both pass 1 and pass 2.

You can use this directive to keep track of where you are in an assembly,
or, with the *pause directive, to allow you to change source or object
tapes, discs or microdrives at appropriate points.

*pause This directive causes the assembler to stop and wait for a key to be
pressed (on both passes).

4.2.5 Looping

*while <expression>
Marks the start of an assembler "while" loop, which must terminated
with a "*endw". The assembler will evaluate the expression and if it is
TRUE (i.e. non-zero) the statements up to the *endw will be assembled.
Otherwise assembly will be turned off for the duration of the loop and
resumed after the *endw. *while loops may be nested. (Labels should
not be defined inside a loop which will be executed more than once as
this will cause a multiple definition error. See, however, the pseudo-op
DL.).

See also the pseudo-ops COND, ELSE, ENDC.

*endw Causes control to be passed back to the "*while" matching this *endw.

*repeat Marks the start of an assembler repeat loop, which must be
terminated by a "*until".

*until <expression>
The assembler evaluates the expression and, if it is FALSE (i.e. zero)
control is passed back to the present matching this *until. Otherwise
assembly is continued from the statement after the *until.

4.3 ASSEMBLER PSEUDO-OPS

4.3.1 Initialising Memory

DB <byte definition list>
DEFB
DEFM These pseudo-ops are used to initialise bytes at assembly time. They are

all the same and are given to increase Genius' compatibility with other
assemblers.

e.g. DB 1,2,3,4

causes 4 bytes at the current location to be initialised to 1,2,3,4
respectively.

e.g. DB "Hello world"

causes the string "Hello, world" to be placed in memory at the current
location, one character per byte. (See 4.2.2 "A Note on Assembler
Strings".)

DW <word definition list>
DEFW These directives are used to initialise words (pairs of bytes) at assembly

time.

29

e.g. DW 1,2,3,4
causes 8 bytes starting at the current location to be initialised to
1,0,2,0,3,0,4,0 respectively.

e.g. DW #1234
causes two bytes at the current location to be initialised to #34,#12
respectively, i.e. the bytes are installed in low-byte, high-byte order as is
usual with Z80 machine code.

Strings cannot be given as operands to these pseudo-ops.

4.3.2 Allocating Space

DS <expression>
DEFS These pseudo-ops are used to leave a block of space in the object code

generated by the assembler. The assembler evaluates the expression
given and increments the current location counter by that amount.

e.g. DS 4
causes the assembler to leave 4 bytes of space.

The space left is initialised to zero by the assembler.

Note that if the expression given contains symbol references they must
be well defined on pass 1 else the program counter cannot be correctly
updated by the assembler. If this is not so a fatal error results.

4.3.3 Assigning Values to Symbols

<label>:EQU <expression>
This pseudo-op is used to define and initialise a new symbol. No code is
generated by this instruction.

e.g. SPACE:EQU 32
defines a symbol "SPACE" whose value is 32. This can be used
extensively to make your code more readable.

An attempt to redefine a label using EQU will result in a multiple
definition error. (See also pseudo-ops DL and DEFL).

<label> :DL <expression>
DEFL These pseudo-ops have the same function as EQU but may be used to

redefine the value of an existing symbol without causing a multiple
definition error. In particular they may be used within an assembler
loop.

e.g. cnt :EQU 1
*WHILE cnt <= 10
DB cnt*cnt

cnt :DL cnt+1
*ENDW

will generate a table of squares of the numbers from 1 to 10 in memory.
No code is generated by these pseudo-ops.

4.3.4 Conditional Assembly
COND <expression>

The assembler evaluates the expression and, if it is TRUE (i.e. non-zero)
assembly continues with the statement after the COND. If it is false
assembly is turned off until an ELSE or an ENDC matching this COND is
encountered. There must be a terminating ENDC for every COND.
Conditional assembly statements may be nested.

30

ELSE If assembly was turned off by the COND matching this ELSE then the
ELSE will turn it back on. Otherwise it will turn assembly off.

ENDC This pseudo-op terminates a COND statement. If the matching COND
turned assembly off then the ENDC will turn it back on.

An example of the use of COND, ELSE and ENDC is given below.

The values of assembler symbols ''amstrad'' and ''microdrive'' would
need to be set before the assembler encounters this section of source.

COND amstrad
 -
 -
 - (AMSTRAD code here)
 -
 -
ELSE
COND microdrive
 -
 -
 - (SPECTRUM microdrive code here)
 -
 -
ELSE
 -
 -
 - (SPECTRUM tape code here)
 -
 -
ENDC
ENDC

This piece of source code is used to assemble one of three different
versions of the same program. The possible versions are for the
AMSTRAD and Spectrum micros. The Spectrum version is again split
between tape and microdrive versions (on the AMSTRAD it is possible to
treat tape and disc in exactly the same way).

If "amstrad" is non-zero (i.e. TRUE) then the AMSTRAD section of the
code would be assembled. If "amstrad" is zero then the value of
"microdrive" is used to distinguish between tape and microdrive
versions on the Spectrum. In any of these cases only one of the three
pieces of code will be assembled, and assembly will continue after the
last ENDC.

Note that an ENDC is needed for each C'OND.

4.3.5 The Location counter and Storing Object Code

ORG <expression>
Causes the assembler to set its location counter to the value of the
expression. (The default start value of the location counter is #100 on
the Amstrad and RAMTOP on the Spectrum). So code generated after an
ORG will be assembled ready to run at the ORG address.

Note that object code assembled into memory will NOT be stored at the
ORG address unless a PUT pseudo-op is used to set the storage location.

PUT <expression>
Causes the assembler to store object code generated at the address
given (the value of the expression). Thus code which would overwrite
the assembler or some other program in memory can be ORGed at the
correct position but actually stored elsewhere.

31

An attempt to PUT object code in an area of memory occupied by Genius
will result in an error. If object code starts off at a legal position but grows
to overwrite some part of Genius at message such as:

** code in name table **

will be issued at the end of pass 1 and assembly stopped. (Note that
since code is not written to memory on pass 1 no harm will have been
done). (See Appendix C for descriptions of the messages which can be
issued when this error occurs). In ordered ascertain where you can PUT
object code, use the LOW value given by the STATS command. Object
code can be assembled anywhere between LOW and TABLE (both given
by STATS - see Section 2.9).

The AMSTRAD jumpblock is protected in the same way.

4.3.6 Macro Definition and Use

<label>:MACRO <parameter list>
Causes <label> to be defined as a macro name. The statements
following this one up to an ENDM pseudo-op will be treated as macro
definition statements and will not generate any code.

The parameter list is a list of labels separated by commas, each one
starting with a "\" character. These may be used in the statements
comprising the macro definition.

e.g. A macro to swap two sixteen bit registers could be written as:

exg :MACRO \p1, \p2
 PUSH \p1
 PUSH \p2
 POP \p1
 POP \p2
 ENDM

To use this macro you would write something like:

\exg BC,DE
which would generate the following code when assembled:

PUSH BC
PUSH DE
POP BC
POP DE

Macro parameters may be used to replace whole operands only. For
instance, it is alright to put:

CP \param
and then to give, say, "Z"#1 as the replacement for this parameter: but
you may not put:

CP\param+1
and then use "Z" as the actual parameter.
(See also the directive *maclist).

At assembly time, the occurrences of macro parameter use
(\<Parameter name>) are replaced with the corresponding actual
parameter in the macro use statement. This can create syntax errors
which will be reported to you with the usual error message for that
syntax fault. The statement containing the error will not be assembled.

ENDM This marks the end of a macro definition and returns the assembler to its
code generating mode.

32

Some examples of the use of macros are given below.

On the AMSTRAD a RST3 (RST #18, a FAR CALL) takes three bytes as in-line
parameters. The first two of these representing address of a routine
to call. The third is the required ROM select when the call is made. You
could define a macro as below to aid you in using these restarts.

FAR_CALL: MACRO \p1, \p2
RST#18
DEFW \p1 ; CALL address
DEFB \p2 ; ROM select
ENDM

This may then be used by writing the following:

\FAR_CALL <address>,<ROM select>

The other restart instructions on the AMSTRAD take similar parameters
and could have macros defined for them in a like manner.

On the Spectrum, RST #8 is used to access channel handling routines.
You could define macros to help you use these like the one below:

OPEN_FILE: MACRO
RST #8
DEFB #22 ; Hook code for "open file".
PUSH IX
POP HL
LD (CURCHL),HL
ENDM

This will open a file and a channel for it. (The address of the filename
needs to have been previously stored in one of the Spectrum's system
variables). CURCHL is a Spectrum system variable which is set, in this
example, to the address of the channel variables. This allows you to use
the input and output character routines in the Spectrum ROM.

One further example using nested macros defines a macro "PRINT"
which takes a string as a parameter and prints it to the screen, and a
macro "ERRMES" which uses PRINT to issue a "Syntax error" message.
("prtstr" is a subroutine taking a null-terminated string as an in-line
parameter, "PRINT_CHAR" is a - machine-specific - routine to actually
send a character to the screen).

prtstr: POP HL
psloop: LDA,(HL)

INC HL
OR A
JRZ,prtdone
CALL PRINT_CHAR
JR psloop

prtdone: JP(HL)
PRINT: MACRO \p1

call prtstr
DEFB \p1
ENDM

ERRMES:MACRO \p1
\PRINT "Syntax error:\0"
\PRINT \p1
ENDM

To use ERRMES you could put something like:

\ERRMES "mismatched parentheses.\13\10\0"

33

5. THE HASH EXTENSIONS

NOTE: The Hash Extensions are optional when loading the Genius Editor/Assembler.
See the loading instructions for details.

The Genius assembler has a set of extensions available to it. These consist of a number of
extra pseudo-ops each beginning with a "#" character (hence the name "hash
extensions"). Their purpose is to provide an integer-based compiled language, Phoenix,
for you to test your ideas and algorithms before writing them in machine code. It is also
quite possible to write programs in Phoenix and leave it at that.

The compiler allows you to define integer and character variables functions and one dimensional
arrays. These can all be used in expressions which the compiler will turn into
run-time code, i.e. executable machine code, to evaluate these expressions.

You can also use conditional, #IF, statements; #WHILE-#ENDW, and #REPEAT-#UNTIL
loops to control the flow of your programs.

Phoenix statements may be freely mixed with assembly language and the results of
expressions are always available to you in the HL register pair.

Below is a list of all the available pseudo-ops and their uses. Chapter 6 contains some
examples of the use of the compiler language, it is a good idea to study these examples to
become familiar with the extensions.

Glossary of Terms

[...] Items enclosed in square brackets are optional.
<Type> One of the mnemonics INT, CHAR, PINT, PCHAR. See 5.2.1 for the

meanings of these.
<Assembler expression>

An ordinary expression involving numbers, symbols and operators but
no compiler-only operators. See Appendix D for descriptions of the
allowable operators and those which are of restricted use.

<Assembler expression list>
A list of <Assembler expression>'s separated by commas.

<compiler expression>
This is an expression which is to be translated into machine code to
evaluate it. It will not be evaluated at assembly time. These expressions
may contain the compiler-only operators (see Appendix D and "5.1
Phoenix expressions").

<label> A label as in the assembler. See "1.3 Syntax Checking and Error
Messages" or "3. The Symbol sable".

5.1 Phoenix Expressions

There are two pseudo-ops available for compiling expressions. One compiles an
expression to be evaluated using signed arithmetic and the other unsigned arithmetic.
These are #DSE for "Define Signed Expression" and #DUE for "Define Unsigned
expression". They are used in the following way:

#DSE <Compiler expression>
#DUE <Compiler expression>

These pseudo-ops take the <Compiler expression> given as operand and translate it into
machine code to evaluate the expression at run-time.

The run-time evaluation is performed using a stack to store temporary results and
operands to arithmetic operations. An arithmetic operation is carried out by a CALL to one
of a library of arithmetic routines. Only those arithmetic routines corresponding to
operations which you actually use in your program will be relocated into your code by the
assembler (see 5.2.7 "The #LIB Pseudo-Op").

34

You can use more operators and constructs in compiler expressions than you can in
assembler expressions. For details on all the operators available to Genius expressions see
Appendix D. The extra constructs allowed are described below.

5.1 .1 Assignment

Assignments can be made to variables in compiler expressions, so if you have defined a
variable "state", you could write:

#DUE state=1
This would set the value "state" to be 1 (at run-time). In Phoenix expressions the
assignment operator can be used more than once. It can be used just like the ordinary
operators "+", "*" etc. except that the left hand side must be a single variable name or
something equivalent to it (for instance an array reference).

An assignment has a value just as "2+3" has a value (5). The value of "state = 1" is 1; in
general the value of an assignment is the value of its right hand side. So we could write:

#DSE x=y=0
(x and y are both names of variables). This would assign the value 0 to both x and y.

A more complex example is:

#DSE y = (z = x*x) + x - 20
This would give "z" the value "x*x" (x squared) and give "y" the value "(x*x) + (x-20)"
(x squared plus x minus 20).

For more on assignments see "5.1.4 Pointers" .

5.1.2 Arrays

In section 5.2.1 you will see how to define (and initialise) space for compiler variables. Once
you have created a variable you can use it as a base for indexing into memory. This gives
you (one-dimensional) arrays or vectors of compiler variables. You do not actually declare
a compiler variable to be an array but you name a block of memory space and then use that
name as an array name.

For example, the statement:
xcoord: #DS INT,10

allocates space for 10 integers at the current location (this is 20 bytes), The first integer in
this space will have name "xcoord". The other integers in the space can be accessed by
writing (in your compiler expressions):

xcoord[<compiler expression>"
So writing

xcoord[7]
would return the value of the 7th integer in the array. The value of "xcoord" itself can be
accessed by writing either just "xcoord" or "xcoord[0]". Since array indices start at 0 in
the case above the last array element can be accessed as "xcoord[9]". No check is made on
the value given as the index. So referring to "xcoord[10]", is legal but will return the value
held in the two bytes following the space allotted to the array; this is unlikely to be
meaningful.
Assignment can be made to array elements. You might write

#DSE xcoord[1] = 100
in an expression. Letting the array index go out of bounds can be dangerous in this case as
you may write into other variables or into program space.

5.1.3 Functions

As you will see in 5.2.3 it is possible to define "functions" in Phoenix. These can then be
"called" during expression evaluation. Each function returns a value which you can use or
choose to ignore: using the function may have other effected i.e. you can use the function
like a procedure. Some functions may be intended to be used as procedures and may
therefore return undefined values anyway.

35

You can pass parameters to a function. The definition of the function determines how
many parameters a function requires. The compiler does not check that you have given the
correct number when you write a function call so care must be taken here.

Suppose you have defined a function "square" which takes one parameter and returns the
square of the parameter's value. To use the function you would write:

#DSE y = square(x+1)
Setting the value of "y" to the square of "x+1". Notice that round brackets are used to
section off the function's parameter list.

If a function takes more than one parameter you should separate the individual parameter
expressions by commas. Suppose you have defined a function to print an integer to the
screen in a base given by a parameter, then this could be called as below:

#DSE based_print(scale*xcoord[count],10)
Notice that this time we are ignoring the value returned by the function.

5.1.4 Pointers

Two of the types of variable which you can define in Phoenix are "pointers". This means
that they hold the addresses of other variables rather than containing a piece of data. You
can define pointers to integers and pointers to characters.

You can find the address of a variable's storage space by using the "&" (unary prefix)
operator.

You can access the piece of data which a pointer points to by using the "*" operator.

As an example suppose we have defined a (null terminated) string with the statement:
begin: #DI CHAR,"There was no possibility of...\0"

and we want to copy this to a new location for editing. At this location we need space for the
string :

rewrite: #DS CHAR,80 ; One line of characters.

To copy the string we need two pointers to characters, one pointing to the original string
and one pointing to the space.

p_str: #DS PCHAR,1 ; For pointing to the string
p_spc: #DS PCHAR,1 ; For pointing to the space

We need to initialise the pointers using the "&" ("address of") operator.
#DUE p_str = &begin
#DUE p_spc = &rewrite

To do the copying we use the "*" ("contents of") operator, We could write:

 #WHILE *p_str != 0 ; Have we reached the end of the string?
 #DUE *p_spc = *p_str ; Contents of p_spc equals contents of p_str
 #DUE p_spc = p_spc + 1 ; Increment p_spc
 #DUE p_str = p_str + 1 ; Increment p_str
 #ENDW ; End of the loop
 #DUE *p_spc = 0 ; Null terminate the copy

You can do the job in rather less code using some of the other Phoenix operators. The
special incrementation operators can be used instead of the lines adding 1 to the pointers.
That is, you could write:

#DUE p_spc++
#DUE p_str ++

We can now compress the three lines inside the loop into one by putting these
incrementation operators into the expression which does the copying.

#WHILE *p_str != 0
#DUE *p_spc++ = *p_str++
#ENDW
#DUE *p_spc = 0

36

Now recall that an assignment has a value; the value of the right hand side of the
assignment (5.1.1). So we can test for the end of the string having been reached in the *
WHILE statement as well, since the string intermingled by a 0 which has truth value FALSE
and will therefore stop the loop. The null terminator will also be copied into the new space
so we won't need the last line any more. So the final version of the string copying program
is:

#WHILE *p_spc++ = *p_str++
#ENDW

Note that the "++" operator will increment a pointer to character by 1 (to step over one
character) but will increment a pointer to integer by 2 (to step over one integer). Similarly,
the "--" operator decrements pointers to characters and integers by 1 and 2 respectively.

5.2 THE HASH EXTENSION PSEUDO-OPS

5.2.1 Declaring Variables

Phoenix has four types of variable. These are integer, character, pointer-to-integer and
pointer-to-character. These types are represented by the mnemonics INT, CHAR, PINT,
PCHAR respectively when a distinction is necessary in a particular pseudo-op.

The pseudo-ops for declaring any of these types are given below.

[<label>:] #DS <type>,<Assembler expression>
This pseudo-up allocates enough space for the number of variables of
type <Type> given by the value of the expression. It is similar to the
DEFS or DS assembler pseudo-ops in that the space is allocated at the
current location and is initialised to zero (but see "5.2.3 Defining
Functions" as #DS performs differently inside a function). If a label is
given then it will be entered into the symbol table and marked as being a
compiler variable of type <Type>. This allows you to reference one of
the variables using an array construction or just by the use of <label>.

For example:
var1: #DS INT,1

defines space for 1 integer called "var1",
string: #DS CHAR,40

defines space for 40 characters. These could be accessed using a
construction of the form :

string[39] = 0

(This would "null terminate" the string).

<label>: #DI <Type>,<assembler expression list>
This pseudo-op defines and initialises variables. It will define as many
variables of type <Type> as there are expressions in the <Assembler
expression list>. Each one will have space allocated for it and this space
will be initialised to the value of the expression associated with it.

For example:
one_int: #DI INT,#1234

will define an integer called "one-int" and give it an initial value of
#1234.

greeting: #DI CHAR,"Good morrow.\13\10"

will define space for 14 characters and initialise this space to the string
given. Now, for instance, a use of the construction:

greeting[5]

would return the (character) value "m".

37

You may only use strings for initialisation if you have specified type
CHAR.

NOTE #DI may not be used inside a function. (See 5.2.3 Defining
Functions).

5.2.2 Compiling Expressions

#DSE <Compiler expression>
#DUE <Compiler expression>

These two pseudo-ops generate machine code to evaluate the compiler
expressions they are given as operands. For instance the statements:

x: #DS INT,1
y: #DS INT,1
 #DUE x=y=0

would generate the code:
LD HL,0
LD (<address of y>),HL
LD (<address of x>),HL

The statement:
#DUE x+y

will generate:
LD HL,(<address of y>)
PUSH HL
LD HL,(<address of x>)
PUSH HL
CALL <addition routine>
POP HL
; Final result in HL

The #DSE pseudo-op compiles the expression to be evaluated using signed arithmetic.
The #DUE pseudo-op compiles the expression to be evaluated using unsigned arithmetic.
The arithmetic routines will detect some errors (overflow and division by zero). when this
happens a bit in the byte (IX-1) is set to signal that an error has ocurred during evaluation of
the expression. You can test these bits in your own code but the compiled code will take no
action itself i.e. the program will just continue. (The IX register is used by the compiled code
and you should not alter its contents while running a compiled program (see the #STACK
pseudo-op).

The bits which are set are:
 overflow: BIT 0 (corresponding to the Z80 C flag)
division by 0: BIT 2 (corresponding to the Z80 P/V flag)

The result of an expression is left in the HL register so that you can access it in machine
code if you wish. (Seethe example programs in Chapters, especially the multiple precision
routines.)

5.2.3. Defining Functions

You can define functions for use in compiler expressions using the following pseudo-ops.
Function definitions may not be nested but a function may use another one at run-time. A
function returns a value which may be used in expressions or just ignored. (This value is
left in the HL register pair for access from pure machine code). A function is invoked or
called from within a compiler expression by writing the function name followed by list of
parameter values enclosed in parentheses. This is illustrated below.

<name>(<parameter list>)
or

<name>()

Where <parameter list> is a list of compiler expressions separated by commas. The
second case should be used when the function in question takes no parameters.

38

#FNC <Type> Declares the start of a function definition. There must be a #BEGIN-
#END pair in the code following the #FNC.

<label>: #PRM <Type>
This pseudo-op is used to declare <label> as a parameter to the
function being defined. A function may have up to 60 parameters. In a
call to the function the actual parameters must be given in the same
order that the dummy parameters have been defined. Parameter names
are entered into a local table associated with the function name, so you
can use the same names in different functions (or re-use global names)
without multiple definition errors.

Parameter declarations must appear after the #FNC statement and
before the #BEGIN.

#BEGIN Declares the start of the definition of the body of a function. There should
be no code generating statements between the #FNC statement and the
#BEGIN.

#END Declares the end of a function definition. Parameter and variable
declarations should not appear between the #BEGIN and the #END. At
run-time the result of a function is left in the HL register pair.

#RETURN This pseudo-op generates code to perform a return from the function. It
can appear anywhere within the function (even in positions where you
have pushed some data onto the stack yourself. If you use the return
pseudo-op the value returned by the function will be the contents of the
HL register pair before the #RETURN is executed.

It is not necessary to put a return immediately before a #END
directive (if you do the code to execute a return from a function will be
generated twice: one of them will be impossible to reach at run-time).

AN EXAMPLE OF A FUNCTION DEFINITION
The following piece of code defines a Phoenix function to return the (unsigned) sum of the
squares of its two parameters.

sumsq : #FNC INT
x : #PRM INT
y : #PRM INT

 #BEGIN
 #DUE x*x+y*y
 #END

You would use this by writing something like:
#DUE z = sumsq(3,4)

This would set z to the value 25.

NOTE: The add pseudo-op may be used between a #FNC and a #BEGIN. In this case it
does not allocate any space in the object code but causes space to be allocated
on the stack when the function is called i.e. in this case the storage is
"automatic" rather than "static". When the function returns the storage space
will be do-allocated and returned to the stack.

#DI may not be used between a #FNC and a #BEGIN.

5.2.4 Conditional Statements
Phoenix provides a conditional statement in the form of the following pseudo-ops.

#IF <compiler expression>
Marks the stardom a section of code which is to be evaluated conditionally
depending on the value of the compiler expression given (at run-time). A
#IF statement must have matching #ENDIF or #ELSE statements. If the
compiler expression evaluates to TRUE (non-zero) then the (compiled
version of the) code following the #IF statement will be executed

39

otherwise control is passed to the statement following the #ENDIF
statement matching the #IF if there is one.

Note that #IF uses signed evaluation on its operand expression.

#ELSE This pseudo-op should only be used after a matching #IF statement and
must have a matching #ENDIF later in the source. The section of code
between the #ELSE and #ENDIF statements will be executed if and only
if the compiler expression operand of the matching #IF evaluated to
FALSE (zero).

#ENDIF Marks the end of a section of code which is to be conditionally executed.
A #ENDIF statement must have a matching #IF or #IF - #ELSE pair.

As an example of the use of the conditional we define a function to return the maximum of
its two parameters.

max : #FNC INT
x : #PRM INT
y : #PRM INT

#BEGIN
#IF x > y
#DSE x
#ELSE
#DSE y
#ENDIF
#END

If the value of "x" is larger than that of "y" we get the value of "x" into the HL register pair,
else we get the value of "y". Since we do nothing else in this function this value will remain
until the function returns when it will be used as the result of the function.

5.2.5 Loop Constructs

Phoenix provides two types of looping construct. The first (the "while" loop) tests the
loop's termination condition at the start of the loop. The second (the "repeat" loop) tests
the condition at the end of the loop. In the "repeat" loop case the loop will therefore always
be executed at least once: with a "while" loop the condition may be FALSE when the start
of the loop is first encountered and the body of the loop never executed.

#WHILE <compiler expression>
Marks the start of a #WHILE - #ENDW loop. This pseudo-op generates
code to evaluate the compiler expression given as operand and to jump
to the statement following the #ENDW matching this #WHILE if the
result of the expression is FALSE (zero). If the expression is TRUE (nonzero)
then execution continues with the statement immediately after the
#WHILE instruction.

A #ENDW statement must be used to terminate a #WHILE loop. The
#ENDW returns control to the code compiled by the #WHILE statement
causing the termination condition to be tested again.

#ENDW Marks the end of a #WHILE loop. This pseudo-op compiles a jump back
to its matching #WHILE.

#REPEAT Marks the start of a #REPEAT- #UNTIL loop. This pseudo-op does not
generate any code.

#UNTIL <compiler expression>
Marks the end of a #REPEAT- #UNTIL loop. This pseudo-op generates
code to evaluate its compiler expression operand, test the result, and
possibly pass control back to the #REPEAT matching this #UNTIL. If the
result is false then control will be passed back to the start of the loop, else
execution continues from the statement after this until.

40

5.2.6 Setting the Execution Stack

NOTE: The #STACK pseudo-op should appear somewhere in any compiler source. At
the start of the source is the best place to put it.

The code compiled to evaluate expressions uses the IX register to keep
note of the stack pointer and to index parameter va|ues in functions. The
value of IX must therefore be initialised to the value required by the
compiled code, This should be done using the following pseudo-op.

#STACK [<assembler expression>]
This pseudo-op generates code to set IX to a value related to the stack
pointer's value. The optional (assembler) expression given as operand
to stack can be used to set the stack pointer to a new value i.e. it will
generate a "LD SP,word" instruction. For some applications of the
compiled language It may be wise to move the stack from the position
set by the AMSTRAD firmware as you have only 256 bytes of space
available in this position.

PLEASE NOTE: This pseudo-op also generates a DEC SP instruction (to make one byte of
room for use as PHOENIX flag space). So to return from a routine
containing a stack pseudo-op you should use either:

LD SP,IX
RET

or
INC SP
RET

rather than just a RET instruction.

5.2.7 The #LIB pseudo-op

The code generated by the compiler to evaluate expressions contains CALLS to a number
of arithmetic routines to actually perform the evaluation. These routines must appear
somewhere in the object code produced by the assembly of your source. The #LIB pseudo-op
is used to relocate the arithmetic routines down into your object code. It should appear
somewhere in your source after you have used all the Phoenix operators that you are going
to use in this piece of code. This is because #LIB only relocates the routines associated with
operators that you have actually referenced in your code.

#LIB This pseudo-op allows your compiled code to run independently of the
Genius assembler by relocating any arithmetic routines required for the
evaluation of your expressions down into your object code. You should
place a #LIB statement in your source after you have used all those
operators that you will need in the whole program being assembled.
(The statement containing a given operator must actually have been
reached by the assembler: a statement that is not assembled owing to
conditional assembly cannot cause any operator routines to become
liable to relocation by #LIB.)

NOTE: The tool-kit command EXPORT will save data recording those library
routines which have already been relocated. So that when you IMPORT
a symbol table into a Phoenix program the #LIB will not create extra
copies of library routines that have been included in previously
assembled code. You must include a #LIB pseudo-op in the source of
the pre-compiled routines.

6. EXAMPLE PROGRAMS

This chapter contains listings of some programs and routines in BASIC, the PHOENIX
compiled language, and in machine code. These are intended as examples of the use of the
assembler and the compiled language. (The BASIC versions are included for comparison
and to help illustrate the algorithms used).

41

6.1 Example 1 - The Sieve of Eratosthenes

This example is the famous "Sieve of Eratosthenes" written in BASIC and in PHOENIX. The
sieve is a method of extracting the prime numbers from the integers. The algorithm
embodied in the programs is as follows.

List the integers in the range from which you want to extract the primes. (In the programs
this is 2 to 5000). Then for each integer, n, in this range strike out the integers 2*n,3*n,4*n,
5*n etc., i.e. we remove the multiples of n. (You must start with n=2, not 1, why?). When
you have finished, any numbers which you have not struck out will be prime.

This is translated into a computer program by defining an array, "primeflags", with one
entry for each of the integers in the range we are considering. The elements of the array are
all initialised to zero. Then for each integer, n, in the range we set prime flags (2*n),
primeflags (3*n), etc. to 1 to signal that each of the multiples of n is not a prime. When we
are done any entry in the array "primeflags" which is not set to 1 corresponds to a prime
number, i.e. If primeflags(m) is 0 for a number m, then m is prime.

The implementation given is not the best possible. You might like to try and improve on it.

Sieve of Eratosthenes written in BASIC and PHOENIX.
10 REM
20 REM Sieve of Eratosthenes.
30 REM
40 DIM primeflags%(5000)
50 count%=2
60 WHILE count%<2500
70 IF primeflags%(count%)=1 THEN 130
80 count1%=count%+count%
90 WHILE count1%<=5000
100 primeflags%(count1%)=1
110 count1%=count1%+count%
120 WEND
130 count%=count%+1
140 WEND
150 FOR count%=2 to 5000
160 IF primeflags%(count%)=0 THEN PRINT count%,
170 NEXT count%
180 END
10 ;
 ; Sieve of Eratosthenes

;
20 ;

; AMSTRAD (1) or SPECTRUM (0) ?
;
AMSSPEC:

EQU 1
;

30 ;
; Function to write a character
; to the screen
;
; This must be before "print.int"
; as it is used by "print.int".
;

42

40 print.char:
#FNC INT

 chr : #PRM CHAR
#BEGIN
#DSE chr
COND AMSSPEC
LD A,L
CALL #BB5A
ELSE
LD A',L
CALL #9F4
ENDC
#END

;
;

50 ;
; Inner integer print function
;
; This must be before "print.int"
; as it is used by "print.int".
;

60 print.int1:
#FNC INT

 pval : #PRM INT
 chr : #DS CHAR,1

#BEGIN
#IF pval != 0
#DSE chr = pval % 10
#DSE print.int1(pval/10)
#DSE print.char(chr+#30)
#ENDIF
#END

;
;

70 ;
; Integer print function.
;

80 print.int:
#FNC INT

 pval : #PRM INT
 chr : #DS CHAR,1

#BEGIN
#IF pval ?= 0
#DSE print.char("0")
#ELSE
#DSE print.int1(pval)
#ENDIF

#DSE print.char(" ")
#END

;
;

43

90 ;
; Workspace.
;
count: #DS INT,1
count1:

#DS INT,1
;
primeflags:

#DS INT,5001
;

100 ;
; Main calculation loop.
;
; This loop marks non-primes
; in the array "primeflags".
;

110 ;
; Enter here (EXECUTE start).
;
start: #STACK ; Set IX for PHOENIX' use.
;
; On the SPECTRUM set the channel to the main screen.
;

COND AMSSPEC
;

LD A,2
CALL #1601 ; ROM's CHAN OPEN

;
ENDC

;
120 #DSE count=2

;
#WHILE count <= 2500

;
#IF primeflags[count]?=0

;
#DUE count1=count

;
#WHILE [count1=count1+count]<=5000
#DUE primeflags[count1]=1
#ENDW

;
#ENDIF

;
#DSE ++count ; Increment count.

;
#ENDW

;

44

130 ;
; Loop to print the primes found
;

#DUE count=2
;

#IF primeflags[count]?=0
#DUE print.int(count)
#ENDIF

;
#DUE ++count

;
#ENDW

;
140 ;

; Done, replace stack pointer and return.
;

LD SP,IX
RET

;
150 ;

; Include library routines for arithmetic.
;

#LIB
;

6.2 Example 2 - Drawing Ellipses

This example consists of an algorithm to draw ellipses implemented in BASIC, PHOENIX
and hand-crafted machine code.

The algorithm used is an adaptation of Bresenham's incremental circle generating
algorithm. Unless you are familiar with this it will not be at all clear how it works. For a full
explanation of the method you are referred to "Fundamentals of Computer Graphics" by
J.D. Foley and A. Van Dam, and "Procedural Elements for Computer Graphics" by D.F.
Rogers.

The implementation used requires numbers larger than 65535 i.e. too large to fit into the
two-byte integer variables of BASIC or PHOENIX. In BASIC this problem is solved by using
floating point variables. In Phoenix a set of multiple precision (integer) arithmetic
routines is used. These routines can be assembled to use any length (in bytes) of integer.
The precision required (i.e. the length in bytes of the integers to be handled by the routines)
is set by the value of a symbol "precision". You could use these routines in your own
drawing program; the calling conventions for the multiple precision routines are given as
comments in the routines themselves.

45

Ellipse drawing program written in BASIC, PHOENIX and machine code.
100 REM
110 REM BASIC ELLIPSE DRAWING PROGRAM.
120 REM
121 REM Although written in AMSTRAD BASIC this program can
122 REM easily be converted to run on the spectrum; the only
123 REM significant difference is the use of the WHILE loops.
124 REM
130 INPUT "Axes ";a,b
140 xi=0:yi=a
150 a2=a*a:b2=b*b
160 a2s=a2:b2s=b2*(2*yi+1)
170 DELTAi=2*(1-b)
180 WHILE yi>0
190 PLOT xi,yi:PLOT -xi,yi:PLOT xi,-yi:PLOT -xi,-yi
200 IF DELTAi>0 THEN GOSUB 250 ELSE IF DELTAi=0 THEN GOSUB 310 ELSE

GOSUB 340
210 WEND
220 END
230 REM
240 REM
250 delta=DELTAi+DELTAi-a2s
260 IF delta<=0 THEN GOSUB 310 ELSE GOSUB 400
270 RETURN
280 REM
290 REM Make a diagonal step
300 REM
310 xi=xi+1:a2s=a2s+a2+a2:yi=yi-1:b2s=b2s-b2-b2:DELTAi=DELTAi+a2s-

b2s:RETURN
320 REM
330 REM
340 delta=DELTAi+DELTAi+b2s
350 if delta<=0 THEN xi=xi+1:a2s=a2s+a2+a2:DELTAi=DELTAi+a2s:RETUEN

ELSE GOSUB 310
360 RETURN
370 REM
380 REM Make a vertical step
390 REM
400 yi=yi-1:b2s=b2s-b2-b2:DELTAi=DELTAi-b2s:RETURN

10 ;
; Set AMSTRAD to 0 for use on the SPECTRUM
;
AMSTRAD:

EQU 1
;

20 ;
; PHOENIX ellipse drawing routines.
;
; On Entry:
;
; major = x semi-axis of ellipse.
; minor = y semi-axis of ellipse.
; xs = x co-ordinate of centre.
; ys = y co-ordinate of centre.
;

46

30 minor: #DI INT,70
 major: #DI INT,100
 ;
 xs: #DS INT,1
 ys: #DS INT,1
 ;
 xi: #DS INT,1
 yi: #DS INT,1

;
40 ;
 ; Set the precision for multiple precision routines.
 precision:EQU 4
 ;
50 ;

; Include the multiple precision source.
;
 *INCLUDE "MPA-FNCS.PHX"
;

60 ;
; Multiple precision workspace
;
a2 : DEFS precision
b2 : DEFS precision
a2s : DEFS precision
b2s : DEFS precision
;
DELTAi: DEFS precision
delta: DEFS precision
;
long.zero: DEFS precision
;
long.one: DEFB 1

DEFS precision-1
;

70 ;
; Ellipse work functions.
;

80 ;
; Make a vertical (downwards) step.
;
vertical:

#FNC INT
#BEGIN
#DSE --yi
#DSE mpa.sub(b2s,b2s,b2) ; b2s=b2s-b2-b2
#DSE mpa.sub(b2s,b2s,b2)
#DSE mpa.sub(DELTAi,DELTAi,b2s) ; DELTAi=DELTAi-b2s
#END

;
90 ;

;
horizontal:

#FNC INT
#BEGIN
#DSE ++xi
#DSE mpa.add(a2s,a2s,a2) ; a2s=a2s+a2+a2
#DSE mpa.add(a2s,a2s,a2)
#DSE mpa.add(DELTAi,DELTAi,a2s) ; DELTAi=DELTAi+a2s
#END

47

100 ;
; Make a diagonal step
;
diagonal:

#FNC INT
#BEGIN
#DSE horizontal()
#DSE vertical()
#END

110 ;
; Decision function; go diagonally or horizontally?
;
test_horizontal:

#FNC INT
#BEGIN
#DSE mpa.add(delta,DELTAi,DELTAi) ;delta=DELTAi+DELTAi+b2s
#DSE mpa.add(delta,delta,b2s)

;
#IF mpa.sign(delta) > 0
#DSE diagonal()
#ELSE
#DSE horizontal()
#ENDIF
#END

120 ;
; ROM entries for plotting points.
;

COND AMSTRAD
;
GRA_PLOT_ABSOLUTE:

EQU #BBEA
GRA_SET_ORIGIN_

EQU #BBC9
;

ELSE
;
; Origin set at (127,100) on the SPECTRUM
;
GRA_PLOT_ABSOLUTE:

LD A,E
ADD A,127
LD C,A
LD A,L
ADD A,100
LD B,A
JP #22E5 ; ROM plot routine.

;
ENDC

130 ;
; Plot a single point
plot : #FNC INT
xp : #PRM INT
yp : #PRM INT

#BEGIN
#DSE xp
PUSH HL
#DSE yp
POP DE
CALL GRA_PLOT_ABSOLUTE
#END

48

140 ;
; Plot four points of the ellipse (by symmetry).
;
plot4: #FNC INT
xp : #PRM INT
yp : #PRM INT

#BEGIN
#DSE plot(xp,yp)
#DSE plot(-xp,yp)
#DSE plot(-xp,-yp)
#DSE plot(xp,-yp)
#END

;
150 ;

; Initialise long variables.
;
; ***************
; Entry Point.
; ***************
start: #STACK ; Set PHOENIX stack and flag byte.
;

COND AMSTRAD
LD HL,200
LD DE,200
CALL GRA_SET_ORIGIN
ENDC

;
160 ;

#DSE xi=0
#DSE yi=major

;
#DSE mpa.extend(a2,&major) ; a2 = a*a
#DSE mpa.mul(a2,a2,a2)

;
#DSE mpa.extend(b2,&minor) ; b2 = b*b
#DSE mpa.mul(b2,b2,b2)

;
170 ; #DSE mpa.add(a2s,a2,long.zero) ; a2s = a2

#DSE mpa.extend(b2s,&yi) ; b2s=b2*(2*yi+1)
#DSE mpa.add(b2s,b2s,b2s)
#DSE mpa.add(b2s,b2s,long.one)
#DSE mpa.mul(b2s,b2,b2s)

;
180 ;

#DSE mpa.extend(DELTAi,&minor) ; DELTAi=2*(1-b)
#DSE mpa.sub(DELTAi,long.one,DELTAi)
#DSE mpa.add(DELTAi,DELTAi,DELTAi)

;
190 ;

; ************************
; Main loop.
; ************************
;

#WHILE yi>0
;

#DSE plot4(xi,yi)
;

200 ;
#IF mpa.sign(DELTAi)>0

;
#DSE mpa.add(delta,DELTAi,DELTAi) ; delta=DELTAi+DELTAi-a2
#DSE mpa.sub(delta,delta.a2)

;
210 #IF mpa.sign(delta)>=

#DSE vertical()
#ELSE
#DSE diagonal
#ENDIF

;
49

220 #ELSE
;

230 ;
#IF mpa.sign(DELTAi)?=0

;
#DSE diagonal()
#ELSE
#DSE test_horizontal()

;
#ENDIF

;
#ENDIF

;
240 ; End of main loop

;
#ENDW

;
; Replace stack pointer.
;

LD SP,IX
RET

;
250 ;

; Include any PHOENIX library routines used.
;

#LIB

10 ;
; Set AMSTRAD to 0 if using a spectrum.
;
AMSTRAD:

EQU 1
;

20 ;
; Machine code ellipse drawing routines.
;
; Enter at "start"
;
; (xo),(yo) = centre of ellipse.
;
; (major),(minor) = the axes of the ellipse.
;

30 ;
; Multiplication routine.
;
; Multiplies BC by HL-DE giving 32 bit result in HL-IX
;
mul32: LD IX,0

LD A,32
mult: ADD IX,IX

ADC HL,HL
RL E
RL D
JR NC,noadd
ADD IX,BC
JR NC,noadd
INC HL

noadd: DEC A
JR NZ,mult
RET

;
;

50

40 ;
; Workspace.
;
; Ellipse axes.
;
minor: DEFW 100
major: DEFW 60
;
; Ellipse centre.
;
xo : DEFW 127
yo : DEFW 100
;
; Current plot point.
;
xi : DEFS 2
yi : DEFS 2
;

50 COND AMSTRAD
;
; Multiplier for screen mode on the AMSTRAD.
;
x_factor: DEFS 1
;

ENDC
;

60 ;
; Work variables. (See BASIC listing).
;
a2 : DEFS 4
a2s : DEFS 4
b2 : DEFS 4
b2s : DEFS 4
;
DELTAi:

DEFS 4
;

70 ;
; Entry point.
; Type "EXECUTE start" from GENIUS editor.
;

80 start:
;
; Set the origin on the AMSTRAD
;

COND AMSTRAD
LD DE,(yo) ; Note : this is in standard co-ordinates
LD HL,(xo)
CALL GRA_SET_ORIGIN

;
90 ;

; Calculate the screen mode expansion factor (AMSTRAD).
;

CALL SCR_GET_MODE
SUB 3
NEG
LD (x_factor),A

;
100 ;

; Adjust ellipse x-axis.
;

LD B,A
LD HL,(minor)
JR stexplop

explop:
SRL H
RR L

stexplop:
DJNZ explop

51

; HL = corrected (pixel co-ordinate) axis.
;

LD (minor),HL
;

ENDC
;

110 LD HL,0
LD (xi),HL

;
LD HL,(major)

;
; Reduce the y-axis (AMSTRAD) to give pixel co-ordinates.
;

COND AMSTRAD
;

SRL H
RR L
LD (major),HL

;
ENDC

;
LD (yi),HL

;
120 ;

; Initialise work variables.
;

LD B,h ; a2=a*a
LD C,L
LD DE,9
CALL mul32
LD (a2),IX
LD (a2+2),HL

;
LD (a2s),IX ; a2s = a2
LD (a2s+2),HL

;
130 LD HL,(minor) ; b2 = b*b

LD B,H
LD C,L
LD DE,0
CALL mul32
LD (b2),IX
LD (b2s),HL

;
140 LD HL,(yi) ; b2s=b2*(2*yi+1)

ADD HL,HL
INC HL
LD B,H
LD C,L
LD HL,(b2)
LD DE,(b2+2)
CALL mul32
LD (b2s),IX
LD (b2s+2),HL

;
150 LD HL,1 ; DELTAi=2*(1-b)

LD DE,(minor)
OR A
SBC HL,DE
ADD HL,HL
LD (DELTAi),HL
LD HL,#FFFF ; Sign extend to 32 bits (requires b>0)
LD (DELTAi+2),HL

;
160 ; ***********************************

;
; Main calculation loop.
;
; ***********************************

52

;
170 ;

main_loop:
LD HL,(yi) ; While yi>0
BIT 7,H
RET NZ

;
180 LD DE,(xi)

;
; HL already has (yi).
;
; Plot four points of the ellipse (by symmetry).
; We actually plot (xi,yi),(-xi,yi),(-xi,-yi),(xi,-yi)
;
; On the AMSTRAD expand for the particular screen mode
;

190 ;
ADD HL,HL

;
LD A,(x_factor)
LD B,A
EX DE,HL
JR stxexp

xexp : ADD HL,HL
stxexp :

DJNZ xexp
EX DE,HL

;
ENDC

;
200 PUSH DE

PUSH DE
PUSH HL
CALL GRA_PLOT_ABSOLUTE ; (xi,yi);

210 POP HL
POP DE
PUSH HL
LD A,D ; Negate xi
CPL
LD D,A
LD A,E
CPL
LD E,A
INC DE
PUSH DE
CALL GRA_PLOT_ABSOLUTE ; (-xi,yi);

220 POP DE
POP HL
LD A,H ; Negate yi
CPL
LD H,A
LD A,L
CPL
LD L,A
INC HL
PUSH HL
CALL GRA_PLOT_ABSOLUTE ; (-xi,-yi);

230 POP HL
POP DE
CALL GRA_PLOT_ABSOLUTE ; (xi,-yi);

;
;

240 ;
LD DE,(DELTAi) ; IF DELTAi > 0
LD HL,(DELTAi+2)
CALL testdehl
JR Z,godiag
JR NC,gohoriz

53

250 LD HL,(DELTAi) ; delta=DELTAi+DELTAi-a2s
ADD HL,HL
EX DE,HL
LD HL,(DELTAi+2)
ADC HL,HL
EX DE,HL
LD BC,(a2s)
OR A
SBC HL,BC
EX DE,HL
LD BC,(a2s+2)
SBC HL,BC
CALL testdehl ; IF delta<=0
JR Z,godiag
JR NC,godiag
CALL vertical
JR main_loop

;
260 ;

;
gohoriz:

LD HL,(DELTAi) ; delta=DELTAi+DELTAi+b2s
ADD HL,HL
EX DE,HL
LD HL,(DELTAi+2)
ADC HL,HL
EX DE,HL
LD BC,(b2s)
ADD HL,BC
EX DE,HL
LD BC,(b2s+2);
ADC HL,BC
CALL testdehl ; IF delta<=0
JR Z,horiz
JR NC,horiz

270 ;
;
godiag:

CALL vertical ; Make a diagonal step. (Go up then along).
horiz: LD HL,(xi) ; Make a horizontal step.

INC HL
LD (xi),HL

;
280 ;

;
; a2s=a2s+a2+a2
;

LD B,2
inca2s1:

LD HL,(a2s)
LD DE,(a2)
ADD HL,DE
LD (a2s),HL
LD HL,(a2s+2)
LD DE,(a2+2)
ADC HL,DE
LD (a2s+2),HL
DJNZ inca2s1

;
290 ;

; DELTAi=DELTAi+a2s
;

PUSH HL
LD HL,(DELTAi)
LD DE,(a2s)
ADD HL,DE
LD (DELTAi),HL
LD HL,(DELTAi+2)
POP DE

54

ADC HL,DE
LD (DELTAi+2),HL
JP main_loop

;
;

300 ;
;
vertical:

LD HL,(yi) ; Make a vertical step.
DEC HL
LD (yi),HL

;
310 ;

; b2s=b2s-b2-b2
;

LD B,2
decb2s1:

LD HL,(b2s)
LD DE,(b2)
OR A
SBC HL,DE
LD (b2s),HL
LD HL,(b2s+2)
LD DE,(b2+2)
SBC HL,DE
LD (b2s+2),HL
DJNZ decb2s1

;
320 ;

; DELTAi=DELTAi-b2s
;

PUSH HL
LD HL,(DELTAi)
LD DE,(b2s)
OR A
SBC HL,DE
LD (DELTAi),HL
LD HL,(DELTAi+2)
POP DE
SBC HL,DE
LD (DELTAi+2),HL
RET

;
;

330 ;
; Test the 32-bit number in HL-DE for its sign.
;
testdehl:

OR A
BIT 7,H
RET NZ ; NC,NZ means less than zero.
LD A,D
OR E
SCF
RET NA ; C, NZ means greater than zero.
LD A,H
OR L
SCF
RET

;
340 ;

; AMSTRAD firmware routine calls.
;

55

COND AMSTRAD
;
GRA_SET_ORIGIN:

EQU #BBC9
GRA_PLOT_ABSOLUTE:

EQU #BBEA
SRC_GET_MODE:

EQU #BC11
;

ELSE
;
; SPECTRUM plot routine.
;
GRA_PLOT_ABSOLUTE:

LD A,(xo)
ADD A,E
LD C,A
LD A,(yo)
ADD A,L
LD B,A
JP #22E5 ; ROM plot routine

;
;

ENDC

7. SPECTRUM FILE TRANSFER UTILITY

This section is only applicable to Spectrum tape users who have created object files using
the *openout assembler directive (see 4.2.3). The utility itself consists of the first two files of
Tape 1 Side B. To execute the utility, rewind the tape and type LOAD"TRANS". The
program will load and auto-run.

You will be given a menu with two choices:

1. Load for execution
2. Load for saving

Press "1" to choose option 1 and "2" for option 2.

Option 1: This option allows you to execute binary files created by the Genius
assembler. You will be prompted for a filename and a load address. The
utility will then load the file specified at the address given and display the
address of th byte after the last byte of code loaded. will then ask you
if you wish to load another file (you may want to load a library of routines
for use by your program). If you answer yes you will again be prompted
for a filename and a load address. This cycle repeats until you answer no
to the "load another file? (Y/N)" question, when you will be prompted
for an execution address. Your code is then executed by a JP instruction
to the address specified.

Option 2: This option allows you to convert Genius format binary files to normal
Spectrum CODE format. You will be prompted for a filename, the utility
will then load that file from tape. You will then be asked:

Load another file? (Y/N)
Answering "Y" (for yes) will bring the filename prompt back. The new
file will be loaded at the end of the last one. This allows you to
concatenate different Genius binary files to form a single Spectrum
CODE file.

This cycle repeats until you answer "N" (for no) to the "load another file"
question, when you will be prompted for a load address. This is the
default load address to go into the CODE file's header for use by BASIC.

You will then be prompted to press play and record and a key to start the
saving of the CODE file. When this is done you will be returned to the
main menu.

56

NOTE: Binary files saved from the assembler by the CODE immediate command are
directly executable by BASIC. You do not need to use this utility on these files.

APPENDIX A

Z80 INSTRUCTION CODES

Below is a list of the standard Z80 instructions in alphabetical order. The Genius assembler
will accept non-standard mnemonics for a small number of these, the alternative version
being given below the standard one in the table.

Immediate data in the instructions and object codes are represented as follows:

Object Source Meaning
llhh addr A 16 bit address. "ll" represents the low (least significant)

and "hh" the high byte.

llhh word A 16 bit integer. (As "addr")

bb byte An 8 bit integer.

dd disp An 8 bit displacement.

Note that the DJNZ and JR instructions are given as taking an 8 bit displacement as
operand. The assembler however, treats this operand as a 16 bit address and calculates
the correct displacement to put into the object code. (If the address given is too far away
from the current instruction an error is given).

The table also gives the execution time of each instruction in T states (clock cycles). This
can be used to calculate the execution times in microseconds by the following formula:

 Execution time in T states
Execution time in microseconds = -------------------------------

 Clock rate in Mhz.

Some instructions have two times given (e.g. "JR C,disp" and "CPIR"). For conditional
instructions these are condition true/condition false times. For the automatic repeat
instructions these are execution times for one repetition, counter 0/counter <>0.

57

OBJECT SOURCE T
 CODE STATEMENT STATES

8E ADC A,(HL) 7
ADC (HL

DD8Edd ADC A,(IX+disp) 19
ADC (IX+disp)

FD8Edd ADC A,(IY+disp) 19
ADC (IY+disp)

8F ADC A,A 4
ADC A

88 ADC A,B 4
ADC B

89 ADC A,C 4
ADC C

8A ADC A,D 4
ADC D

8B ADC A,E 4
ADC E

8C ADC A,H 4
ADC H

8D ADC A,L 4
ADC L

CEbb ADC A,byte 7
ADC byte

ED4A ADC HL,BC 15
ED5A ADC HL,DE 15
ED6A ADC HL,HL 15
ED7A ADC HL,SP 15
86 ADD A,(HL) 7

ADD (HL)
DD86dd ADD A,(IX+disp) 19

ADD (IX+disp)
FD86dd ADD A,(IY+disp) 19

ADD (IY+disp)
87 ADD A,A 4

ADD A
80 ADD A,B 4

ADD B
81 ADD A,C 4

ADD C
82 ADD A,D 4

ADD D
83 ADD A,E 4

ADD E
84 ADD A,H 4

ADD H
85 ADD A,L 4

ADD L
C6bb ADD A,byte 7

ADD byte
09 ADD HL,BC 11
19 ADD HL,DE 11
29 ADD HL,HL 11
39 ADD HL,SP 11
DD09 ADD IX,BC 15
DD19 ADD IX,DE 15
DD29 ADD IX,IX 15
DD39 ADD IX,SP 15

58

OBJECT SOURCE T
 CODE STATEMENT STATES

FD09 ADD IY,BC 15
FD19 ADD IY,DE 15
FD29 ADD IY,IY 15
FD39 ADD IY,SP 15
A6 AND (HL) 7
DDA6dd AND (IX+disp) 19
FDA6dd AND (IY+disp) 19
A7 AND A 4
A0 AND B 4
A1 AND C 4
A2 AND D 4
A3 AND E 4
A4 AND H 4
A5 AND L 4
E6bb AND byte 7
CB46 BIT 0,(HL) 12
DDCBdd46 BIT 0,(IX+disp) 20
FDCBdd46 BIT 0,(IY+disp) 20
CB47 BIT 0,A 8
CB40 BIT 0,B 8
CB41 BIT 0,C 8
CB42 BIT 0,D 8
CB43 BIT 0,E 8
CB44 BIT 0,H 8
CB45 BIT 0,L 8
CB4E BIT 1,(HL) 12
DDCBdd4E BIT 1,(IX+disp) 20
FDCBdd4E BIT 1,(IY+disp) 20
CB4F BIT 1,A 8
CB48 BIT 1,B 8
CB49 BIT 1,C 8
CB4A BIT 1,D 8
CB4B BIT 1,E 8
CB4C BIT 1,H 8
CB4D BIT 1,L 8
CB56 BIT 2,(HL) 12
DDCBdd56 BIT 2,(IX+disp) 20
FDCBdd56 BIT 2,(IY+disp) 20
CB57 BIT 2,A 8
CB50 BIT 2,B 8
CB51 BIT 2,C 8
CB52 BIT 2,D 8
CB53 BIT 2,E 8
CB54 BIT 2,H 8
CB55 BIT 2,L 8
CB5E BIT 3,(HL) 12
DDCBdd5E BIT 3,(IX+disp) 20
FDCBdd5E BIT 3,(IY+disp) 20
CB5F BIT 3,A 8
CB58 BIT 3,B 8
CB59 BIT 3,C 8
CB5A BIT 3,D 8
CB5B BIT 3,E 8
CB5C BIT 3,H 8
CB5D BIT 3,L 8
CB66 BIT 4,(HL) 12
DDCBdd66 BIT 4,(IX+disp) 20

59

OBJECT SOURCE T
 CODE STATEMENT STATES

FDCBdd66 BIT 4,(IY+disp) 20
CB67 BIT 4,A 8
CB60 BIT 4,B 8
CB61 BIT 4,C 8
CB62 BIT 4,D 8
CB63 BIT 4,E 8
CB64 BIT 4,H 8
CB65 BIT 4,L 8
CB6E BIT 5,(HL) 12
DDCBdd6E BIT 5,(IX+disp) 20
FDCBdd6E BIT 5,(IY+disp) 20
CB6F BIT 5,A 8
CB68 BIT 5,B 8
CB69 BIT 5,C 8
CB6A BIT 5,D 8
CB6B BIT 5,E 8
CB6C BIT 5,H 8
CB6D BIT 5,L 8
CB76 BIT 6,(HL) 12
DDCBdd76 BIT 6,(IX+disp) 20
FDCBdd76 BIT 6,(IY+disp) 20
CB77 BIT 6,A 8
CB70 BIT 6,B 8
CB71 BIT 6,C 8
CB72 BIT 6,D 8
CB73 BIT 6,E 8
CB74 BIT 6,H 8
CB75 BIT 6,L 8
CB7E BIT 7,(HL) 12
DDCBdd7E BIT 7,(IX+disp) 20
FDCBdd7E BIT 7,(IY+disp) 20
CB7F BIT 7,A 8
CB78 BIT 7,B 8
CB79 BIT 7,C 8
CB7A BIT 7,D 8
CB7B BIT 7,E 8
CB7C BIT 7,H 8
CB7D BIT 7,L 8
DCllhh CALL C,addr 17/10
FCllhh CALL M,addr 17/10
D4llhh CALL NC,addr 17/10
C4llhh CALL NZ,addr 17/10
F4llhh CALL P,addr 17/10
ECllhh CALL PE,addr 17/10
E4llhh CALL PO,addr 17/10
CCllhh CALL Z,addr 17/10
CDllhh CALL addr 17
3F CCF 4
BE CP (HL) 7
DDBEdd CP (IX+disp) 19
FDBEdd CP (IY+disp) 19
BF CP A 4
B8 CP B 4
B9 CP C 4
BA CP D 4
BB CP E 4
BC CP H 4

60

OBJECT SOURCE T
 CODE STATEMENT STATES

BD CP L 4
FEbb CP byte 7
EDA9 CPD 16
EDB9 CPDR 16/21
EDA1 CPI 16
EDB1 CPIR 16/21
2F CPL 4
27 DAA 4
35 DEC (HL) 11
DD35dd DEC (IX+disp) 23
FD35dd DEC (IY+disp) 23
3D DEC A 4
05 DEC B 4
0B DEC BC 6
0D DEC C 4
15 DEC D 4
1B DEC DE 6
1D DEC E 4
25 DEC H 4
2B DEC HL 6
DD2B DEC IX 10
FD2B DEC IY 10
2D DEC L 4
3B DEC SP 6
F3 DI 4
10dd DJNZ disp 8/13
FB EI 4
E3 EX (SP),HL 19
DDE3 EX (SP),IX 23
FDE3 EX (SP),IY 23
08 EX AF,AF' 4
EB EX DE,HL 4
D9 EXX 4
76 HALT 4
ED46 IM 0 8
ED56 IM 1 8
ED5E IM 2 8
ED78 IN A,(C) 12
DBbb IN A,(byte) 11
ED40 IN B,(C) 12
ED48 IN C,(C) 12
ED50 IN D,(C) 12
ED58 IN E,(C) 12
ED60 IN H,(C) 12
ED68 IN L,(C) 12
34 INC (HL) 11
DD34dd INC (IX+disp) 23
FD34dd INC (IY+disp) 23
3C INC A 4
04 INC B 4
03 INC BC 6
0C INC C 4
14 INC D 4
13 INC DE 6
1C INC E 4
24 INC H 4
23 INC HL 6

61

OBJECT SOURCE T
 CODE STATEMENT STATES

DD23 INC IX 10
FD23 INC IY 10
2C INC L 4
33 INC SP 6
EDAA IND 16
EDBA INDR 16/21
EDA2 INI 16
EDB2 INIR 16/21
E9 JP (HL) 4
DDE9 JP (IX) 8
FDE9 JP (IY) 8
DAllhh JP C,addr 10
FAllhh JP M,addr 10
D2llhh JP NC,addr 10
C2llhh JP NZ,addr 10
F2llhh JP P,addr 10
EAllhh JP PE,addr 10
E2llhh JP PO,addr 10
CAllhh JP Z,addr 10
C3llhh JP addr 10
38dd JR C,disp 12/7
30dd JR NC,disp 12/7
20dd JR NZ,disp 12/7
28dd JR Z,disp 12/7
18dd JR disp 12
02 LD (BC),A 7
12 LD (DE),A 7
77 LD (HL),A 7
70 LD (HL),B 7
71 LD (HL),C 7
72 LD (HL),D 7
73 LD (HL),E 7
74 LD (HL),H 7
75 LD (HL),L 7
36bb LD (HL),byte 10
DD77dd LD (IX+disp),A 19
DD70dd LD (IX+disp),B 19
DD71dd LD (IX+disp),C 19
DD72dd LD (IX+disp),D 19
DD73dd LD (IX+disp),E 19
DD74dd LD (IX+disp),H 19
DD75dd LD (IX+disp),L 19
DD36ddbb LD (IX+disp),byte 19
FD77dd LD (IY+disp),A 19
FD70dd LD (IY+disp),B 19
FD71dd LD (IY+disp),C 19
FD72dd LD (IY+disp),D 19
FD73dd LD (IY+disp),E 19
FD74dd LD (IY+disp),H 19
FD75dd LD (IY+disp),L 19
FD36ddbb LD (IY+disp),byte 19
32llhh LD (addr),A 13
ED43llhh LD (addr),BC 20
ED53llhh LD (addr),DE 20
22llhh LD (addr),HL 16
DD22llh LD (addr),IX 20
FD22llhh LD (addr),IY 20

62

OBJECT SOURCE T
 CODE STATEMENT STATES

ED73llhh LD (addr),SP 20
0A LD A,(BC) 7
1A LD A,(DE) 7
7E LD A,(HL) 7
DD7E05 LD A,(IX+disp) 19
FD7E05 LD A,(IY+disp) 19
3Allhh LD A,(addr) 13
7F LD A,A 4
78 LD A,B 4
79 LD A,C 4
7A LD A,D 4
7B LD A,E 4
7C LD A,H 4
ED57 LD A,I 9
7D LD A,L 4
3Ebb LD A,byte 7
ED5F LD A,R 9
46 LD B,(HL) 7
DD46dd LD B,(IX+disp) 19
FD46dd LD B,(IY+disp) 19
47 LD B,A 4
40 LD B,B 4
41 LD B,C 4
42 LD B,D 4
43 LD B,E 4
44 LD B,H 4
45 LD B,L 4
06bb LD B,byte 7
ED4Bllhh LD BC,(addr) 20
01llhh LD BC,word 10
4E LD C,(HL) 7
DD4Edd LD C,(IX+disp) 19
FD4Edd LD C,(IY+disp) 19
4F LD C,A 4
48 LD C,B 4
49 LD C,C 4
4A LD C,D 4
4B LD C,E 4
4C LD C,H 4
4D LD C,L 4
0Ebb LD C,byte 7
56 LD D,(HL) 7
DD56dd LD D,(IX+disp) 19
FD56dd LD D,(IY+disp) 19
57 LD D,A 4
50 LD D,B 4
51 LD D,C 4
52 LD D,D 4
53 LD D,E 4
54 LD D,H 4
55 LD D,L 4
16bb LD D,byte 7
ED5Bllhh LD DE,(addr) 20
11llhh LD DE,word 10
5E LD E,(HL) 7
DD5Edd LD E,(IX+disp) 19

63

OBJECT SOURCE T
 CODE STATEMENT STATES

FD5Edd LD E,(IY+disp) 19
5F LD E,A 4
58 LD E,B 4
59 LD E,C 4
5A LD E,D 4
5B LD E,E 4
5C LD E,H 4
5D LD E,L 4
1Ebb LD E,byte 7
66 LD H,(HL) 7
DD66dd LD H,(IX+disp) 19
FD66dd LD H,(IY+disp) 19
67 LD H,A 4
60 LD H,B 4
61 LD H,C 4
62 LD H,D 4
63 LD H,E 4
64 LD H,H 4
65 LD H,L 4
26bb LD H,byte 7
2Allhh LD HL,(addr) 16
21llhh LD HL,word 10
ED47 LD I,A 9
DD2Allhh LD IX,(addr) 20
DD21llhh LD IX,word 14
FD2Allhh LD IY,(addr) 20
FD21llhh LD IY,word 14
6E LD L,(HL) 7
DD6E05 LD L,(IX+disp) 19
FD6E05 LD L,(IY+disp) 19
6F LD L,A 4
68 LD L,B 4
69 LD L,C 4
6A LD L,D 4
6B LD L,E 4
6C LD L,H 4
6D LD L,L 4
2Ebb LD L,byte 7
ED4F LD R,A 9
ED7Bllhh LD SP,(addr) 20
F9 LD SP,HL 6
DDF9 LD SP,IX 10
FDF9 LD SP,IY 10
31llhh LD SP,word 10
EDA8 LDD 16
EDB8 LDDR 16/21
EDA0 LDI 16
EDB0 LDIR 16/21
ED44 NEG 8
00 NOP 4
B6 OR (HL) 7
DDB605 OR (IX+disp) 19
FD0605 OR (IY+disp) 19
B7 OR A 4
B0 OR B 4
B1 OR C 4
B2 OR D 4

64

OBJECT SOURCE T
 CODE STATEMENT STATES

B3 OR E 4
B4 OR H 4
B5 OR L 4
F6bb OR byte 7
EDBB OTDR 16/21
EDB3 OTIR 16/21
ED79 OUT (C),A 12
ED41 OUT (C),B 12
ED49 OUT (C),C 12
ED51 OUT (C),D 12
ED59 OUT (C),E 12
ED61 OUT (C),H 12
ED69 OUT (C),L 12
D320 OUT (byte),A 11
EDAB OUTD 16
EDA3 OUTI 16
F1 POP AF 10
C1 POP BC 10
D1 POP DE 10
E1 POP HL 10
DDE1 POP IX 14
FDE1 POP IY 14
F5 PUSH AF 11
C5 PUSH BC 11
D5 PUSH DE 11
E5 PUSH HL 11
DDE5 PUSH IX 15
FDE5 PUSH IY 15
CB86 RES 0,(HL) 15
DDCBdd86 RES 0,(IX+disp) 23
FDCBdd86 RES 0,(IY+disp) 23
CB87 RES 0,A 8
CB80 RES 0,B 8
CB81 RES 0,C 8
CB82 RES 0,D 8
CB83 RES 0,E 8
CB84 RES 0,H 8
CB85 RES 0,L 8
CB8E RES 1,(HL) 15
DDCBdd8E RES 1,(IX+disp) 23
FDCBdd8E RES 1,(IY+disp) 23
CB8F RES 1,A 8
CB88 RES 1,B 8
CB89 RES 1,C 8
CB8A RES 1,D 8
CB8B RES 1,E 8
CB8C RES 1,H 8
CB8D RES 1,L 8
CB96 RES 2,(HL) 15
DDCBdd96 RES 2,(IX+disp) 23
FDCBdd96 RES 2,(IY+disp) 23
CB97 RES 2,A 8
CB90 RES 2,B 8
CB91 RES 2,C 8
CB92 RES 2,D 8
CB93 RES 2,E 8
CB94 RES 2,H 8

65

OBJECT SOURCE T
 CODE STATEMENT STATES

CB95 RES 2,L 8
CB9E RES 3,(HL) 15
DDCBdd9E RES 3,(IX+disp) 23
FDCBdd9E RES 3,(IY+disp) 23
CB9F RES 3,A 8
CB98 RES 3,B 8
CB99 RES 3,C 8
CB9A RES 3,D 8
CB9B RES 3,E 8
CB9C RES 3,H 8
CB9D RES 3,L 8
CBA6 RES 4,(HL) 15
DDCBddA6 RES 4,(IX+disp) 23
FDCBddA6 RES 4,(IY+disp) 23
CBA7 RES 4,A 8
CBA0 RES 4,B 8
CBA1 RES 4,C 8
CBA2 RES 4,D 8
CBA3 RES 4,E 8
CBA4 RES 4,H 8
CBA5 RES 4,L 8
CBAE RES 5,(HL) 15
DDCBddAE RES 5,(IX+disp) 23
FDCBddAE RES 5,(IY+disp) 23
CBAF RES 5,A 8
CBA8 RES 5,B 8
CBA9 RES 5,C 8
CBAA RES 5,D 8
CBAB RES 5,E 8
CBAC RES 5,H 8
CBAD RES 5,L 8
CBB6 RES 6,(HL) 15
DDCBddB6 RES 6,(IX+disp) 23
FDCBddB6 RES 6,(IY+disp) 23
CBB7 RES 6,A 8
CBB0 RES 6,B 8
CBB1 RES 6,C 8
CBB2 RES 6,D 8
CBB3 RES 6,E 8
CBB4 RES 6,H 8
CBB5 RES 6,L 8
CBBE RES 7,(HL) 15
DDCBddBE RES 7,(IX+disp) 23
FDCBddBE RES 7,(IY+disp) 23
CBBF RES 7,A 8
CBB8 RES 7,B 8
CBB9 RES 7,C 8
CBBA RES 7,D 8
CBBB RES 7,E 8
CBBC RES 7,H 8
CBBD RES 7,L 8
C9 RET 10
D8 RET C 11/5
F8 RET M 11/5
D0 RET NC 11/5
C0 RET NZ 11/5

66

OBJECT SOURCE T
 CODE STATEMENT STATES

F0 RET P 11/5
E8 RET PE 11/5
E0 RET PO 11/5
C8 RET Z 11/5
ED4D RETI 14
ED45 RETN 14
CB16 RL (HL) 15
DDCBdd16 RL (IX+disp) 23
FDCBdd16 RL (IY+disp) 23
CB17 RL A 8
CB10 RL B 8
CB11 RL C 8
CB12 RL D 8
CB13 RL E 8
CB14 RL H 8
CB15 RL L 8
17 RLA 4
CB06 RLC (HL) 15
DDCBdd06 RLC (IX+disp) 23
FDCBdd06 RLC (IY+disp) 23
CB07 RLC A 8
CB00 RLC B 8
CB01 RLC C 8
CB02 RLC D 8
CB03 RLC E 8
CB04 RLC H 8
CB05 RLC L 8
07 RLCA 4
ED6F RLD 18
CB1E RR (HL) 15
DDCBdd1E RR (IX+disp) 23
FDCBdd1E RR (IY+disp) 23
CB1F RR A 8
CB18 RR B 8
CB19 RR C 8
CB1A RR D 8
CB1B RR E 8
CB1C RR H 8
CB1D RR L 8
1F RRA 4
CB0E RRC (HL) 15
DDCBdd0E RRC (IX+disp) 23
FDCBdd0E RRC (IY+disp) 23
CB0F RRC A 8
CB08 RRC B 8
CB09 RRC C 8
CB0A RRC D 8
CB0B RRC E 8
CB0C RRC H 8
CB0D RRC L 8
0F RRCA 4
ED67 RRD 18
C7 RST #00 11
CF RST #08 11
D7 RST #10 11
DF RST #18 11
E7 RST #20 11

67

OBJECT SOURCE T
 CODE STATEMENT STATES

EF RST #28 11
F7 RST #30 11
FF RST #38 11
9E SBC A,(HL) 7

SBC (HL)
DD9Edd SBC A,(IX+disp) 19

SBC (IX+disp)
FD9Edd SBC A,(IY+disp) 19

SBC (IY+disp)
9F SBC A,A 4

SBC A
98 SBC A,B 4

SBC B
99 SBC A,C 4

SBC C
9A SBC A,D 4

SBC D
9B SBC A,E 4

SBC E
9C SBC A,H 4

SBC H
9D SBC A,L 4

SBC L
DEbb SBC A,byte 7

SBC byte
ED42 SBC HL,BC 15
ED52 SBC HL,DE 15
ED62 SBC HL,HL 15
ED72 SBC HL,SP 15
37 SCF 4
CBC6 SET 0,(HL) 15
DDCBddC6 SET 0,(IX+disp) 23
FDCBddC6 SET 0,(IY+disp) 23
CBC7 SET 0,A 8
CBC0 SET 0,B 8
CBC1 SET 0,C 8
CBC2 SET 0,D 8
CBC3 SET 0,E 8
CBC4 SET 0,H 8
CBC5 SET 0,L 8
CBCE SET 1,(HL) 15
DDCBddCE SET 1,(IX+disp) 23
FDCBddCE SET 1,(IY+disp) 23
CBCF SET 1,A 8
CBC8 SET 1,B 8
CBC9 SET 1,C 8
CBCA SET 1,D 8
CBCB SET 1,E 8
CBCC SET 1,H 8
CBCD SET 1,L 8
CBD6 SET 2,(HL) 15
DDCBddD6 SET 2,(IX+disp) 23
FDCBddD6 SET 2,(IY+disp) 23
CBD7 SET 2,A 8
CBD0 SET 2,B 8
CBD1 SET 2,C 8
CBD2 SET 2,D 8

68

OBJECT SOURCE T
 CODE STATEMENT STATES

CBD3 SET 2,E 8
CBD4 SET 2,H 8
CBD5 SET 2,L 8
CBDE SET 3,(HL) 15
DDCBddDE SET 3,(IX+disp) 23
FDCBddDE SET 3,(IY+disp) 23
CBDF SET 3,A 8
CBD8 SET 3,B 8
CBD9 SET 3,C 8
CBdA SET 3,D 8
CBDB SET 3,E 8
CBDC SET 3,H 8
CBDD SET 3,L 8
CBE6 SET 4,(HL) 15
DDCBddE6 SET 4,(IX+disp) 23
FDCBddE6 SET 4,(IY+disp) 23
CBE7 SET 4,A 8
CBE0 SET 4,B 8
CBE1 SET 4,C 8
CBE2 SET 4,D 8
CBE3 SET 4,E 8
CBE4 SET 4,H 8
CBE5 SET 4,L 8
CBEE SET 5,(HL) 15
DDCBddEE SET 5,(IX+disp) 23
FDCBddEE SET 5,(IY+disp) 23
CBEF SET 5,A 8
CBE8 SET 5,B 8
CBE9 SET 5,C 8
CBEA SET 5,D 8
CBEB SET 5,E 8
CBEC SET 5,H 8
CBED SET 5,L 8
CBF6 SET 6,(HL) 15
DDCBddF6 SET 6,(IX+disp) 23
FDCBddF6 SET 6,(IY+disp) 23
CBF7 SET 6,A 8
CBF0 SET 6,B 8
CBF1 SET 6,C 8
CBF2 SET 6,D 8
CBF3 SET 6,E 8
CBF4 SET 6,H 8
CBF5 SET 6,L 8
CBFE SET 7,(HL) 15
DDCBddFE SET 7,(IX+disp) 23
FDCBddFE SET 7,(IY+disp) 23
CBFF SET 7,A 8
CBF8 SET 7,B 8
CBF9 SET 7,C 8
CBFA SET 7,D 8
CBFB SET 7,E 8
CBFC SET 7,H 8
CBFD SET 7,L 8
CB26 SLA (HL) 15
DDCBdd26 SLA (IX+disp) 23
FDCBdd26 SLA (IY+disp) 23
CB27 SLA A 8

69

OBJECT SOURCE T
 CODE STATEMENT STATES

CB20 SLA B 8
CB21 SLA C 8
CB22 SLA D 8
CB23 SLA E 8
CB24 SLA H 8
CB25 SLA L 8
CB2E SRA (HL) 15
DDCBdd2E SRA (IX+disp) 23
FDCBdd2E SRA (IY+disp) 23
CB2F SRA A 8
CB28 SRA B 8
CB29 SRA C 8
CB2A SRA D 8
CB2B SRA E 8
CB2C SRA H 8
CB2D SRA L 8
CB3E SRL (HL) 15
DDCBdd3E SRL (IX+disp) 23
FDCBdd3E SRL (IY+disp) 23
CB3F SRL A 8
CB38 SRL B 8
CB39 SRL C 8
CB3A SRL D 8
CB3B SRL E 8
CB3C SRL H 8
CB3D SRL L 8
96 SUB (HL) 7
DD96dd SUB (IX+disp) 19
FD96dd SUB (IY+disp) 19
97 SUB A 4
90 SUB B 4
91 SUB C 4
92 SUB D 4
93 SUB E 4
94 SUB H 4
95 SUB L 4
D6bb SUB byte 7
AE SRA (HL) 7
DDAEdd SRA (IX+disp) 19
FDAEdd SRA (IY+disp) 19
AF SRA A 4
A8 SRA B 4
A9 SRA C 4
AA SRA D 4
AB SRA E 4
AC SRA H 4
AD SRA L 4
EEbb XOR byte 7

70

APPENDIX B

IMMEDIATE ERROR MESSAGES AND THEIR MEANINGS

NOTE The PRINT immediate command can give the following error messages after
evaluating its expression operand. These messages are described in appendix C.

** unknown name **
** undefined name **
** division by 0 **
** overflow **

** " expected **
A string has not been properly terminated with a double quote.

** bad code range **
The start address given to the CODE command is greater than the end.

** bad line range **
A line range given to an immediate command has it start line number greater than the end.

** can't wipe **
An attempt has been made to wipe the current source file (Spectrum 128k only).

** comment or end of line expected **
There is some text following a legal statement or immediate command which is not necessary.

** digit expected **
The expression parser is expecting a number in a particular base and the first character it has
found is not a digit in this base.

** expression expected **
You have not given an expression operand to an immediate command which requires one.

** expression too complex **
An expression in the current sentence contains too great a depth of parenthesis.

** file too long **
The file you are trying to load is too big to fit into the currently alloted editor space. Use the
SET SPACE immediate command to give yourself more room.

** illegal file type **
You have attempted to LOAD/IMPORT a file which was not produced by Genius SAVE/EXPORT
command.

** illegal first operand **
** illegal operand **
** illegal second operand **
One of the operands given to an opcode mnemonic or assembler directive is not allowed in this
position.

** line range overlap **
The line range given to the COPY or MOVE immediate commands overlap. This is not allowed.

71

** line range too long **
There is not enough space to COPY the line range specified to a new position. Use the SET SPACE
command to give yourself more room.

** line too long **
The tokenised form of the whole line-numbered block you have just tried to enter is too big.
You should split the block into smaller ones.

** mismatched []'s **
Parentheses in the expression are not paired correctly

** misplaced (or) **
You have not correctly enclosed a Z80 operand in parentheses e.g. (HL) or there is a
mismatch in parentheses enclosing a (has extension) function's argument list.

** misplaced operand **
You have used a reserved name in an expression e.g. one of the register names.

** name too long **
Names may be up to 240 characters long.

** no buffer space **
The LOAD ASCII immediate command uses a 2k input buffer in symbol table space. This message is
issued if insufficient space is available. You could use SET SPACE to give the editor less room
(increasing the symbol table space), or CLEAR the symbol table.

** no line number **
The syntax checker cannot find a line number for the statement in the current sentence to be
entered under.

** number expected **
You have not given a (decimal) number as operand to an immediate command which requires one.

** number too large **
A number in the current sentence is too big. This can mean greater than 65534 for line numbers
or 65535 for other numbers.

** opcode expected **
This error message will be issued whenever the syntax checker cannot find an opcode for an
immediate command name to match the start of the input sequence.

** operand expected **
The expression parser expects an operand (number, symbol or parenthesised expression) after an
operator. This error can be given if you have typed a symbol which cannot belong to an operand by
mistake.

** operand too many **
You have given too many separate operand to an opcode or assembler directive.

** operator expected **
The expression parser expects an operator (see appendix D) at the position indicated.

** separator expected **
The syntax checker expects a "," or a ";" at the position indicated.

72

** space expected **
The syntax checker expects a space after an opcode mnemonic.

** space too large **
The amount of space requested in a SET SPACE command is too big (even if the symbol table was
to be deleted).

** space too low **
You have requested less than 10241k of space in a SET SPACE command. This is not allowed.

APPENDIX C
ASSEMBLER ERROR MESSAGES AND THEIR MEANINGS

a) WARNINGS

** division by 0 **
An expression in the statement contains an attempt to divide by zero.

** ENDM with no MACRO **
An ENDM pseudo-op has been found in the source without a preceding MACRO statement.
It will be ignored.

** label expected **
The instruction in the statement expects a label to precede it. Such instructions are DL (or DEFL),
EQU, CARGO. The instruction will be ignored : it has nothing to work on.

(MACRO also requires a label but omitting it generates an error.)

** misplaced CARGO **
A CARGO pseudo-op has been used while a local table is being referenced i.e. within a MACRO
expansion or #FNC definition. Only global names may be declared as CARGO.

** number out of range **
The expression given as an operand of a RST instruction does not evaluate to one of
0,#8,#10,#18,#20,#28,#30 or #38.

** number out of range 0,2 **
The expression given as operand to an IM instruction evaluates to something other than 0, 1 or 2.

** number out of range 0,7 **
The expression given as the bit number in a BIT, SET or RES instruction evaluates to something other
than 0, 1, 2, 3, 4, 5, 6 or 7.

** number out of range -128,127 **
The index expression in an instruction involving the IX ot IY index registers is out of range.

Or a relative jump has been specified to a location which is out of the range of the instruction.
(JR, DJNZ or a conditional JR).

** number out of range -128,255 **
An expression in the instruction which is required to be a byte-sized piece os immediate data has
evaluated to a greater than byte-size value.

The range here is -128 to 255 to allow you to write either

73

LD A,255
or
LD A,-1

as you wish.

** overflow **
An overflow has occurred during evaluation of an expression in the statement.

** PUT with tape/disc output **
A PUT directive has been used while object code is being written to backing store.
The PUT will be ignored.

This message will only be issued on pass 1.

** undefined name **
An expression in the statement contains a reference to an undefined name. For example writing:

name2:equ name1+#fe

Where "name1" is unknown will cause "name2" to be known but undefined. Thus a use of "name2"
will give the "undefined name" error.

This warning will only be given on pass 2 in case of dependencies on as yet undefined names.

** unknown name **
An expression in the statement contains a reference to a name which you have not attempted to
define. The name in question will be inserted in the symbol table and marked as "missing" so that you
can use the immediate command "MISSING" to find all such names.

This warning will only be given on pass 2, since on pass 1 the assembler will not know if the name
in question is to be defined further down the text.

b) ERRORS
NOTE The following four errors can also be given at the end of pass 1 when the

assembler detects that, although the object code started off in a legal position it
has since grown into protected memory. Assembly will be terminated. However
since the object is not written into memory on pass 1 no harm will have been
done.

** code in name table **
You have attempted to PUT the object code into the assembler's symbol table.

** code in program **
You have attempted to PUT the object code into Genius.

** code too high **
You have attempted to PUT the object code above the assembler's high limit i.e. into ROM
variable space or the Amstrad jumpblock.

** code too low **
You have attempted to PUT the object code below the assembler's low limit (default value
is #40 on the AMSTRAD and RAMTOP on the spectrum).

** label expected **
The pseudo-op MACRO requires a label which gives the macro's name.
This error will be given on pass 1.

74

** MACRO name expected **
You have attempted to use a non-existent macro (or have given the wrong name) in a
"\macro name>" construction.

** misplaced MACRO name **
You have used a macro parameter construction (\<name>) outside a macro expansion.

** multiple name definition **
The name given in the label field of the statement has already been defined. (Note that local
names , those within macros and functions, may be re-used in different local situations).

This error will be given on pass 1.

** undefined expression **
Some pseudo-ops and directives need their operand expression to be well defined even on pass 1.
They are : ORG, COND, PUT, DS, *WHILE, *UNTIL, #DS. This error is fatal in all cases
except DS and #DS.

This error will be given in pass 1.

c) FATAL ERRORS

** bad nesting **
The assembler has detected a mismatch in one of the following pairs of pseudo-ops/directives.

COND-ENDC COND- ELSE ELSE-ENDC
 MACRO- ENDM

 *OPENOUT- *CLOSEOUT
 *WHILE- *ENDW
*REPEAT- *UNTIL

#FNC - #BEGIN #BEGIN - #END

This error can also occur at the end of pass 1 when the assembler finds that its stack is not empty as
it should be.

** MACRO nesting **
You have attempted to define a macro while a local table is being referenced i.e. within a MACRO
expansion or #FNC definition.

** nesting too deep **
There is no space left on the assembler's stack. This is used by the pseudo-op COND and the
directives *OPENOUT, *WHILE, *REPEAT, #FNC, #IF, #WHILE, #REPEAT.

** no buffer space **
There is no space left for the assembler to open an input/output buffer. Such buffers are required
by *INCLUDE, *OPENOUT.

** no table space **
The assembler has run out of room for the name table. This error can also be generated by uses
of MACRO, *WHILE, *TITLE, #IF, #WHILE which use table space for storage.

** tape/disc WHILE too long **
A *WHILE loop being assembled from tape/disc (or microdrive) does not fit into one-line
numbered line.

** too few parameters **
You have given a MACRO use construction (\<macro name>) too few parameters. (i.e. A
parameter referenced during macro expansion has been found at a position in the macro's

75

dummy parameter list which would mean its replacement is "off the end" of the actual parameter list.

** unavailable command **
You have attempted to assemble a source containing # extension references without the hash
command extensions loaded.

APPENDIX D
ARITHMETIC EXPRESSIONS AND OPERATOR PRECEDENCE

a) THE DIFFERENCE BETWEEN SIGNED AND UNSIGNED ARITHMETIC
All arithmetic operations are carried out on 16 bit integers. However, it is often possible to
specify whether you want calculations to be done with signed or unsigned arithmetic, e.g.
"PRINT" uses signed, "UPRINT" uses unsigned. Signed arithmetic uses the twos complement
method for sign representation. That is, if n is a positive number -n is represented internally
by 65536-n. So -1, for instance, becomes 65535=#FFFF.

The difference between the two is really in the error checking performed during the operations.
If we add two numbers together unsigned then overflow occurs when we go over 65535=#FFFF,
on the other hand using signed arithmetic overflow occurs when we go over 32767=#7FFF, since
we have then added two positive numbers and we got a negative result!

b) NOTE ON EXPRESSION EVALUATION
Genius' expression evaluator detects uses of unknown or undefined names during the calculation of
a result. Thus it is possible even on pass 1 to detect overflow and out-of-range errors correctly in
some cases (those in which no names are used or where all names used are well defined). The
assembler will report these errors as early as possible (pass 1) if it is sure that the expression
already evaluates to its final result.

The evaluator cannot, however, tell the difference between large positive values and small
negative ones. So the assembler will accept an instruction as:

LD A,#FFFF

The actual code assembled will be (the sensible):

LD A,#FF

Writing

LD A,-1

is therefore acceptable.

c) OPERATOR PRECEDENCE
The following table gives the relative "binding power" of the arithmetic operators which may be used
in Genius expressions (including those operators only available to compiler expressions).

The table is in order of decreasing precedence, all operators on the same line having equal
precedence.

OPERATOR EVALUATION
[...] (...)

(unaries) & + + -- * ! ↑ - right to left
(binaries) * / % left to right

+ - left to right
<< >> @< @> left to right
> < >= <= left to right
?= != left to right
& | ↑ left to right
&& || left to right
= right to left

76

THE MEANING OF OPERATOR PRECEDENCE

When you work out the value of, for instance:

1 +2 * 3

(and you get the result 7) you have been applying the rules of operator precedence. The
multiplication must be done before the addition because the "*" operator has higher
precedence than the "+". If you had intended to do the addition first you would have had to write:

[1 + 2] * 3

From the table above you can see that parentheses "[" and "]" have the highest binding power of all.
So using them in this way causes the expression inside them to be evaluated before anything else.

This idea can be generalised to all the operators allowed in Genius' expressions.

You will occasionally need to be careful in your use of some of these operators. Look at the following
example from a hash extension expression.

#IF c = square(x) ?= 100

This would be evaluated as:

c = [square(x) ?= 100]

Which is really setting "c" to a TRUE or FALSE flag. What may have been intended is:

[c = square(x)] ?= 100

Which first assigns "square(x)" to "c" and then tests to see if this was 100.
If in doubt use parenthesis "[" and "]"

d) OPERATOR DESCRIPTIONS

Unary operators:
- Unary minus or negation. e.g. UPRINT -1 gives #FFFF, the twos complement

representation of minus one, as result.
! Logical complement or NOT. "!" will turn a true flag into a false flag and vice

versa. In general any non-zero value will be treated as "true" and only zero as
"false".

↑ Bitwise (ones) complement. e.g. !%101010 gives %010101 as result.
* This operator should be read as "contents of". It has many uses in compiled

expressions (see 5. "The Hash Extensions") but in assembler expressions it
acts as the "DEEK" function which may be found in many versions of BASIC.
i.e. *<value> returns the value of the word in memory whose start address
is <value>.

& This operator should be read as "address of". It is only available to compiled
expressions and is used to find the address of a variable's storage space.
(See 5. "The Hash Extensions").

++ This operator is only available to compiled expressions. It increments its
operand and returns the new value of this operand. i.e. the value after
incrementation. (See 5. "The Hash Extensions").

-- This operator is only available to compiled expressions. It decrements its
operand and returns the new value of this operand. i.e. the value after
decrementation. (See 5. "The Hash Extensions").

Binary operators:
Addition and Multiplication

+ Addition
- Subtraction
* Multiplication
/ Division

77

% Modulus i.e. a%b returns the value of a modulo b. This will be always a positive
integer, even when signed arithmetic is used. For example [-10] % 3 will give 2
as result.

Shifts and Rotates
<< Shift left. i.e. x << n shifts x left by n bits.
>> Shift right.
@< Rotate left. i.e. x @< n rotates x left by n bits.
@> Rotate right.

Relational Operators
< Less than. a < b returns a true flag (1) if a is less than b, and a false flag (0)

otherwise.
> Greater than. a > b returns a true flag (1) if a is greater than b, and a false flag

(0) otherwise.
<= Less than or equal.
>= Grater than or equal.

Logical Operators
Note that in general "true" or "true flag" may be taken to mean any non-zero value. While "false" or
"false flag" means zero.

&& Logical AND. a && b returns a value according the following truth table:

a b a && b

true true true
false true false
true false false
false false false

|| Logical OR. a || b returns a value according the following truth table:

a b a || b

true true true
false true true
true false true
false false false

Bitwise Logical Operators

& Bitwise AND. Operates like the logical AND (&&) on corresponding bits of its
operands where a non-zero bit is taken to be "true" and a zero bit "false". Note
that this is not the same as logical AND, for instance:

2 && 1 gives 1 (= true)

while

2 & 1 gives 0 (= false)

since in the second case the two non-zero bits are not in corresponding
positions.

| Bitwise OR. Operates like the logical OR (||) on corresponding bits of its
operands.

78

↑ Bitwise Exclusive OR. i.e. This operator acts according to the following
truth table on corresponding bits of its operands where a non-zero bit is
taken to be "true" and a zero bit "false".

a b a ↑ b

true true false
false true true
true false true
false false false

Suffix Operators

++ This operator is available only to compiled expressions. It increments its
operand but returns the original value of this operand i.e. the value before
incrementation. (See 5. "The Hash Extensions").

-- This operator is available only to compiled expressions. It decrements its
operand but returns the original value of this operand i.e. the value before
decrementation. (See 5. "The Hash Extensions").

e) PARENTHESIS, ARRAYS and FUNCTIONS

In both assembler and compiler (hash extension) expressions the square brackets are used to
denote parenthesis. These are also used to introduce array indices in compiler expressions.
Round brackets are used only for function references in compiler expressions.

A function reference in a compiler expression should be of the following form:

<function name>()

or

<function name>(<parameter list>)

Where <parameter list> means a list of expressions separated by commas.
(See 5. "The Hash Extensions").

APPENDIX E

The Memory Map
The Genius assembler memory map is as shown below. The actual addresses involved will depend on
which optional portions of the program you have loaded, and (on the AMSTRAD) what, if any,
expansion ROMs are fitted.

High Memory _________________

Tool kit commands, if loaded
Main Assembler Programmed
Variable Storage Space
Hash extensions, if loaded
2K Tape/Disc Buffer
Screen Buffer and Workspace
Source Text File
Symbol table growing downwards in memory

Low Memory __________________

79

APPENDIX F - ASSEMBLER COMMAND SUMMARY

COMMAND PARAMETER ACTION

ASSEM Clear the assembler's symbol table and assemble
the current source text.

ASSEMC Preserve the current symbol table and assemble
the current source text.

ASSEML Selectively assemble a subroutine library.
BASE <2,4,8,16> Set the default base used by PRINT and UPRINT.
CAT Display tape/disc/microdrive directory.
CLEAR Clear the current symbol table.
CLS Clear the visible screen and the editor's copy in
memory.
CODE "<string>", Save the block of memory between expression1 and

<expression1>, expression2 as a binary file named
<expression2> <string>

COPY <line range 1>, Replace line range 2 with line range 1, retaining
<line range 2> line range 1.

DELETE Delete the whole source file.
DELETE <line range> Delete the specified line range from the source file.
DISC Direct the firmware to read from, write to, disc.

(Amstrad disc only).
DISC.IN Direct the firmware to take input from disc.

(Amstrad disc only).
DISC.OUT Direct the firmware to write to disc (Amstrad disc

only).
DRIVEA Set the current drive to "A". (Amstrad disc only).
DRIVEB Set the current drive to "B". (Amstrad disc only).
ERA "<string>" Erase file/files named <string> (Disc/microdrive

only).
EXECUTE <expression> Call the code at the address that the expression

evaluates.
EXPORT "<string>" Save the current symbol table to

tape/disc/microdrive.
EXIT RETurn to whatever CALLed the editor/assembler.
FIND "<string>", String search.

<line range>
FORM Issue a form feed to the printer.
IMPORT "<string>" Merge a previously EXPORTed table with the current

table.
LENGTH Sets the length, in lines, of the printer page to

65536.

LENGTH <decimal Set the length, in lines, of the printer page to
 integer> the selected value.

LIST List the whole source file to the screen.
LIST <line range> List the specified line range of the source file to the

screen.

80

LMISSING List to the printer, all those symbols which the
program has referenced but not defined in the
last piece of source code assembled, with
a field width of 16.

LMISSING <decimal List to the printer, all those symbols which the
 integer> program has referenced but not defined in the

last piece of source code assembled, with a field
width defined by the decimal integer.

LOAD "<string>" Load the file named <string>.
LOAD "<string>", Load the file named <string> and replace the text

<line range> in line range with the content of the file.
LOADASCII "<string>" Load a pure ASCII file named <string> and produce

a tokenised file with 10 statements per line number.
LOADASCII "<string>", Load a source file named <string> of the type

<options> indicated by <options> and produce a tokenised file
with 10 statements per line number.

LOADASCII "<string>", Load a source file named <string> of the type
<options>, indicated by <options> and produce a tokenised file,
<decimal with statements per line defined by decimal integer.
 integer>

LLIST List the whole source file to the printer.
LLIST <line range> List the specified line range of the source file

to the printer.
LTABLE List to the printer, the current symbol table, in the

order of its ASCII sort with a field width of 16.
LTABLE <decimal List to the printer, the current symbol table, in the

 integer> order of its ASCII sort with a field width given
by the decimal integer.

LTABLEN List to the printer, the current symbol table, in
numerical order, with a field width of 16.

LTABLEN <decimal List to the printer, the current symbol table, in
 integer> numerical order, with a field width given

by the decimal integer.
LUNUSED List to the printer, all those symbols defined but not

referenced, with a field width of 16.
LUNUSED <decimal List to the printer, all those symbols defined but not

 integer> referenced, with a field width defined by the
decimal integer.

MARGIN Set the left hand margin to zero.
MARGIN <decimal Set the left hand margin to the

 integer> selected value.
MDRV Direct the assembler to read from and write to,

microdrive. Default drive is drive 1 (Spectrum only).
MDRV <microdrive Direct the assembler to read from and write to

 number> microdrive. Default drive is specified by <micro-
drive number> (Spectrum only).

MDRV.IN Direct the assembler to take input from microdrive
(Spectrum only).

81

MDRV.OUT Direct the assembler to send output to microdrive
(Spectrum only).

MISSING List to the screen, all those symbols, which the
program has referenced but not defined in the last
piece of source code assembled, with a field width
of 16.

MISSING <decimal List to the screen, all those symbols, which the
 integer> program has referenced but not defined in the last

piece of source code assembled, with a field width
given by the decimal integer.

MODE <0, 1 or 2> Change the screen mode (Amstrad only).
MOVE <line range 1, Replace line range 2 with line range

 line range 2> 1, retaining line range 1.
PRINT <expression> Print the signed value of the expression in the

current base.
PRINT <expression, Print the signed value of the expression in the

 base> selected base.
REDUCE Remove all symbols which were not specified as

CARGO during the last disassembly, from the symbol
table.

REN "<string1>", Rename a file named <string2>, <string1>
"<string2>" (Amstrad disc only).

RENUM <new start>, Renumber source text paragraphs.
<step>,
<old start>

REPLACE "<string1>", Search and replace.
"<string1>",
"<string2>",
<line range>

SAVE "<string>" Save the source text file to a file named <string>.
SAVE "<string>", Save the given line range of source to a file

<line range> named <string>.
SETSPACE <decimal Adjust editing space.

 integer>
STATS List memory map information.
TABLE List to the screen, the current symbol table, in

the order of its ASCII sort, with a field width of 16.
TABLE <decimal List to the screen, the current symbol table, in

 integer> the order of its ASCII sort, with a field width given
by the decimal integer.

TABLE List to the screen, the current symbol table, in
numerical order, with a field width of 16.

TABLE <decimal List to the screen, the current symbol table, in
 integer> numerical order, with a field width given

by the decimal integer.
TAPE Direct the firmware to read from, and write to, tape.
TAPE.IN Direct the firmware to take input from tape.
TAPE.OUT Direct the firmware to write to tape.

82

UNUSED List to the screen, all those symbols defined but not
referenced, with a field width of 16.

UNUSED <decimal List to the screen, all those symbols defined but not
 integer> referenced, with a field width given by the decimal

integer.
UPRINT <expression> Print the unsigned value of the expression in the

current base.
UPRINT <expression, Print the unsigned value of the expression in the

 base> selected base.
VERIFY "<string>" Attempt to verify the source file named <string>

against the source file in memory.
VERIFY "<string>", Attempt to verify the line range of the source file

<line range> named <string> against the line range of the
source file in memory.

WIDTH Set the width of the printer page to 65536.
WIDTH <decimal Set the width of the printer page to the selected

 integer> value.

83

APPENDIX G - SPECTRUM 128K ASSEMBLER. DIFFERENCES AND ADDITIONS

INTRODUCTION
The 128k version of the assembler has all the features of the standard version but because of the
RAM paging facility, resides in fixed memory in page 3. The extra memory is utilised in such a way
that a number of files can be co-resident and large files can be assembled in RAM. This makes
assembly very fast indeed and when, in addition, the monitor is co-resident, the program
development cycle is greatly enhanced.

TAPE MAP
On Tape 1 of the Genius package you will find the following files:

Side A: GEN128 A BASIC loader.
ASM Assembler object file.

Side B: TRANS Transfer loader (Spectrum only).
TRANSBIN Transfer utility (Spectrum only).
SIEVE.ASM Sieve of Eratosthenes example program in assembly language.
SIEVE.PHX Sieve of Eratosthenes example program in PHOENIX.
ELLIPSE.ASM Ellipse drawing program in assembly language.
ELLIPSE.PHX Ellipse drawing program in PHOENIX.
MPAFNCS.PHX Multiple precision arithmetic routines in PHOENIX.

1. OPERATING INSTRUCTIONS

Tape: To load the assembler from tape, use the up and down arrow keys to
select the "TAPE LOADER" option and press ENTER. The assembler will
load and auto-run.

Microdrive: If you have produced, and wish to load, a microdrive version of the assembler
you should use the up and down arrow keys to select the "128K BASIC" option
and press ENTER. Having entered BASIC, the assembler can be loaded using:

LOAD *"m";1;"GEN128"

NOTE: The hash extensions and tools will always be loaded and initialised in the Spectrum
128k version.

2. DIFFERENCES

SET SPACE
The SET SPACE command is no longer required. The screen buffer will be fixed and source will use
pages 0, 1, 6, 7 (unless protected, see Section 3 below).

PUT <expression>[,<page>]
This pseudo-op functions in the same way as described in section 4.3.5 of the main text, but has an
additional optional parameter. If <page> is given, then the specified RAM page will be paged into
#C000-#FFFF before any code is generated. If the <page> is not specified then a default value of 0
is used.

NOTE: Object code may only be written into protected RAM pages (or free memory below #C000).
On entering the assembler, RAM page 0 is protected and can be used for the output of
object code. If an attempt is made to PUT object code into memory containing the
assembler or its workspace (source files etc.) then an error will be issued.

The lowest byte of memory that is free for object code storage is given by the low address displayed
by the STATS command.

84

STATS

This immediate command is similar to that described in Section 2.9 of the main text, but has been
extended to give further RAM paging information. The following will be displayed:

**low <addr>

<1st program name> <length>
<2nd program name> <length>

.

.

.
<Last program name> <length>

Page 0 <memory left> or '_' if protected
Page 1 <memory left> or '_' if protected
Page 6 <memory left> or '_' if protected
Page 7 <memory left> or '_' if protected

EXECUTE <expression>[,<page>]

This immediate command is similar to that described in Section 2.9 of the main text, but an additional
optional parameter is included. If <page> is specified then the specified RAM page will be paged into
#C000-#FFFF before the CALL is executed. If <page> is not specified then a default value of 0 is
used.

CODE

This immediate command is similar to that described in Section 2.6 of the main text, but an additional
optional parameter is included. If <page> is specified then the specified RAM page will be paged into
#C000-#FFFF before any code is saved. If <page> is not specified then a default value of 0 is used.

3. ADDITIONAL COMMANDS

The assembler can keep more than one source file in memory at any one time. Each file (called a
"program") will have a name associated with it. The editor will work on the current file, which on
entering the assembler will be called "NONAME". In effect the extra memory is used as a RAM disc to
speed up assembly and accommodate larger files. The following new commands are provided:

PROGRAM "<name>"

Make the program called <name> the current file (all edits will now be carried out on this file). If the
assembler cannot find this program in memory a new empty file is created. This new file is then the
current file.

NOTE: All editor commands including "DELETE", "COPY" and "FIND" will only apply to the
current file.

WIPE "<name>"

Deletes the specified program from memory. If an attempt is made to WIPE the current program (the
one being edited) then a "can't wipe" error message will be displayed.

PROTECT <page>

This will prevent the assembler from using the specified RAM page for its source files. <Page> must
be one of the integers 0, 1, 6 or 7. On entering the assembler page 0 will be protected, i.e. the
assembler will use pages 1,6 and 7 for its source code.

USE <page>

Frees a previously protected RAM page for use by assembler source files. <Pages> must be one of the
integers 0, 1, 6 or 7.

85

4. ASSEMBLY

The only change to the assembler is in the use of the *include directive. The syntax for using the
directive is the same (see 4.2.3 of the main manual) but its effect may be different.

When the assembler finds a *include "<filename>" on pass 1 it first searches for a program (source
file in RAM called <filename>. If it finds a program with this name then it includes this file in the
object code. If no program has the name specified then the assembler will search through the files in
the current input device (tape or microdrive, see "Tape, Disc and Microdrive Commands"). If a file
with the correct name is found the assembler will load the file into RAM if enough space is available
and include the file from RAM on passes 1 and 2. If there is insufficient room the file will be included
from tape or microdrive on both passes in the usual way.

NOTE: Files which are loaded into RAM from a *include directive will remain in RAM after assembly
has finished, as programs with the same as the file loaded from tape or microdrive. Use the
STATS immediate command to see which files have been loaded and the WIPE command to
remove any you do not want.

86

Z80 MONITOR AND ANALYSER
by Andrew Foord, Kevin Hambleton and Chris Smith

INTRODUCTION
The Monitor/Analyser is an essential tool in the debugging of machine code programs. It
has all the facilities of a normal monitor plus many new features. The standard commands
allow memory to be examined searched, edited, moved or filled; programs can be run at
normal speed; breakpoints set and machine code disassembled to the screen or printer.
Additional features include slow running of programs, single stepping, disassembly to a
file (so that it can be loaded into the Assembler) and the Analyser. The Analyser allows ten
highly selective ''stop conditions'' to be defined. While the users machine code program is
running under the control of the monitor, the Analyser will test each "stop condition". The
monitor will stop executing the users program if any of the "stop conditions" is fulfilled.
You may, for example, want to know when your program writes to a certain area of
memory or when a register takes on a particular value. The occurrence of conditions such as
these can be detected by defining the appropriate "stop conditions". The user is at liberty
to define the ten stop conditions as he wishes and the analyser provides a variety of
functions which may be invoked in the definitions.

This manual has been written primarily for the 48k Spectrum and 64k Amstrad variants but
most of the manual is also applicable to the Spectrum 128k. However, the differences in
command syntax and functions that exist between the 48k and 128k Spectrums versions
have been condensed into Appendix C. Consequently, the 128k Spectrum user is advised
to consult Appendix C at all times when using this manual.

At first glance it may appear that the monitor was designed to cater for a minority of highly
advanced users. In fact all of the features are aimed at simplifying and speeding up the task
of program development. We believe that it's "friendliness" makes this monitor
particularly suitable for newcomers to machine code programming.

TAPE MAP

On Tape 2 you will find the following files:

AMSTRAD

Side A "MON" BASIC - loader and relocator for conversion
"LOWVER" CODE - low version of monitor
"RELOCOBJ" CODE - relocator code and table for low version

Side B "MON" BASIC - loader and relocator for high version
"HIGHVER" CODE - high version of monitor
"RELOCOBJ" CODE - relocation code and table for high version

SPECTRUM

Side A "MON" BASIC - loader
"LOWVER" CODE - low version of monitor
"RELOCOBJ" CODE - relocation code and table for low version
"RELOCATE" BASIC - relocator

Side B "MON" BASIC - loader
"HIGHVER" CODE - high version of monitor
"RELOCOBJ" CODE - relocation code and table for high version
"RELOCATE" BASIC - relocator

1. OPERATING INSTRUCTIONS

Debugging a machine code program requires that the monitor/analyser program must
reside in memory with the program being debugged in such a way that they do not overlap
or interfere with each other. in order that the user may locate his program anywhere in
memory there must be flexibility in the monitor/analyser execution address. High and low
versions of the monitor/analyser have been provided but if neither of there is appropriate

87

to your needs you may wish to create a suitable version using the relocator program
provided. The analyser functions are an optional extra to those provided in the monitor so
the user may decide to maximise the available program space by deciding to do without
the analyser section of the program. The low version of the monitor/analyser is organised
with the analyser code on the high end whereas the high version has the analyser section
on the low end. The user can therefore choose a monitor only version of the program which
fits into either the lowest or highest part of memory.

SPECTRUM the low version occupies memory from 25000 to 40589 inclusive
the high version occupies memory from 49946 to 65535 inclusive

AMSTRAD the low version occupies memory from 5924 to 1 9947 inclusive
the high version occupies memory from 28595 to 42618 inclusive

If you wish to create a relocated version you may use either side A or side B depending
upon which configuration is required.

If you wish to use the low version of the monitor/analyser insert and rewind side A of the
monitor tape (tape 2).

If you wish to use the high version of the monitor/analyser insert and rewind side B of
tape 2.

SPECTRUM type LOAD "" followed by ENTER
AMSTRAD type RUN "MON" followed by ENTER

The prompt will appear "Relocate? (Y/N)"

Type "Y" or "y" followed by ENTER if you wish to create a relocated version, type "N" or
"n" followed by ENTER to load the ordinary version (first time users should type N). When
the ordinary version has loaded another prompt will appear "Using analyser (Y/N) ?". Type
"Y" or "y" followed by ENTER if you wish to use the monitor and analyser. Type "N" or "n"
followed by ENTER and the monitor alone will execute. The monitor screen will appear.

NOTE: Spectrum users will need to respond to the prompt "Relocate ? (Y/N)" fairly
quickly or stop and start the tape manually, otherwise the tape may run too far
and prevent loading.

1.1 Relocating

We suggest first time users skip this section and move onto "2. SCREEN LAYOUT".

If you are creating a relocated version the ordinary version of the monitor/analyser will be
loaded followed by the data required to perform the relocation. A prompt will appear
"Relocate at ?". You must now enter the address at which you wish to create the relocated
version of the monitor/analyser. The new version will be created. For example if you wish
to create a version of the monitor/analyser occupying memory from 30000 simply type
30000 followed by ENTER, after the prompt.

NOTE: The monitor will be physically moved in memory and so any other programs
currently in memory may be corrupted. You will then be given the option to
include the analyser before entering the monitor itself.

Note (Spectrum Users)
If and when the Monitor is exited and control is returned to BASIC, then BASIC will use
memory from the CLEAR address downwards for its machine stack. Therefore BASIC could
overwrite part of the user program and if this is to be avoided a further clear (to an address
below the user program) may be necessary.

Note (Amstrad Users)
If and when the monitor is exited and control returns to BASIC, then BASIC will use
memory from the MEMORY address downwards. Therefore BASIC could overwrite part of
the user program and if this is to be avoided a further MEMORY (to an address below the
user program) may be necessary.

88

1.2 Low and High monitor/analysers

Although relocated versions of the monitor/analyser run automatically, if you need to exit
and re-enter you may calculate the execution addresses from the following information.
Amstrad users may also use the command MON to enter the monitor alone and AMON to
enter the monitor/analyser.

As previously mentioned the monitor/analyser has been provided in two distinct forms:

The LOW version
This has been assembled so that the monitor section of the program is lower in memory
than the optional analyser section consequently the low version is suited to use at the low
end of memory because it allows the user the largest possible contiguous memory area
above the monitor/analyser program. If the analyser is not used the area available to the
user is increased by approximately 2k (Amstrad users should study the section "Tape and
Disc Buffer").

Low Version Start at Monitor Analyser Enter Monitor Enter Monitor/
ends at ends at only Analyser

SPECTRUM 25000 37924 40589 25000 25003
AMSTRAD 5924 17142 19947 5924 5927

When relocating the low version to a new start address X, the entry points become X for
monitor only and X+3 for monitor and analyser.

The High version
In contrast to the low version the high version has been assembled so that the optional
analyser section resides lower in memory than the monitor section so this version is suited
to use at the high end of memory because it allows the user the largest possible contiguous
memory area below the monitor/analyser program. Once again not using the analyser will
yield nearly 3K of memory for the user (Amstrad users should study the section "Tape and
Disc Buffer").

High Version Starts at Analyser Monitor Enter Monitor Enter Monitor/
ends at ends at only Analyser

SPECTRUM 49946 52610 65535 52611 52614
AMSTRAD 28595 31399 42618 31400 31403

SPECTRUM: When relocating the high version at address X the entry points become
(X+2665) for the monitor only and (X+2668) for the monitor and analyser.

AMSTRAD: When relocating the high version at address X the entry point become
(X+2805) for the monitor only and (X+2808) for the monitor and analyser.

1.3 Extension ROMS (AMSTRAD)
When extension ROMs, such as the DD1 disc interface or the RS232 serial interface, are
fitted to an AMSTRAD the upper limit of available memory is reduced because the ROMS
reserve memory for their own use.

For example, printing HIMEM will yield different results for different configurations of
machine:

HIMEM
STANDARD 464 43903
STANDARD 464 with DDI 42619
STANDARD with R5232 (AMSTRAD) 41539
STANDARD 464 with DD! and with R5232 40255

The high version of the monitor/analyser bas been assembled to occupy the top of memory
for a standard 464 with DDI, ice. it fills memory to 42618.

89

It follows that if you have extension ROMs fitted which bring HIMEM below 42619 the high
version of the monitor/analyser provided will not be compatible with your system.
Therefore, you will have to relocate below your HIMEM. Alternatively, if you have no
extension ROMS fitted you may wish to relocate to fill memory up to 43903, the value of
HIMEM on a standard 464 machine. You may find out the value of HIMEM by typing
?HIMEM followed by ENTER.

To relocate relative to HIMEM simply subtract the overall length of the monitor/analyser
from your value of HIMEM. The overall length of the monitor/analyser is 14024 bytes. So
for example, to relocate the monitor/analyser to memory at 43903 use the address 29879
when relocating because 43903 - 14024 = 29879. For further information see the section on
relocating the monitor/analyser.

1.4 Tape and Disc Buffer (AMSTRAD only)

When the FLIST and LOAD (for ASCII files) commands are used the monitor/analyser, in
accordance with the AMSTRAD firmware routines, makes use of a 2048 byte buffer for
interfacing to tape/disc, Consequently if the user is prepared to forego the use of the FLIST
command he may use the buffer area for his own purposes. In the versions provided the
buffer area has been located on the end of the code:

The "low" version The "high" version
5924 MONITOR 26547 TAPE BUFFER (OPTIONAL)

2048 bytes used to FLIST
17143 ANALYSER (OPTIONAL) 28595 ANALYSER (OPTIONAL)
19948 TAPE buffer (OPTIONAL) 31400 MONITOR

2048 bytes
21995 END 42618 END
21996 42619

From the table above we can see that the user of the low version may use memory from
19948 for his own purposes if he/she is prepared to forego FLIST and LOAD commands.
Similarly the user of the high version may use memory up to and including 28594.

You may wish to use the monitor alone i.e. without the analyser but with the TAPE buffer
moved to the end of the monitor code. To do this enter the monitor at the "monitor only"
entry point i.e. for the low version type:

CALL 5924 followed by ENTER

for the high version type:
CALL 31400 followed by ENTER

Now move the buffer using the "BUFFER=" command i.e. for the low version type:
BUFFER= 17143

for the high version type:
BUFFER= 29352 (=31400 - 2048)

If you are using a relocated version of the monitor/analyser then it is possible to achieve the
same result i.e. dispense with the analyser and redefine the buffer.

eg . For a relocated LOW version at address X type CALL X followed by enter
then type BUFFER= X+ 11219 followed by ENTER.

So if X = 9000 type CALL 9000 followed by ENTER
then type BUFFER= 20219 followed by ENTER.

eg. For a relocated HIGH version at address Y type CALL Y+2805 followed by
ENTER then type BUFFER= Y+757 followed by ENTER.

So if Y = 20000 type CALL 22805 followed by ENTER
then type BUFFER= 20757 followed by ENTER

90

NOTE
i) - The FLIST and LOAD commands will still operate at any time but they will use the

current buffer area.
ii) - The BUFFER= command may be used to set up different buffer areas to those in

the table above which are simply the default values included at assembly time.
iii) - The LOADing of binary, as opposed to ASCII, files does not use the buffer.

SPECTRUM users - the Spectrum version of the monitor/analyser uses the lower third of
screen memory during FLIST so no buffer space has been allocated during assembly. The
FLIST buffer is fixed so the "BUFFER=" command is not available on the Spectrum
version.

2. SCREEN LAYOUT

Spectrum and Amstrad 40 Column Mode

The screen is split into four windows:

WINDOW NUMBER 1. This window displays the current state of the Z80 registers, an
example is given below. The top two lines give the state of the flags (S-sign, Z-zero, H-half
carry, P-parity/overflow, N-add/subtract and C-carry, blanks indicate the unused flags),the
state of ROM switching and they state of the interrupt flip-flop. In the case shown, the zero
flag is set and all the others are clear and interrupts are disabled. Down the righthand side
of the window the top 9 entries on the stack are displayed (as pointed to by SP). The
lefthand side displays the register values and the central column shows the two bytes
pointed to by that register pair. All numbers are printed in hexadecimal. The disassembly
of the instruction pointed to by the PC is printed at the bottom of the window.

AMSTRAD

91

Top righthand corner - Amstrad

The states of the ROMs are shown in the top righthand corner of the screen, 'L' stands for
lower ROM, 'U' for upper. A 'D' indicates that a ROM is disabled and an 'E' means it is
enabled. The 0 next to the U>E in the example indicates that upper ROM number 0 is
currently selected.

I This indicates interrupt status.
1 = enabled
0 = disabled

SPECTRUM
The top righthand corner of window 1 on the Spectrum differs from the same area on the
Amstrad screen. Note Spectrum 128k users should see appendix C.

Top righthand corner - Spectrum

This is used to display the memory configuration and interrupt status. There are five
indicators which are displayed as RMP-V-I. Each indicator has the following relevance:

R This indicates which ROM is currently paged in. There are three possibilities.

S= Standard Spectrum ROM
I = Interface 1 (shadow) ROM
D = Spectrum 128k (Derby) ROM

NOTE: The standard 48k Spectrum obviously does not support the third option!

M This indicates the memory page currently selected for the memory pointer for
Spectrum 128k users. 48k users will find an asterisk displayed.

P This indicates the memory page currently selected for the program counter for
Spectrum 128k users. 48k users will find an asterisk displayed.

V This indicates which of the possible screen bases has been selected for 128k
users. 48k users will find an asterisk displayed.

I This indicates interrupt status.
1 = enabled
0 = disabled

WINDOW NUMBER 2. The window in the top left hand corner is used for disassembly and
the printing of results by some of the Monitor's commands.

WINDOW NUMBER 3. Below the top two windows there is a hex and ASCII display of a
section of memory, the area displayed is indicated by the value of the Memory Pointer,
whose exact location is shown by a cursor on the middle line. The example shown here was
taken from the Spectrum. Amstrad users should not be alarmed by differences in the
character set.

92

WINDOW NUMBER 4. The bottom two lines of the display are used for printing error
messages and the inputting of commands.

Commands such as LIST use the whole screen to print disassembly, when this happens the
screen is cleared before anything is printed on the screen.

80 Column Mode - Amstrad only

The 80 column mode splits the screen into two halves, the left hand side uses the same
format as the 40 column mode the right hand side is for commands which would use the
whole screen in the 40 column mode, this allows the register display and memory display
to stay on the screen while disassembling, displaying memory or listing breakpoints.

3. THE EDITOR

The Monitor's Editor allows the input of up to 39 characters at a time on the bottom line of
the display. The following keys can be used to edit the line:

Amstrad Spectrum Operation

 Left and right Left and right Move cursor along input line.
 Cursor Keys Cursor Keys
 DEL caps shift & 0 Delete previous character

 CLR symbol shift 0 Delete current character.
COPY caps shift & 1 Insert a space.

 CTRL L symbol shift A Clear the editing area.
 ENTER ENTER Execute the command in the editing

area. If there is an error in the command
control is passed to the editor and the
line can be corrected. Pressing ENTER
with nothing in the editing area causes
the screen to be cleared and the register
and memory display to be updated.

Often it is required to break out of commands, on the Amstrad the ESCAPE key can be used
to leave commands, the escape key on the Spectrum is symbol shift A.

In the lower half of the screen there is the memory display. On the middle line of the dump
a cursor is printed which shows the current position of the memory pointer. The memory
pointer can be moved around memory using the following keys:

Amstrad Spectrum Operation

 SHIFT left cursor Symbol shift Q Decrement the memory pointer
 SHIFT right cursor Symbol shift E Increment the memory pointer
 SHIFT up cursor Symbol shift W Subtracts 8 from the memory pointer.
 SHIFT down Symbol shift S Add 8 the memory pointer.
 Shift & copy caps shift 9 Advance the memory pointer to the next machine

code instruction, NOT the next byte.

The memory pointer can be set to a particular value using the MEM = command.

93

4. ENTERING COMMANDS

Command names can be entered in upper or lower case, if the command name is followed
by an equals sign (eg. "BUFFER=") then there should be no spaces between the name and
the equals sign. Note that there is a single space between "EX" and "AF" in the "EX AF"
command.

Numbers can be entered in one of four bases as shown below:

Decimal eg. 4785
Hexadecimal #12B1 (preceded by a '#')
Octal @11261 (preceded by a '@')
Binary %1001010110001 (preceded by a '%')

A single ASCII character can be used to represent a number by enclosing it in quotes, eg.
"A" is equivalent to the number 65.

"ON" and "OFF" have the values 1 and 0 respectively and can be used instead of these
numbers. The word "MEM", as a parameter, returns the current value of the memory
pointer and "AF", "BC", "DE", "HL", "IX", "IY", "SP" and "PC" can also be used as
parameters and will return the value of the corresponding register pair. This makes the
following commands possible:

PC=MEM (gives PC the value of the memory pointer)
LIST HL (disassembles from the address held in the register pair HL)

COMMAND SYNTAX
The following notation is used for command syntax: parameters are enclosed in '<' and '>'
type brackets and optional parameters are enclosed in square brackets.

For example, FRED <x>[,y] would mean that the command whose name is FRED can
be followed by one or two parameters, one called <x> and the other, an optional
parameter called <y>. The meaning of the parameter names used are given below:

<byte> A number in the range 0 to 255 (#FF)
<word> A number in the range 0 to 65535(#FFFF)
<count> As <word>
<addr> An address in the range 0 to 65535 (#FFFF)
<start> As <addr>
<finish> As <addr>
<flag> Either 0 or 1 (or ON or OFF)
<db number> A DB block number in the range 1 to 8
<brk numbers> A breakpoint number in the range 1 to 8
<filename> A string of characters enclosed in quotes, eg. "fred".

On the Amstrad this can be up to 16 characters long and
on the Spectrum this can be 10 characters.

<option number> An option in the range 1 to 8

Amstrad only:
<ROM number> An upper ROM number in the range 0 to 251

Spectrum only:
<drive> A microdrive number in the range 1 to 8

5. MONITOR COMMANDS
NOTE: The use of square brackets indicates optional parameters. Spectrum users should
also note that the ESCAPE key should be read as symbol shift A.

<reg name>=<byte> eg. c=%10110
Assigns a value to a single register, where <reg name> is one of A,B,C,D,E,H,L or F (the flag
register).

<reg pair>=<word> eg. BC=30000
Gives a value to a register pair, <reg pair> must be one of AF,BC,DE,HL,IX,IY,SP or PC.

94

(<reg pair>)=<byte> eg. (HL)=#6D
Places the specified byte in memory at the location pointed to by the given register pair.
The register pair can be one of BC,DE,HL,IX,IY or PC.

EXX
Performs the equivalent of the Z80 "EXX" instruction on the Monltor's copy of the
registers. The register display now shows an apostrophe after the register names BC,DE
and HL to indicate that the alternate register set is now the main set. Typing EXX again
returns lo the normal set. See also the EX AF command below.

EX AF
Performs the equivalent of the Z80 "EX AF,AF" instruction on the monitor's copy of the
register pair AF. The register display will now show the alternate value of AF and an
apostrophe printed after the register name indicates this. Typing EX AF again, toggles the
display back to the normal value of AF. See also the EXX command.

MEM=<addr> eg. MEM=#4000
Sets the memory pointer to a particular value. The memory dump display is updated by
this command.

DATA <byte list> eg. DATA "hello",13
Places the list of bytes at the memory location pointed to by the memory pointer. The
memory pointer is incremented after each byte is placed in memory. The memory dump
display is updated by this command. Strings of more than one character can be used in this
command and each character in the string is considered as a different byte value.

.<byte list> eg. .#3E,"*",#CD,#5A,#BB
The '.' command is just a shorthand version of the DATA command and is otherwise
identical.

EXIT
Returns control to whatever called the Monitor. Note that as long as the Monitor's
workspace is not over-written, all breakpoint definitions, data areas, analyser programs
and other user defined options will be unchanged on re-entry to the Monitor. Note also that
breakpoints are recognised if the code they are in is executed from outside the Monitor (see
the section on breakpoints).

FILL <start>,<finish>,<byte> eg. FILL #4000,#5FFF,0
The block of memory from <start> to <finish> inclusive is filled with the value of <byte>.

DUMP [<start>[,<finish>]] eg. DUMP
or DUMP #1000
or DUMP #1000,#10FF

Gives a hex and ASCII dump of memory onto the screen. With no parameters the dump
starts from the current value of the memory pointer and continues until the ESCAPE key
(symbol shift A on the Spectrum) is pressed. With one parameter the dump starts from the
specified address and continues until the ESCAPE key is pressed. With two parameters the
dump starts from the first address and continues until either the ESCAPE key is pressed or
the second address is reached. Pressing a key during the listing will pause printing until
another key is pressed (other than the ESCAPE key).

LDUMP [<start>[,<finish>]] eg. LDUMP
or LDUMP 30000
or LDUMP 30000,31000

This command is the same as the DUMP command except that the output is also sent to the
printer. Option number 2 selects whether or not the printer output is also sent to the screen
(see the OPTION command).

MOVE <start1>,<finish1>,<start2> eg. MOVE #1000,#13FF,#A000
The block of memory from <start1> to <finish1> inclusive is copied into the area starting
at <start2>. Note that copying is 'intelligent' in that the two blocks can overlap.

95

CHECK <start1>,<finish1>,<start2> eg. CHECK 1000,1010,#A0F0
This command verifies that two blocks of memory are identical. The area from <start1> to
<finish1> is compared with the area starting at <start2>. If the two blocks are the same
then a "Blocks Identical" message is given, but if they are different a "Failed at <addr>"
message is printed, where <addr> is the address of the first mismatch.

SEARCH <start>,<finish>,<byte list> eg. SEARCH #8000,#A7FF,#5A,#BB
The block of memory defined by <start> and <finish> inclusive is searched for the first
occurrence of the specified string of bytes. If no match is found then "String Not Found" is
printed otherwise "Found at <addr>" is printed (where <addr> is the address of the first
match). If a match is found then the memory pointer is set to the address of this match and
the memory dump display is updated. To find any further occurrences of the string the
NEXT command should be used (see below).

NEXT
The search specified by the most recent SEARCH command is continued so that the next
occurrence of the string can be found. If no search command had been used before, or the
last search had failed to find any more matches, a "No Search String" error is given. On the
Amstrad CTRL and N will achieve the same effect as typing NEXT, on the Spectrum
pressing symbol shift Y will perform this operation.

JUMP [<addr>] eg. JUMP or JUMP #1000
The machine code at the specified address (or at the value of PC if no address is supplied)
is executed at normal Z80 speed. On entry to the code the actual Z80 registers are set to the
values of the Monitor's copy of the registers. If one or more breakpoints have been defined
then these breakpoints are loaded into the RAM. The only way to return to the monitor from
the JUMP command is via a breakpoint (see the section on breakpoints).

NOTE: Executing a JUMP or CALL will clear the slow run workspace. This means that the
table of previous addresses used by the TRACE and LTRACE commands will be
lost.

CALL [<addr>] eg. CALL or CALL #1000
This command is the same as the JUMP command except a return address to the monitor
is placed on the stack before the machine code is executed. On returning from the machine
code the Z80 registers are stored in the Monitor's copy of the registers (including the
alternate set) and the current ROM states are also stored away. Breakpoints will be
recognised during a CALL command.

NOTE: Executing a JUMP or CALL will clear the slow run workspace. This means that the
table of previous addresses used by the TRACE and LTRACE commands will be
lost.

?<word> eg. ?@7466
The ? command can be used for converting between number bases. The value of <word>
is printed in hex, decimal, octal and binary in the top left hand window.

PUSH <word> eg. PUSH #ABCD
The value of <word> is placed on the stack and the stack pointer decremented by two. The
register display is updated by this command.

POP
The value of SP incremented by two, this has the effect of 'popping' a value off of the stack
(although the value 'popped' off is not remembered).

OPTION <option number>,<flag> eg. OPTION 3,ON
The OPTION command allows various options used within the Monitor to be selected the
option number parameter is between 1 and 8 representing the eight different options
which are listed below. Initially all options are off.

96

OPTION EFFECT
1 If this option is off, then all disassembly will be in hexadecimal, otherwise, if

on, it will be in decimal. This option also affects some other number printing:
numbers in error messages, addresses in the listing of breakpoints or data
areas and the value of the stack after an EVAL command.

2 If off, then printer output is also sent to the screen. If on, printer output is only
sent to the printer. This option affects the LDUMP, LLlST and PDEF commands.

3 If on, then on the third pass of an FLIST command, the disassembly that is
being sent to the tape/disc/microdrive file will also be sent to the screen. If this
option is off only the current address is printed during the third pass. See the
FLIST command.

4 If off then during a slow run or single stepping, if a call or jump to a ROM
routine is encountered it will be immediately executed and not single stepped.
On the Amstrad these calls are those to the firmware block from #B900 to
#BF00, on the Spectrum this is a call below #4000 (16384). If this option is
turned on then ROM routines can be slow run normally. See the section on the
debugger for more details.

5 lf off then the file created by the FLIST command will contain labels to allow the
source code produced to be re-assembled at a different address. Turning on
the option turns off the labels so that the file contains just absolute addresses.
A source file produced with no labels will be shorter in length than one with
labels but in most cases it is advisable to use labels.

6 If off, then the screen is cleared at the start of a JUMP, CALL or SLOW
command but if on the routine to be executed is entered with the screen still
displaying the Monitor's display.

7 This option is for the Spectrum only, if off then printer output is sent to the ZX
printer (if one is connected) and if on it is sent to the Kempston Centronics
Interface (if connected).

8 If off, then a line feed is sent to the printer with every carriage return, if on then
only the carriage return is sent.

CAT
List the tape/disc/microdrive directory. This command does not work with Spectrum tape.

ERA "<string>" eg. ERA "DEMO
eg. ERA "4:FRED" (Spectrum only)

Erase the specified file from disc/microdrive. Wildcards can be used with Amstrad disc (see
Amstrad disc manual). Spectrum users may erase a file on any microdrive by including
"n:" in the filename string where n is the microdrive number.

DI
Disable Interrupts. This may be necessary before single stepping or slow running certain
programs.

EI
Enable Interrupts.

When any user code is executed during a slow run single step or after a JUMP or CALL
interrupts will be either enabled or disabled according to the state of a flag which is
maintained by the monitor/analyser. The flag may be set/reset by using the DI and EI
commands described above. The flag is also set/reset when the user program returns
control to the monitor either after a single step or after a slow run is halted or when a
breakpoint or return from CALL occurs. The monitor determines whether interrupts are
enabled by executing two successive LD A,R instructions and testing the P/V flags.

97

An analyser word "|" has been provided to allow the state of interrupts to be evaluated
from within the analyser.

Amstrad users should remember that if interrupts are enabled the alternate register set
must be valid because ROM and MODE information is kept in BC'. If interrupts are disabled
the alternate register set may be used. The monitor/analyser, when selecting user ROM
states prior to executing user code, uses BC' (or BC if a single EXX has been executed) to
determine which ROMs should be enabled.

5.1 Amstrad Specific Commands

ROM <flag1>,<flag2>,[,<rom number>]

This command enables or disables the ROMS on the Amstrad. <Flag1> selects the state of
the lower ROM, if "0" then it is disabled, if "1" it is enabled. <Flag2> sets the state of the
currently selected upper ROM. If <rom number> is given then a particular upper ROM can
be selected. The ROM command affects all of the Monitor's commands that read from
memory, these include: DUMP, LIST, MOVE. SEARCH and CHECK. When machine code is
executed or single stepped, the selected ROM states are set on entry and the Monitor's
copy of the ROM states updated on exit from the code. Here are some examples of the ROM
command:

ROM 0,1 lower disabled, upper enabled,
ROM ON,OFF lower enabled, upper disabled,
ROM ON,ON,13 lower enabled, upper ROM number reselected and enabled.

BUFFER=<address> eg. BUFFER=#A000

Sets where in memory the tape or disc buffer will lie, this buffer is 2k long and is used
during the FLIST command and during the LOAD command if an ASCII file is loaded.

MODE <mode number>

Selects either 40 or 80 column screen mode:
MODE 1 gives 40 column
MODE 2 gives 80 column

MAP

The current memory usage is listed in the disassembly window. The complete list will
appear as follows:

START END
Line 1 GMON #1724 #4DEB Monitor/analyser code
Line 2 WORK #0000 #0000 Workspace
Line 3 PROG #9000 #9FFF Analyser program space
Line 4 VSCR #8000 #84FF Virtual screen storage
Line 5 BUFF #4DEC #55EB Buffer
Line 6 OPTION 00010010
Line 7 VS OFF Virtual screen on/off
Line 8 ANAL ON Analyser on/off

If the virtual screen memory has not been defined then lines 4 and 7 will be omitted.

If the analyser code is not included or the program space is undefined then line 3 will be
omitted .

The numbers declared in the END column of the list are inclusive in other words the
monitor occupies memory from #1724 up to and including order.

DISC

Direct the firmware to make disc the current input/output device.

98

TAPE
Direct the firmware to make tape the current input/output device.

LOAD <filename>,<addr> eg. LOAD "fred.wow",#8000
The LOAD command tries to load the specified file in from tape or disc and place it in
memory at the given address. The monitor's PC register is made equal to the execution
address of the file (if it has one).

SAVE <filename>,<start>,<finish>[,<exec>]
eg. SAVE "fred.yuk",#8000,#8FFF
or SAVE "fred.yuk",#8000,#8FFF,#809D

The block of memory from <start> to <finish> is saved to tape or disc as a binary file. An
execution address may be specified but if not the execution address is made equal to the
start address. Once saved the file can be loaded into memory either straight from BASIC or
by using the LOAD command from the Monitor.

DRIVE <letter> eg. DRIVE A

Direct the firmware to make the disc drive <letter> the current input/output drive.

|<command>
This command gives access to any RSX'S which are currently logged on including disc and
tape commands. See your Amstrad manuals for syntax.

464 users should notice that string parameters are passed directly so the construction
@a$ is neither necessary nor valid eg. to erase a file called FRED type:

|ERA "FRED" or ERA,"FRED"

Spaces and commas are treated as separators.

5.2 Spectrum Specific Commands

ROM <flag> eg. ROM ON
Pages in or out the shadow ROM of the interface 1 (if fitted), when the shadow ROM is on,
listing and dumping of memory will read the shadow ROM and not the main ROM, with the
shadow ROM enabled routines in the shadow ROM can be single stepped, slow run and
fast executed. Executing the instructions at #8 and #1708 wilI page in the shadow ROM and
executing the instruction at #700 will cause the shadow ROM to be paged out.

MAP
The current memory usage is listed in the disassembly window. The complete list will
appear as follows:

START END
Line 1 GMON #61A8 #9E8D
Line 2 WORK #A000 #A2FF
Line 3 PROG #A300 #A900
Line 4 VSCR #B000 #CAFF
Line 5 OPTION 00010010
Line 6 I/O TAPE
Line 7 VS ON
Line 8 ANAL OFF

If the virtual screen memory has not been defined then lines 4 and 7 will be omitted.

If the analyser code is not included or the program space is undefined then line 3 will be
omitted.

The number declared in the END column of the list is inclusive, in other words the work
space occupies the memory from #A000 up to and including #A2FF.

99

MDRV [<drive>]
Direct the firmware to make the specified microdrive the current input/output device. If
<drive> is not specified input/output defaults to drive 1.

TAPE
Direct the firmware to make tape the current input/output device.

LOAD <filename>[,<addr>] eg. LOAD "fred"
 LOAD "fred",30000

The LOAD command tries to load the specified file in from tape/microdrive and place it in
memory starting at the address <addr>, if <addr> is not supplied then a code file will be
loaded in at the place in memory it was saved from, but other file types will be loaded to the
address pointed to by MEM.

SAVE <filename>,<start>,<finish> eg. SAVE "notagain",30000,30199
This command saves, to tape/microdrive the block of memory defined by <start> and
<finish>. A ''start>finish'' error will be produced if <start> address is greater than the
<finish> address.

NOTE 1: All Spectrum tape/microdrive commands will be halted by pressing the SPACE
key.

NOTE 2: If microdrive is selected input/output may be directed to any of the 8 possible
microdrives irrespective of which one is presently selected. This is achieved by
preceding the filename with n: where n is the number of the drive which is
required. In other words when drive 1 is selected for example, a file FRED may be
loaded from drive 4 by typing:

LOAD "4:FRED",#8000

and similarly a file may be saved on drive 6 by typing:

SAVE "6:TOM",#9000,#A000
NOTE 3: The monitor uses ROM routines for SAVEing so the contents of the shadow ROM

cannot be SAVEd directly. If you wish to save the contents of the shadow ROM
move the area required to free RAM then save it from there. Although the contents
of the shadow ROM cannot be saved directly they can be disassembled to tape or
microdrive using the FLIST command.

VIRTUAL SCREENS
One of the most useful additions offered by the monitor is the virtual screen facility. It is
provided with graphics applications in mind but will be found to have uses in almost every
sphere of program development. The commands for controlling the virtual screen are
described here and their use is demonstrated in example 5 (see section 10).

When the user's program is RUN using the SLOW, CALL or JUMP command, the user's
screen is restored before execution. When the monitor is re-entered via a breakpoint, STOP
or RETurn (from a CALL) the user's screen is stored in memory before the monitor's front
panel is displayed. When this facility is enabled, single stepping will cause the user's
screen to be temporarily displayed so that it can be updated by the program.

NOTE: Under normal circumstances this facility will only be used with CALLS, JUMPS
and SLOW 0. SLOW 1, 2 and 3 cause the screen to update after each instruction
and this may interfere with the user screen. Bear in mind that screen updates do
not affect the top left hand corner of the screen (the area used for disassembly)
and so it is possible to combine front panel displays with graphical operations.
Occasionally this mode of use will be invaluable.

SCRN
Display the virtual screen until a key is pressed.

SCRN >flag> eg. SCRN 1 or SCRN ON

100

Enable or disable the virtual screen facility. If <flag> = 1 the virtual screen is enabled, if
<flag> = 0 it Is disabled. If the virtual screen is off then slow running will be faster.

SCRN= <addr> eg. SCRN=#D000
Set the base address for the virtual screen storage.

SPECTRUM users:

NOTE 1: If this command is to be executed the user must find 6912 free bytes at
which to store the virtual screen whilst the monitor front panel is being
displayed. The SCRN= command is used to indicate where to store the
data.

NOTE 2: This command produces a user screen in memory which wiLL be cleared
with all attributes set to the current value in the system variable ATTR-T.

NOTE 3: Use this facility with great care!

AMSTRAD users:

On your machine the effect of this command is simply to define the start
address of screen storage.

AMSTRAD only
Although the AMSTRAD screen occupies memory from #C000 to #FFFF (16k) only 16000
bytes are needed to duplicate the screen data. However, 16000 bytes is a lot so, to prevent
memory problems the user may define a window in the screen which will then become the
subject of all virtual screen operations. Therefore the amount of memory required for using
the virtual screen facility will depend on the size of the window.

The window has four parameters all of which are measured in AMSTRAD characters i.e
they are MODE dependent. The four parameters are COL, ROW, LEN and HGT and they may
be assigned values either by the commands detailed below or front within the analyser
(see later)

The amount of memory required is a function of LEN and HGT i.e the area of the window.
The values of COL and ROW do not effect the amount of memory required.

COL= <number of characters> eg. COL=20
Define the left hand edge of the virtual screen window. The initial value
is 15.

LEN= <number of characters> eg. LEN=8
Define the width of the virtual screen window. The initial value is 10.

ROW= <number of characters> eg. ROW=2
Define the top edge of the virtual screen window. The initial value is 8.

HGT= <number of characters> eg. HGT=16
Define the height of the virtual screen window. The initial value is 8.

The validity of the COL,ROW,LEN and HGT parameters is related to the current MODE of
the AMSTRAD because they are measured in characters rather than bytes. In MODE 0 for
example the maximum number of characters is 20 so COL + ROW must be less than 21.

101

Whenever the screen is about to be moved, i.e when the screen is on and a
SCRN,SLOW,JUMP,CALL or single step is executed, the parameters defining the window
are checked. If the parameters are invalid an error message will be displayed. If parameters
are to be valid then they must obey the following relationships:

COL + LEN <= 20 in MODE 0
40 in MODE 1
80 in MODE 2

ROW + HGT <= 25 (the maximum number of rows is always 25 whichever MODE)

SCRCLR
This command has the effect of clearing the virtual screen memory. The amount of
memory cleared will depend upon the current value of HGT and LEN. If HGT or LEN are
changed after performing an SCRCLR then a further SCRCLR may be necessary.

CTRL & V
The location of the current window will be highlighted until any other key is pressed.

6. DISASSEMBLER COMMANDS

DISS [<start>[,<finish>]] eg. DISS
or DISS #A000
or DISS #A000,#A0FF

Disassembles to the window in the top left hand corner of the screen. With no parameters,
the disassembly starts at the current value of the memory pointer (MEM) and continues
until the ESCAPE key is pressed. With one parameter, disassembly starts at the specified
address and continues until the ESCAPE key is pressed. With two parameters, disassembly
starts at the first address and continues until either the second address is reached or the
ESCAPE key is pressed. Pressing any key (including the ESCAPE key) pauses the printing
until another key is pressed (other than the ESCAPE key which will return control back to
the editor). The ESCAPE key on the Spectrum is symbol shift and A pressed together.

LIST [<start>[,<finish>]] eg. LIST
or LIST 1000
or LIST 1000,2000

This command is the same as the DISS command except the disassembly is printed using
the whole screen (in 40 column mode) or to the right hand half of the screen (in 80 column
mode).

LLIST [<start>[,<finish>]] eg. LLIST
or LLIST #8000
or LLIST #8000,#80A7

This command is the same as the LIST command except that the disassembly is sent to the
printer in addition to the screen. If option bit 1 is set the output is only sent to the printer
(see the OPTION command).

DB [<db number>[,<start>,<finish>]] eg. DB
or DB 3
or DB 7,#8000,#83FF

The DB command allows sections of memory to be defined as areas of data instead of
machine code. During disassembly any data areas are listed using defined bytes (DBs), up
to 8 areas of memory can be defined as data areas and are numbered from 1 to 8. This
command affects the LIST, LLIST and FLIST commands.

With no parameters the DB command lists the current selection of data areas already
defined by the user. With one parameter, a number from 1 to 8, the specified data area is
removed from the list of data areas. With three parameters, a number from 1 to in, a start
address and finish address, a data area can be defined.

102

FLIST <filename>,<start>,<finish> eg. FLIST "fred",#100,#1FF
The FLIST command sends disassembly to either an Amstrad tape or disc file, Spectrum
tape or Spectrum microdrive. The file produced can then be loaded into the Assembler,
altered and re-assembled. The file produced will contain labels instead of addresses so that
the code can be re-assembled at a different address, addresses within the range of the code
disassembled will reconverted to labels and those out of this range will be kept as absolute
addresses. For example, suppose the following piece of code were placed at address
#7000:

#7000 LD B,#10
#7002 PUSH BC
#7003 CALL #ABCD
#7006 POP BC
#7007 DJNZ #7002
#7009 CALL #7040
#700C JP Z,#7000
#700F RET

If it were then FLISTed the resulting listing would appear if the file was then loaded into the
Assembler:

L7000 : LD B,#10
L7002 : PUSH BC

CALL #ABCD
POP BC
DJNZ L7002
CALL #7040
JP Z,L7000
RET

The insertion of labels is optional, setting option 5 ON will turn off the labels and absolute
addresses will always be inserted. If the labels are used then workspace must be set aside
so that the addresses of labels can be stored during the operation of the command, this is
done by using the WORK= command and is explained later. lf no workspace has been set
aside then a "Workspace Undefined" error will be given and if there are more labels than
can be fitted in the given amount of workspace an "Insufficient Workspace" error will be
given.

To FLIST an area of memory the Monitor will disassemble it three times: the first pass sets
up the labels the second pass calculates the length of the file including the labels and the
third pass saves the file. If option number 3 is on then during the third pass, the file being
saved is also printed on the screen. During all passes the address of the current instruction
is printed on the screen so you have an idea of how far the command has reached in
producing the file. After the second pass has been completed the length of the source code
that is about to be produced is printed. The ESCAPE key will abandon the command at any
time (but if you are in pass three only part of the file will have been saved).

There are three points to note when using this command:

1. Not only are CALL and JUMP operands given labels but so are instructions such as LD
BC,#1234 (if the value of the operand were to fall in the range of the code being
disassembled). This will only be a problem if the code is re-assembled at a different
address because the value of the label L1234 will change and if the number #1234 was
intended and not the address then the register pair will now be loaded with the wrong
value. To solve this problem change any value like this to absolute addresses before reassembling.

103

2. If a label address falls in the middle of an instruction it will not be defined. The example
below demonstrates this. On the left is the code disassembled and on the right the source
code produced:

#8000 LD HL,#8007 L8000: LD HL,L8007
#8003 LD (HL),E LD (HL),E
#8004 INC HL INC HL
#8005 LD (HL),D LD (HL),D
#8006 CALL #4321 CALL #4321
#8007 JR #8000 JR L8000

The label L8007 has not been defined since it falls in the middle of the CALL #4321
instruction. To solve this either define the label elsewhere or remove the label and put in an
absolute address, the solution will depend on whether #8007 was intended as a number or
an address (an address in this case).

3. If a program contains a table of addresses and you attempt to relocate the program by
using FLIST and then re-assemble, the addresses in the table will, of course not be
relocated (assuming the table had been defined as an area of data). Tables of addresses
such as this will have to be altered by hand from the assembler by replacing the DBs with
DWs and inserting either labels or absolute addresses. For example the following program
looks up an address in a table and jumps to it (the source code produced is shown on the
right).

The C register contains 0, 1 or 2 on entry and the corresponding routing at #8020,#8030 or
#8040 is jumped to, the area from #800C to #8011 has been defined as a data area:

#8000 LD B,0 LD B,#0
#8002 LD HL,#800C LD HL,L800C
#8005 ADD HL,BC ADD HL,BC
#8006 ADD HL,BC ADD HL,BC
#8007 LD A,(HL) LD A,(HL)
#8008 INC HL INC HL
#8009 LD H,(HL) LD H,(HL)
#800A LD L,A LD L,A
#800B JP (HL) JP (HL)
#800C DW #8020 L800C: DB #20,#80,#30,#80
#800E DW #8030 DB #40,#80
#8010 DW #8040

The source code would then have to be altered if the code was to be re-assembled at a
different address, the two lines of DBs could be changed to:

L800C: DW L8020,L8030,L8040
(Assumes L8020,L8030 and L8040 were defined elsewhere).

SPECTRUM only - the flexibility allowed for saving to any of the microdrives by typing
"n:filename" previously described in the section on LOAD and SAVE also applies when
FLlSTing.

WORK=<start>,<finish> eg. WORK=40000,40100

The WORK= command sets aside an area of memory as workspace for use by the FLIST
command and the SLOW/TRACE commands (see debugger section).

WIDTH=<word> eg. WIDTH=50

Set the width of the printer page in characters. On entry to the monitor this has a default
value of 65535.

LENGTH=<word> eg. LENGTH=80

Sets the length of the print page in characters. On entry to the monitor this has a default
value of 65535.

104

7. DEBUG COMMANDS

7.1 SINGLE STEPPING

From the Monitor's editor the following keys can be used to perform single stepping
operations:

KEY Operation performed
Amstrad/spectrum
CTRL I / caps & down arrow Incrementing value of PC
CTRL D/ caps & up arrow Decrement thevalue of PC
CTRL K/symbol shift G Skip the next instruction, make PC point to the address of

the next instruction.
CTRL S/symbol shift D Single step the instruction pointed to by PC and make PC

point to the next instruction.
CTRL E/symbol shift F Single step the instruction pointed to by PC unless the

instruction is a CALL or RST, in which case the subroutine
pointed to by the instruction will be executed at normal Z80
speed. Control will return back to the Monitor on exit from
the subroutine and PC made to point to the instruction after
the CALL or RST.

Single Stepping and in line parameters

Before a single step is performed the instruction to be executed is copied into a special
location in the monitor code. The fast execution of CALLS and RSTs when single stepping is
not suited to the passing of in line parameters because in line parameters are not copied
into the special locations mentioned previously eg.

CALL OUT-PARS
DB 4,8,12,16,20

If this code is executed using the CTRL E/SS&F type of single step the code "CALL OUT-
PARS" will be copied into the monitor area for single stepping but the DB data will not.
OUT-PARS is expecting to find operands at the return address but they will be missing and
monitor code will be used as in line data instead. This means that routines which expect in
line data eg. Spectrum RST 8) cannot be fast executed using CTRL E/SS & F and
consequently slow modes 4 to 7 and 12 to 15 which perform fast execution of CALLS and
RSTs cannot be used for code containing CALLS or RST followed by in line data.

If the user is single stepping or slow running code which makes CALLS or RSTs into the
ROM areas of memory then Option Bit 4 should be switched ON to avoid the automatic fast
execution of ROM routines which might expect in line parameters. A case in point is the
RST 8 error routine in the Spectrum. As the RST 8 is in the ROM, unless option 4 is switched
ON, the monitor will endeavour to fast execute it. However the RST 8 is always
accompanied by an in line parameter so a crash will occur but if option 4 is switched ON
RST 8's can be single stepped.

Each time an instruction is executed the register values are loaded into the actual Z80
register values, the instruction executed and then the new register values saved away.

Using Single Stepping with the Amstrad

If while single stepping the instruction to be stepped is a CALL or JUMP to a firmware
routine then the routine will be executed at normal speed and not single stepped. This is
like using CTRL E, but the difference is that JUMPS are also executed (PC is set to the
address on top of the stack and the stack pointer is incremented by 2 after the routine has
finished). The execution of firmware calls in this way is an option and is set by option
number 4, if clear, they are executed and if set, no special action is taken (see the OPTION
command).

Using Single Stepping with the Spectrum

If a routine which calls or jumps to the ROM is single stepped, the call or jump will be

105

executed at normal speed and not single stepped. This is like using the symbol shift F type
of stepping but the difference is that jumps are also executed (PC is set to the address on
top of the stack and the stack pointer is incremented by 2 after the routine has finished).
This execution of ROM routines is an option and can be turned off by turning on option
number 4. If option number 4 is on then ROM routines are single stepped.

The Alternate Registers and Single Stepping

If an EXX or EXAF,AF' instruction is single stepped, the Monitor commands EXX and EXAF
are used instead of the Z8O instruction so that the register display indicates that the
alternate registers are now the main set (by printing an apostrophe). The monitor can only
keep track of the register sets during single stepping and slow running. If a single (or odd
number of) EXX (or EX affair) is executed (by a JUMP or CALL) at normal Z80 speed then
the monitor will be ignorant of it. This is particularly relevant to AMSTRAD users because
BC' normally holds the ROM state.

7.2 SLOW RUNNING

A slow run is a continuous single stepping. There are four different modes of screen update
when slow running :

0. No screen update after each instruction is executed
1. Only the memory dump display is updated after each instruction
2. Only the register display is updated after each instruction
3. Both register display and memory dump are updated after each instruction

Mode 0 may seem pointless since you could use the Monitor's JUMP or CALL commands
and execute it at normal speed but slow running has several advantages:

1. The ESCAPE key can be pressed at any time and control will return back to the monitor
(the ESCAPE key on the Spectrum is symbol shift A).
2. When debugging programs it is useful to see what is happening in 'slow motion'
especially graphic routines.
3. Special breakpoints can be used while slow running which do things other than just
halting the program (see the section on breakpoints).
4. When slow running, the Monitor can be made to remember the addresses of every
instruction it executed in the order that they were executed,this is via TRACE command
and is useful for back tracking from a breakpoint.

There are eight modes of slow running, numbered 0 to 7. Modes 0 to 3 use the CTRL S/
symbol shift D type of single stepping and modes 4 to 7 use the CTRL E/symbol shift F type.
The execution of ROM routines applies exactly the same as it does for single stepping,
remember the limitations regarding in line parameters. The table below shows what each
mode does:

MODE SCREEN UPDATE AFFER EACH INSTRUCTION STEPPING TYPE
Amstrad/spectrum

0 none CTRL S/symbol shift D
1 just memory display CTRL S/symbol shift D
2 just register display CTRL S/symbol shift D
3 both memory display and register display CTRL S/symbol shift D
4 none CTRL E/symbol shift F
5 just memory display CTRL E/symbol shift F
6 just register display CTRL E/symbol shift F
7 both memory display and register display CTRL E/symbol shift F

7.3 SLOW RUNNING COMMANDS

SLOW<slow mode number> e.g. SLOW 0
Starts a program slow running from the address held in PC. Execution stops when either
the ESCAPE key is pressed or a breakpoint is met (not all breakpoints cause programs to
halt, see the section on breakpoints). The value of <slow mode number> must be from 0 to
7. If a breakpoint has been set at the current PC value then any attempted slow run will stop
instantly without executing any instructions. Therefore if you have used fast execution to

106

reach the current PC value and want to continue in a slow mode you must first single step
over the breakpoint or switch the breakpoint off before continuing.

NOTE: Memory screen flags are reset at the start of a slow run (see Analyser - section
9.3).

7.4 TRACE[<number of instructions>] eg. TRACE 1000
During a slow run the value of PC for each instruction is stored in memory, the TRACE
command prints out these addresses and the instructions stored at each address. The
number of PC addresses remembered is dependent on how much workspace has been
defined (using the WORK= command), two bytes of workspace are required for each
address. If no workspace has been defined then during a slow run no addresses will be
saved away and the TRACE command cannot be used (a Workspace Undefined error will
be given). Each lime that a SLOW command is executed the workspace is cleared so only
one slow run can be remembered at a time.

The TRACE command lists from the oldest PC address it can remember and works forward
to the point at which it halted. If no parameter is given then all the addresses stored are
used, otherwise the specified number of most recent addresses is used. The listing can be
paused by pressing a key and restarted again by pressing another (other than the ESCAPE
key which will return control back to the editor). If you have defined a large amount of
workspace and the last slow run went on for a long time, the TRACE command might take
a while to list all the PC addresses and get to the point at which the slow run had halted.

If you have used an FLIST command (which also uses the workspace), since the last slow
run, the workspace will be unprintable and a "Workspace undefined" error will be given.

7.4.1 LTRACE<number of instruction> eg. LTRACE 50
LTRACE works in exactly the same way as TRACE but output is to the printer.

7.5 BREAKPOINTS

Breakpoints are special controls inserted into a program to make it change its mode of
execution, it could cause the program to stop and return to the monitor (a normal
breakpoint) or it could change the mode of execution to one of the slow modes (a special
breakpoint). Up to eight breakpoints can be defined at any one time.

Breakpoints are implemented differently depending on what mode of execution you are
using at the time, there are two modes: slow running and fast execution (JUMP or CALL
commands).

Breakpoints - Fast Execution

When testing machine code at normal Z80 speed using either the CALL or JUMP
commands, breakpoints are implemented by placing a Z80 CALL instruction at the address
where the breakpoint is required, this means that these breakpoints will only work in RAM.
The address of the CALL instruction points to the Monitor's breakpoint handling routine.
The CALL instructions are only placed in RAM at the start of a CALL or JU MP command and
are removed on exit, this makes the CALLS 'invisible' to disassembly and memory dumps.
Breakpoints are also loaded into RAM when the Monitor is exited so that programs can be
executed from outside the Monitor but breakpoints still recognised.

Since a Z80 CALL instruction takes up three bytes of memory a problem may occur,
consider the section of program below:

#8000 CP 175
#8002 JR NC,#8006
#8004 XOR A
#8005 RET
#8006 LD A,1
#8008 RET

107

This will set A=0 if A was initially less than 175 otherwise it sets A=1. Suppose you
wanted to put a breakpoint at #8005 to halt when A was less than 175. You might run your
program using the CALL command, if so a Z80 CALL instruction is put in your routine at
#8005, but a CALL is 3 bytes long, so the routine at #8006 becomes corrupted and will no
longer work correctly. To solve this problem either use slow running (breakpoints while
slow running do not corrupt RAM) or just be extra careful in the placing of breakpoints
when fast executing.

Breakpoints - Slow Running

Breakpoints can be in ROM or RAM when slow running since nothing is placed in the code
being run. Each time an instruction is single stepped the value of PC is compared with all
the breakpoint addresses a match indicates that one has been encountered.

Breakpoint types

There are |8 different types of breakpoint; ALL TYPES ARE RECOGNISED IN BOTH SLOW
AND FAST MODES. One type is the normal breakpoint which stops execution when it is
encountered. The other 17 have special functions and are numbered 0 to 16. Types 0 to 7,
when encountered, change the mode of execution to the slow mode corresponding to the
breakpoint number. Types 8 to 15 are breakpoints with counters, each time the breakpoint
is encountered the count is decremented, when the count reaches zero execution is halted.
Type 16, the slow-fast breakpoint allows the user to switch the mode of operation of the
monitor from slow to normal Z80 speed. Note that although 18 different types of
breakpoint can be defined the total number of breakpoints permitted is 8. The table below
shows the differences between the 17 special breakpoints:

TYPE EFFECT
 0 Continue in slow mode 0
 1 Continue in slow mode 1
 2 Continue in slow mode 2
 3 Continue in slow mode 3
 4 Continue in slow mode 4
 5 Continue in slow mode 5
 6 Continue in slow mode 6
 7 Continue in slow mode 7
 8 Decrement count, halt if zero else slow mode 0
 9 Decrement count, halt if zero else slow mode 1
 10 Decrement count, halt if zero else slow mode 2
 11 Decrement count, halt if zero else slow mode 3
 12 Decrement count, halt if zero else slow mode 4
 13 Decrement count, halt if zero else slow mode 5
 14 Decrement count, halt if zero else slow mode 6
 15 Decrement count halt if zero else slow mode 7
 16 Continue in fast execution mode.

Breakpoints, once defined, can be turned off and on, a breakpoint in the off state is ignored
if encountered during the execution of a program.
NOTE: When a slow to fast breakpoint (type 16) is encountered the slow run workspace is

NOT cleared. Executing CALL or JUMP does however clear the slow run
workspace.

Encountering Breakpoints

When a breakpoint is encountered the program is stopped and the message "press a key"
is displayed at the foot of the screen. If the user is slow to respond the monitor will 'BEEP'.
So if you a re debugging sound programs on the Amstrad you must respond before the first
'BEEP', because CHR$ (7) which causes the 'BEEP' also flushes the sound queue. After a key
is pressed the message "Breakpoint <number>" is printed (where <number>. is the
number of the breakpoint that caused execution to halt). PC is made equal to the address at
which the breakpoint occurred. To continue from a breakpoint either turn the breakpoint off
and continue with JUMP,CALL or SLOW or if you require the breakpoint to stay active then
single step past the breakpoint and then continue execution (remember if you are fast
executing, a breakpoint is three bytes long and so at east the next three bytes will need to

108

be single stepped before execution can continue). When using the type 16 breakpoint
remember that once it has been encountered control will only return to the monitor if
another breakpoint is encountered. Type 16 breakpoints have no effect while fast running.

Note that if any key (or the Amstrad joystick) is being pressed continuously when a
breakpoint occurs the message "Release key/joystick" will be displayed. This is to prevent
the monitor from responding to any backlog of user key presses.

7.6 BREAKPOINT COMMANDS

BREAK<brk number>,<flag>,<addr> eg. BREAK 2,ON,#1005
Defines a breakpoint, with the given number as a normal breakpoint with the specified
address. The breakpoint number must be in the range 1 to 8 and if it was previously defined
the old definition will be lost. The flag indicates the state the breakpoint will be left in after
it has been executed. If flag >= 0 then the breakpoint will be turned off after it has been
encountered (and must be turned back on by the user using the BRK command), if
<flag>= 1 then the breakpoint stays active after it has been executed. Whatever the value
of <flag>, initially, the breakpoint will be on .

DEFBRK<brk number>,<type>,<addr>[,<count>] eg. DEFBRK 4,0,#A000
or DEFBRK 4,8,#A000,10

Defines a special function breakpoint, <brk number> is a breakpoint number from 1 to 8
and <type> is the breakpoint type from 0 to 16. If the given breakpoint is already defined
the old definition is lost. <Addr> is the address of the breakpoint. A <count> parameter is
required if the breakpoint is of type 8 to 1 5, this is the initial value of the breakpoint's
counter. The breakpoint will be initially 'on' but can be turned off using the BRK command.

Breakpoint types 0 to 7 always stay on after they have been executed, so do types 8 to 15 as
long as the count has not reached zero but, when it does the breakpoint will be turned off.

BRK<brk number>,<flag> eg. BRK 1,OFF
Sets the state of a given breakpoint. If <flag>=0 then the breakpoint is turned off (but its
definition is still remembered), if <flag>= 1 then the breakpoint is turned on. If the
breakpoint has not yet been defined then "Breakpoint Undefined" is printed. Turning on a
counting type breakpoint will reset its count to the starting value it had when it was first
defined.

DELETE<brk number> eg. DELETE 8
Removes a breakpoint definition from the list of the breakpoints, the breakpoint is then
considered undefined.

LBRK
Lists the eight breakpoint definitions giving their type (either BRK for normal breakpoints
or the type number for special breakpoints), the address, current state and if the
breakpoint is a special function type 8 to 15, its initial and current count values are also
printed.

8. MONITOR ERROR MESSAGES

ENTER COMMAND
The last command was completed successfully and the monitor is waiting for a new
command to be entered.

COMMAND NOT KNOWN
The Monitor cannot find the command name you have entered in its list of commands (you
may be trying to use an Analyser command without the Analyser being present).

NUMBER TOO BIG
A number entered is out of the range 0 to 65535 (0 to #FFFF).

109

OUT OF RANGE
A number entered is out of range for a particular parameter, for example when a <flag>
parameter is required a number either 0 or 1 (or ON or OFF) is required, entering any other
value will produce this error.

BAD NUMBER
The Monitor is trying to read a parameter in as a number but cannot understand what has
been entered.

BAD STRING
This error occurs when either the Monitor is expecting a string but a number has been
entered instead or if a string has no closing quote, or if a string of more than one character
has been entered (unless in the DATA or SEARCH commands which allow strings to be
more than one character in length).

String TOO LONG
Filenames cannot be longer than 16 characters on the Amstrad and 10 characters on the
Spectrum. Byte lists for the SEARCH command cannot be longer than 20 bytes long.

START > FINISH
When <start> and <finish> parameters are required to define a block of memory the
<finish> parameter must always be greater than or equal to the <start> parameter.

TOO MANY OPERANDS
The command entered expects fewer operands than have been supplied.

TOO FEW OPERANDS
The command entered expects more operands than have been supplied.

FAILED AT <ADDR>
This error is given by the CHECK command and gives the address of the first difference in
the two blocks.

FOUND AT <ADDR>
Given by the SEARCH and NEXT commands, this message gives the address of the match.

STRING NOT FOUND
The SEARCH or NEXT command could not find any more matches of the search string.

NO SEARCH STRING
A NEXT command has been used either without a SEARCH command being used
beforehand or after a search which had failed to find any more matches.

COMMAND ABANDONED
Amstrad - The LOAD,SAVE and FLIST commands produce this error if a tape or disc error
occurs, the actual reason for the error will be printed by the firmware. Some other
commands produce this error to indicate the ESCAPE key was used to terminate the
command.

Spectrum - During a LOAD|SAVE or FLlST command this error will occur if break is pressed
(shift & space), it is also used by other commands to indicate that ESCAPE (symbol shift A)
has been pressed and the command has been abandoned.

110

BAD FILE
Spectrum only,this indicates that the file being loaded from tape is corrupted in some way,
equivalent to Basic's tape loading error.

FILE ALREADY OPEN
Amstrad only - If a file is left open and a LOAD, SAVE or FLIST command is used, this error
is produced, the open file will be closed and so next time the LOAD, SAVE or FLIST
command is entered the error should not be produced.

WORKSPACE UNDEFINED
No workspace has been defined before using an FLIST or TRACE command or the
workspace is unprintable for the TRACE command.

INSUFFICIENT WORKSPACE
If during an FLIST command there becomes too many labels to fit in the current allocation
of workspace, this error will be produced.
This error message is also produced if an attempt to use the virtual screen is made before
the memory has been defined.

FILE NOT FOUND
Spectrum only,this error occurs only during LOAD if the named file cannot be found on the
selected drive.

BAD OPCODE
You have tried to single step or slow run an instruction that the Monitor could not
disassemble, i.e. an instruction that is printed as DB <n>; BAD, where <n> is the byte it
could not disassemble.

BREAKPOINT UNDEFINED
Using a BRK or DELETE command with a breakpoint that has not yet been defined will
produce this error.

BREAKPOINT <n>
Breakpoint number <n> has been encountered and has caused execution to stop.

9. THE ANALYSER
The Analyser allows the definition of intelligent breakpoints which cause a program that is
slow running to stop when a particular condition occurs. The conditions that can be
monitored are: the state of the flags, values of registers, the contents of memory and if
memory has been written to or read from.

Conditions are set up using a subset of the language called FORTH (for those who already
know FORTH, the words already defined for the Analyser Forth are listed at the end of this
section).

The following discussion on the monitor/analyser includes examples with references to
absolute numbers which are only suitable for the low version. Any version, high, low or
relocated, of the monitor/analyser may be used in the same fashion if the numbers are
altered accordingly.

Before anything can be done with the Analyser some space for user defined definitions
must be reserved, this is done using the PROG=<start>,<finish> command (where
<start> and <finish> define a block of memory to be used as program space). To start with
about 250 bytes of program space will be sufficient. As the low version of the monitor/
analyser is being used define the required memory area as follows :

SPECTRUM: PROG=42000,42249
AMSTRAD: PROG=25000,25249

111

Introducing Analyser Forth

The analyser uses a dialect of Forth as the breakpoint controlling language for three
reasons. Firstly, a Forth compiler is easy to implement and does not require a lot of
memory to run in. Secondly, the code generated is very compact. Thirdly, and most
importantly, Forth programs execute very rapidly. This latter quality is essential if the
analyser is to be of any practical use.

Those users who are familiar with Forth should have no problems with this dialect but
should still read this section carefully. We do not recommend newcomers to the language
purchasing a text on Forth because the analyser uses only a very small subset of the worcls
and the examples in this section are aimed to provide sufficient tutorial.

Using Analyser Forth

When processing a forth definition the analyser works along the definition from left to right
dealing with each number or operator in turn. Numbers are simply placed on the "stack".
Operators are interpreted and the required function performed. "Stack" in the context of
this discussion is the analyser stack not the Z80 stack. How would the analyser evaluate the
following string?

6 2 3 4 + * +

As each term is encountered working from left to right it is processed.
Stack

6 is a number so it is placed on the stack 6
2 is a number so it is placed on the stack 6 2
3 is a number so it is placed on the stack 6 2 3
4 is a number so it is placed on the stack 6 2 3 4

+ is an operator so it is interpreted. The effect of the of operator is to take the last two stack
entries, add them and put the result on the stack:

4 is removed from stack 6 2 3
3 is removed from stack 6 2

the sum 7 is placed on the stack 6 2 7

* is an operator so it is interpreted. The effect of the * operator is to take the last two stack
entries, multiply them and put the product on the stack:

7 is removed from stack 6 2
2 is removed from stack 6

the product 14 is placed on the stack 6 14

+ is an operator so it is interpreted. The last two stack entries are removed, added and the
result is placed on the stack:

14 is removed from stack 6
6 is removed from stack

the sum 20 is placed on the stack 20

The EVAL command allows a line of Analyser Forth to be executed immediately and shall
be used to introduce the language to you. To verify that the analysis above is correct type:

EVAL 6 2 3 4 + * + followed by ENTER
The following will appear (#14 = 20):

STATE OF STACK
#14
ENTER COMMAND

Forth uses a stack to store all its data. The EVAL command will clear the stack before it
evaluates any string. To get Forth to do anything for you, you must put data on the stack
first, for example you might want to add the numbers 2 and 3 together using the equal
command. First you must place the two numbers on the stack, to do this type:
EVAL 2 3 (and press ENTER)

112

The following will appear (as long as program space has been defined):
STATE OF STACK:
#3 #2
ENTER COMMAND

This shows you that the Analyser can place numbers on the stack. The stack is known as a
first-in-last-out structure because you can keep adding items but if you want to get at
something that was placed on the stack earlier on you must remove everything above it
first. For example, say you place the numbers 1, 2 and 3 on the stack in that order. 1 is on the
bottom of the stack and 3 is on the top; to get at 1 again you must first remove the 3 and
then the 2. So numbers placed on the stack are read off in the opposite ordered which they
went on.

Now to add the two numbers together Forth has a word called '+' which it understands to
mean addition, it takes the top two stack entries and adds them together, placing the result
on the top of the stack, so now type:
EVAL 2 3 +
and, hey presto, you get the answer »5 (note the Analyser is printing the stack in
hexadecimal - type OPTION 1,ON to select the decimal printing mode).

To demonstrate how the stack works, try:
EVAL 1 2 3 +

This leaves 5 and 1 on the stack showing that the two most recent entries are added
together. Now try:
EVAL 3 2 1 - +

The answer should be 4 to see why, look at the diagram below (the 'state of stack' diagram
shows the bottom of the stack to the left):

WORD STATE OF STACK EXPLANATION
EVAL empty clears the stack
3 3 puts 3 on the top of the stack
2 3 2 adds 2 to the top of the stack
1 3 2 1 adds 1 to the top of the stack
- 3 1 2 minus 1 equals 1
+ 4 3 plus 1 equals 4

Note that '-' is another Forth word, this time meaning subtraction (you can find all the
defined words listed at the end of this section).

Instead of putting numbers on the stack you could use the values of the Z80 registers, for
example, EVAL HL BC + will place the values of HL and BC on the stack, add them together
and put the answer back on the stack. Try the following:
HL=100
BC=200
EVAL HL BC +

The answer should be 300 (decimal). Executing a word that requires items on the stack
when none are there will cause a "Stack Empty" error to be printed. For example, EVAL +
will give such an error.

While numbers are on the stack we can move them around for example SWAP swaps the
top two stack items over so the following:
EVAL 1 2 3 SWAP

will leave the numbers on the stack in the order 1 3 2 (working from the bottom of the stack
going up), ROT rotates the top three items so
EVAL 1 2 3 4 ROT

produces 1 3 4 2 (working from the bottom up again), this has taken the third item to the top
of the stack.

113

DEFINING WORDS

So far we have been using words such as +,-,HL and SWAP, these are all predefined
words but you can define your own using the WORD command for example:

WORD FRED: DUP *

This defines a word called FRED which gives the square of the number held on top of the
stack. DUP is a defined word which makes a copy of the top stack item onto the stack and '*'
is multiply. Note that when you enter this line nothing is executed, the definition is just
stored away in the program space. To list any definitions you have made and to see how
much space you have left use the LDEF (list definitions) command. Now try:
EVAL 4 FRED 5 FRED

You should get the answers 16 and 25 (since 4 squared is 16 and 5 squared is 25) the
diagram below shows what happens:

WORD STATE OF STACK EXPLANATION
EVAL empty stack cleared
4 4 4 placed on stack
FRED→DUP 4 4 another copy placed on the stack
 * 16 multiply top two items
5← 16 5 5 placed on stack
FRED DUP→ 16 5 5 another copy placed on the stack
 * 16 25 Multiply two top entries
<end>←

The definition FRED can only be used after it has been defined, otherwise a "Word Not
Known" error is given. A word may be redefined by using the WORD command but there
are things to note.

1) If an error is made during the redefinition of a word the old definition will be
 retained.
2) If a correct redefinition is made the warning "Word Redefined" will appear
 after the redefinition has been made. The old definition will have been lost by
 the time the warning appears.
3) During the redefinition of a word, other definitions which had not been made
 at the time of the original definition may be incorporated into the new
 definition.

User word names must be made up of alpha-numeric characters only. Since word names
could consist of numeric characters only it is possible (but not advised) to redefine
numbers, for example try this;

WORD 10: 11
EVAL 10 10 +

The answer printed will be 22 since you have redefined the number 10 to give the value 11.

We still have FRED defined, we can now use it in a new definition, say SUMS, which will
square the top two stack items and add them together:

WORD SUMS: FRED SWAP FRED +
EVAL 4 5 SUMS

and will give the answer 41 (since 4*4+5*5=41). We can use FRED again to square the
result of SUMS to give us a new word which we can call SQUARES:

WORD SQUARES: SUMS FRED
EVAL 2 3 SQUARES

giving the answer 169 (2*2+3*3= 13 and 13*13= 169).

How the result 169 has been calculated may be clarified. The string typed in originally is:
EVAL 2 3 SQUARES

114

Inside the analyser SQUARES is replaced by its definition. In effect the string becomes:
EVAL 2 3 SUMS FRED

Now the word SUMS can be replaced by its definition. The string becomes:
EVAL 2 3 FRED SWAP FRED + FRED

Finally the word FRED may be replaced so the string becomes:
EVAL 2 3 DUP * SWAP DUP * + DUP *

Working from left to right through this string: '

EVAL is a command to clear the stack and evaluate the subsequent string.
EVAL Stack
2 a number so it is placed on stack 2
3 a number so it is placed on stack 2 3
DUP an operator. Duplicate the last stack entry 2 3 3
* an operator. Remove last two entries and multiply them, put result

on stack 2 9
SWAP an operator. Remove last two entries then put them on stack in

reverse order 9 2
DUP an operator. Duplicate the last stack entry 9 2 2
* an operator. Remove last two entries, multiply them, put result on

stack 9 4
+ an operator. Add last two entries, result on stack 13
DUP an operator. Duplicate the last entry 13 13
* an operator. Multiply 169

Our collection of definitions now looks like this:
FRED DUP *
10: 11
SUMS: FRED SWAP FRED +
SQUARES: SUMS FRED

We can see that words can be defined in terms of both predefined words and other user
defined, words and each definition can be used more than once.

To remove any old definitions from the program space use the CLEAR command, this
removes all user definitions, so use it with care.

STOP
To get the Analyser to test for conditions while a program is running, a STOP must be
defined. This is a word with the name STOP followed by a single digit from 0 to 9, eg. STOP1
or STOP7. STOPs can be used like any other word definitions but during SLOW running the
STOPs are evaluated after every instruction has been executed. AFTER EVALUATING A
STOP DEFINITION THERE SHOULD BE ONE NUMBER LEFT ON THE STACK, if not an error
will occur. If this value is non-zero the program will stop and the number of the STOP (0 to
9) in which the halt was caused will be printed.

NOTE: When a STOP definition is actually processed the PC is pointing at the next
instruction to be executed but the flags and registers are all set to the values that
they held at the end of the last instructions executed. This is clarified by example
4 - 'STACK CHECKER'.

To explain the use of STOPs we require a demonstration program, type in the following list
of commands

Amstrad Spectrum

MEM= #6978 MEM=#ABE0
DATA #21,0,#C0,#75,#23,#7C DATA #21,0,#40,#75,#23,#7C
DATA #FE,0,#20,#F9,#C9 DATA #FE,#58,#20,#F9,#C9

115

This will load a short machine code program into the memory at #6978/ABE0 (at #6978 for
the Amstrad, at #ABE0 for Spectrum). The disassembly of the code is given below:

#6978 LD HL,#C000 #ABE0 LD HL,#4000
#697B LD (HL),L #ABE3 LD (HL),L
#697C INC HL #ABE4 INC HL
#697D LD A,H #ABE5 LD A,H
#697E CP #0 #ABE6 CP #58
#6980 JRNZ,#697B #ABE8 JRNZ,#ABE3
#6982 RET #ABEA RET

The program fills the screen with a pattern. HL is used as a pointer into the screen memory.
On the Amstrad when H=0 address #0000 has been reached and so the routine finishes. On
the Spectrum the end of the screen memory is at #5800 and so H is compared with #58 to
see if the screen end has been reached. To test the routine use the command:

SPECTRUM: CALL #ABE0
AMSTRAD: CALL #6978

Say we wanted the routine to stop when HL was equal to #C010 (#4010 on the Spectrum),
to do this we need to define a STOP using the Analyser,first remove any old definitions that
are no longer needed:

Amstrad Spectrum
CLEAR CLEAR
WORD STOP0:HL #C010 = WORD STOP0:HL #4010 =

STOP0 has now been set up to detect when HL= #C010 (Amstrad) or #4010 (Spectrum).
The Forth word '=' compares the top two stack items, if they are equal 1 is put on the stack
otherwise a 0 is placed on the stack.

The Analyser can only be used while slow running not fast executing, so to run the program
type :

SPECTRUM: PC = #ABE0
AMSTRAD: PC = #6978

and then :

SLOW 0

Part of the screen will be filled, then the Monitor will print "Press any key", pressing a key
updates the display and at the bottom of the screen the message "Stop number 0" will be
displayed, the current instruction will be an INC HL instruction, this is the point where HL
was made equal to the required address. Note that PC still points to the instruction that was
executed, to continue, use the CTRL K (symbol shift G) operation to skip past this
instruction before using SLOW again. In this case trying to continue will cause the Analyser
to stop the program again since the condition set by STOP0 is still true. To continue either
CLEAR the definitions or type ANALYSER OFF which will stop the Analyser checking
conditions but will keep any definitions defined. Typing ANALYSER ON or CLEAR switches
the Analyser back on.

ADDR, RD,WR and ACF are Analyser words that allow the detection of reading or writing of
memory (see the list of definitions for an explanation). Using the same program as above
type in the following definition :

Amstrad Spectrum
CLEAR CLEAR
WORD SCREEN:HL #C010 = WORD SCREEN:HL #4010 =
WORD STOP0:SCREEN WR & WORD STOP0:SCREEN WR &

The definition SCREEN returns 1 if the last instruction accessed the required memory
location otherwise it returns 0. The word & is used to ensure that the STOP occurs if
SCREEN is true and the memory was written to. Run the program now using:

116

SPECTRUM: PC = #ABE0
AMSTRAD: PC = #6978

followed by :

SLOW 0

The Analyser will now stop at the LD (HL) L instruction when HL=#C010 (or HL=#4010).
The Analyser can be used to check that a particular value is written to memory:
CLEAR
WORD VALUE:ADDR C @ 175 =
WORD STOP0:VALUE WR &

The Analyser will check if the value written to memory is 175 and if so it will halt.

There are several things to note about the Analyser:

1 . The logical operator '&' and the bitwise operator OR can be used to chain conditions
together for example "condition1 AND (condition2 OR condition3)" would be converted to
Forth as:

condition2 condition3 OR condition1 &

2. Words in FORTH definitions need to be separated. in the examples above a space has
been used but commas and colons could be used instead. The WORD command can have
any of the three separators after the word being defined, but in the examples above a colon
has been used to make the definitions clearer.

3. The WORD command can be abbreviated to $<word name> <definition>, for
example:

$FRED 11 +

4. More than one STOP can be defined at a time, since STOP0 to STOP9 are valid STOPs,
then up to 10 STOPs can be defined at any one time. But remember the more STOPs there
are the slower SLOW running will be!

9.1 ANALYSER COMMANDS

PROG=<start>,<finish> eg. PROG=#0000,#1000
Defines the position in memory of the Analyser's PROGram space. The command will
erase all previous definitions and enable the Analyser (see the ANALYSER command).
Take care to ensure that PROG space is not in user code or monitor code.

CLEAR
Resets the program space, erases all previous commands. A "Workspace Undefined" error
will be given if a PROG= has not been used before hand. The Analyser will be enabled by
the use of this command (see the ANALYSER command).

ANALYSER <flag> eg. ANALYSER OFF
Enables or disables the Analyser from working during a slow run. If <flag>=0 then no
checking occurs during a slow run.

WORD <word name> <definition> eg. WORD FRED HL C @ 10 =
or $<word name> <definition> or $FRED HL C @ 10 =
Defines an Analyser word, <word name> must be made of alpha-numeric characters only
and should not have been defined before. <definition> is a list of at least one number or
Analyser Forth word.

EVAL <definition> eg. EVAL FRED
Evaluates the given definition and then prints the state of the stack.

117

LDEF
Lists the current user defined definitions and prints how much free memory is left in the
program space. Note that the space left in the program space is used for the stack during
execution time. If there is insufficient space left an "out of Stack Space" error will be given.

PDEF
As LDEF but output is to the printer.

DEFSAVE "<string>"
Save the current analyser definitions to a tape, disc or microdrive file named <string>.
Amstrad users will require a 2k buffer and this will require the use of the BUFFER=
command. It is often a good idea to set BUFFER to the second half of PROG SPACE (see
FLIST).

DEFLOAD "<string>"
Load a previously saved file of analyser definitions named <string> from tape, disc or
microdrive. Note that Amstrad users require a 2K buffer (see DEFSAVE).

a) Amstrad
When the definitions are saved, they are first disassembled back to their ASCII form (hence
the 2K buffer). When they are re-loaded they are re-compiled back into PROG SPACE. This
means that a PROG= will need to be executed before a DEFLOAD or a PROG SPACE
UNDEFINED error will occur. It is also possible that a DEFLOAD may be terminated with an
INSUFFICIENT SPACE error if the current PROG SPACE is not large enough to
accommodate the previously saved definitions. If these errors occur reset PROG SPACE
and try again.

b) Spectrum
The Spectrum version does not DEFSAVE ASCII files in the same way as the Amstrad and
so the DEFSAVE,DEFLOAD sequence has to be treated in a different way: The Monitor/
Analyser must be relocated to the same address when DEFLOADing a particular file, as it
was when DEFSAVing the particular file. DEFLOAD also resets PROG SPACE automatically
to the size and position that it had at the time of the defeating. This means that the
Spectrum user must be extra cautious when setting PROG SPACE prior to typing
definitions because it is not possible to increase PROG SPACE without losing the
definitions. As mentioned previously in SAVE and LOAD a microdrive number may be
included in the filename string to direct the monitor to access that drive rather than the
current microdrive.

EDIT <word name>
Edit a previously defined analyser/stop definition.

The $ is automatically inserted at the start of the word definition which is displayed on the
edit line with the cursor pointing to the first character of the word definition. The line is then
edited in the normal way. Pressing ENTER will cause the new definition to be processed.
There are several points to note:

i) If the word name itself is not edited then the previous definition is replaced by the new
 definition. The 'Word Redefined' message is issued to indicate a successful redefinition.

ii) If the word name itself is edited then the new word is created and the previous
 definition is preserved.

iii) Spaces will automatically be inserted between each word in a definition when it is
 displayed to the editor line and a colon is automatically inserted at the end of the word
 name. This means that a word that was originally entered as

$FRED #1 #2 #3

118

would be displayed on the edit line as

$FRED: #1 #2 #3

Occasionally this will cause a definition to exceed the 40 characters allowed. If this is the
case, then the definition will be automatically truncated at 40 characters (including carriage
returns). For this reason, care should be exercised when compacting definitions.

iv) It is also possible, although unlikely, that a 'No space' error will be given when the
 edited line is ENTERed. lf this does occur then Amstrad users should save the
 definitions, increase PROG SPACE, reload the definitions and try again, Spectrum
 users cannot surmount this problem and it is therefore advisable do ensure ample
 PROG SPACE before beginning a session. As an indication, the STACK CHECKER
 example used in this manual would require about 500 bytes of program space to
 ensure sufficient editing space. 1k of PROG SPACE should cover almost any
 eventuality.

9.2 ANALYSER ERRORS

PROGRAM SPACE UNDEFINED
An analyser command has been used without setting up program space with the PROG=
command.

OUT OF PROGRAM SPACE
This error can occur in a WORD command because insufficient program space has been
defined and the current definition will not fit in the space that is left. This error can also
occur with the EVAL command since the definition is compiled into the program space
before it is executed.

WORD NOT KNOWN
You are trying to use a word in a definition which has not yet been defined.

NO DEFINITION
You are trying to define a word without any definition.

STACK EMPTY
The current word requires at least one operand on the stack but there are insufficient left on
the stack for it to use.

STACK NOT EMPTY
This error can occur when a STOP has been executed and more than one number is left on
the stack at the end of the definition.

DIVISION BY ZERO
The word '/' has been used with a divisor of 0.

INSUFFICIENT STACK SPACE
The stack is too big to fit in the spare space left in the program space.

NO SPACE
An attempt has been made to use the EDIT command with insufficient PROG SPACE
defined - see EDIT.

WORD REDEFINED
A pre-defined analyser definition has been successfully re-defined - see EDIT.

119

9.3 ANALYSER FORTH RESERVED WORDS

In the following list of definitions a stack diagram is given for each word, this represents
how the word effects the stack. In these diagrams the '>' sign splits the before and after
parts. Numbers on the stack are represented by n1,n2 and n3, these are 16 bit integers and
so have the range 0 to 65535. Sometimes words use flags and f1, f2 and f3 represent these,
a flag uses zero to represent false and a non-zero value (usually 1) to represent true. Here is
an example:

n1 n2 > f1

This would mean that the definition would expect at least two numbers on the stack where
n2 is the top stack item and n1 is the next stack item. After the word had been executed n1
and n2 would have been removed leaving a flag (which has the value 0 or 1) on the top of
the stack. A "Stack Empty" error is given if there are insufficient items on the stack when
the command is executed.

DEFINED WORDS
Register Values

AF,BC,DE,HL,IX,IY,SP,PC > n1
These eight words place the current value of the corresponding register pair on the stack.

A,B,C,D,E,H,L,F > n1
Place the value of the indicated register on the stack.

CF,PVF,NF,ZF,SF,HF > f1
Place a flag on the stack which reflects the value of one of the Z80 flags as shown below:
CF Carry flag
PVF Parity/overflow flag
NF Add/subtract flag
HF Half carry flag
ZF Zero flag
SF Sign flag

The flag value placed on the stack will be 0 if the flag was clear or 1 if it was set.

I > n1
Interrupts enabled/disabled. The flag value placed on the stack will be 0 if interrupts are
disabled but 1 if they are enabled.

Memory Addressing

ADDR > n1
ADDR places the address of the last memory location accessed on the stack. If the most
recent instruction did not write to or read from memory then ADDR will return the value 0.
Not all memory accessed by an instruction is recorded, the following do not effect ADDR:

Block moves (LDI, LDD, LDIR and LDDR)
Block compares (CPI, CPD, CPIR and CPDR)
Block inputs and outputs (INI, IND, INIR, OUTI, OUTD, OTIR and OTDR)
Stack operations (PUSH, POP, CALL, RST and RET)

The following are recognised and effect ADDR:

Absolute addressing eg. LD (#4321),HL
 LD SP,(#ABCD)

Register indirect addressing eg. LD (BC),A
ADD A,(HL)
BIT 4,(IX-3)
RLD and RRD

120

ADDR can be used from the EVAL command and it will reflect the actions of the instruction
PC is pointing to at that moment.

RD,WR,ACF > f1
All three instructions leave a flag on the stack. BD leaves a true flag (1) if the last instruction
read from memory otherwise it leaves false (0). WR leaves a true flag if the last instruction
wrote to memory. ACF leaves a true flag if the last instruction accessed memory (ie. either
read or write).

Some instructions read and write to the same location, they are listed below:

Increments or decrements of a memory location eg. INC (I X+12)
Rotations of memory locations eg. SLA (HL)
Bit set/resets of memory locations eg. SET 4,(IY-1)

NOTE: Memory access flags RD, WR and ACF are reset at the start of a slow run.

Arithmetic Operations
+ addition n1 n2 > n3 (n3 =n1 + n2)
- subtraction n1 n2 > n3 (n3 =n1 - n2)
* multiplication n1 n2 > n3 (n3 =n1 * n2)
/ division n1 n2 > n3 (n3 =n1 / n2)

These four mathematical operators use the top two stack items as their operands, if there
are less than two numbers on the stack at the beginning of the word a "Stack Empty" error
is given. The operands are removed before the answer is placed on the stack.

Note that the Analyser stores its numbers as 16 bit integers, ie. a number from 0 to 65535
and so negative numbers, decimals and numbers greater than 65535 cannot be entered.
The Analyser has no overflow error and so only the least significant 16 bits of any answer is
ever remembered, the following examples demonstrate this:

EVAL 65535 1 + gives the answer 0
EVAL 0 1 - gives the answer 65535
EVAL 500 500 * gives the answer 53392 (i.e. the 16 LSB's of 250000)

Since numbers are stored as integers, the result of division will be rounded down to a
whole number eg. 10 4 / will give the answer 2 instead of 2.5 .

Logic Operators
AND bitwise AND n1 n2 > n3
0R bitwise OR n1 n2 > n3
XOR bitwise exclusive-OR n1 n2 > n3
NOT bitwise complement n1 > n2

These four operators perform the given bitwise logic operations on the top two stack items
(only one for NOT) and after removing the operands the answer is placed back on the stack.
The logic operations are performed on the full 16 bits of a number and the tables below
show the effect on the individual bits for the four operations:

0 AND 0 = 0 0 OR 0 = 0 0 XOR 0 = 0 NOT 0 = 1
0 AND 1 = 0 0 OR 1 = 1 0 XOR 1 = 1 NOT 1 = 0
1 AND 0 = 0 1 OR 0 = 1 1 XOR 0 = 1
1 AND 1 = 1 1 OR 1 = 1 1 XOR 1 = 0

Relational Operators
˝ n1 equal to n2? n1 n2 > f1
> n1 greater than n2? n1 n2 > f1
< n1 less than n2? n1 n2 > f1
>= n1 greater than or equal to n2? n1 n2 > f1
<= n1 less or equal to n2? n1 n2 > f1
<> n1 not equal to n2? n1 n2 > f1
0= n1 equal to 0? n1 > f1
0> n1 not equal to 0? n1 > f1

121

These operators compare either the top two numbers on the stack, or the top stack item
with 0. F1 is either 1 or 0 to represent true or false. A "Stack Empty" error is given if there are
insufficient items on the stack. As with the other operators the operands are removed from
the stack before the answer is placed on the stack.

& Logical AND f1 f2 > f3
If the top two stack items are both non-zero, a true flag (1) is put in their place otherwise
they are replaced by a false flag (0). The & operator can be used to chain conditions
together, where any non-zero value on the stack represents a true condition and a zero
value represents false. This word acts differently to the word AND since 1 2 AND would
produce the answer 0, even though 1 and 2 both represent true conditions. The bitwise OR
word can be used for chaining conditions together and 0= can be used to perform the
logical NOT. For example you may want to convert the following to Analyser Forth:

"Stop if condition1 is false and either condition2 or condition3 are true"

this is translated to:

(NOT condition1) AND (condition2 OR condition3)

and can be written in Analyser Forth as:

STOP1: condition1 0= condition2 condition3 OR &

Other Operators
?SCR1 eg. f1 >
If the flag on the top of the stack is true then the memory dump display will be updated
immediately, if the flag is false no action is taken.

eg. to update the stack when HL = #0100 we would use the following
 structure. Note the zero on the end is to prevent a "stop0")

occurring:
$STOP0:HL #100 = ?SCR1 0

?SCR2 f1 >
This word may be used in the same fashion as ?SCR1 but the register display will be
updated rather than the memory dump.

! store word n1 n2 >
This command can be used to deposit a value in memory. The word value n1 is stored at the
address n2. Both numbers are dropped from the stack.

eg. to store the value #1234 at the address #6000 we would use the
following structure!

#1234 #6000 !

The effect would be that: address data
#6000 #34
#6001 #12

C! store byte n1 n2 >
This command is similar to ! but only stores one byte. The least significant byte of n1 is
stored at the address n2. Both numbers are dropped from the stack. Use capital C only.

MEM > n1
The address held in the monitor system variable MEM is put onto the stack.
This command allows the memory pointer to be incremented and decremented whilst
slow-running.

MEM! n1 >
This will set the memory pointer to the last value on the stack.

?PAUSE f1 >

122

If the flag on the stack is true the analyser stops and waits for a key-press. Pressing ESC/
SS&A will cause the slow run to be aborted. Pressing any other key will allow the slow run
to continue. The flag is removed from the stack.

eg. to pause the analyser if the IX register becomes equal the the PC
 value we would use the following definition:
 #STOP0:PC IX=?PAUSE

Note, however that the evaluation of STOP words must leave a flag on the stack. If there is
no flag a "stack empty" error will occur. The above definition would leave the stack empty;
so to prevent the error accusing we must alter it to leave a flag for the stop condition.
To stop the analyser immediately after key-press, whether ESC/SS&A or not use the
definition :

$STOP0:PC IX=?PAUSE1

but to continue after the key-press, unless ESC/SS&A is pressed use the definition:
$STOP0:PC IX=?PAUSE0

By adding a 1 after the ?PAUSE the whole point of the pause is negated, the analyser stops
irrespective of which key is pressed and irrespective of whether a pause occurs or not, i.e.
only one instruction will be executed. However by adding 0 after the pause the required
pause function is obtained, only when ESC/SS&A is pressed in response to the pause will
the analyser stop the slow run.

If f1>
If the flag on the stack is false the word currently being evaluated will be prematurely
terminated. This permits the definition of words which will be executed conditionally, see
the later examples. The IF command removes one flag from the stack.

eg . $STOP3:HL #4000 = IF HL MEM!

When evaluating this definition IF HL is not equal to #4000 the functions after the IF will not
be considered but IF HL=#4000 the value of HL will be assigned to the MEMory pointer.

Again, remember that a flag must be left on the stack by the evaluation of the STOP, so it is
necessary to insert another function. As the IF may cause a premature termination of the
evaluation of STOP3 we must insert the function before the IF so the definition becomes:

$STOP3:0 HL #4000 = IF HL MEM!

By inserting 0 the evaluation of STOP3 will yield a result 0. Therefore STOP3 will never
cause the analyser to stop but when HL = #4000 the MEMory dump pointer will be set to
#4000.

C@ byte fetch n1 > n2
The address n1 is replaced on the stack by the byte stored at n1 . Eg. to find what HL is
pointing to use HL C@ or to find what (IX+ 10) is pointing to use IX 10 + C@.

@ word fetch n1 > n2
This word is like the C@ word except that a 16 bit word is fetched instead of an 8 bit byte. The
word is formed from the two consecutive locations pointed to by the address held on the
stack. For example, to fetch the address held at locations 23100 (low byte) and 23101 (high
byte) use: 23100 @ Note that a 16 bit word is placed on the stack and not two separate
bytes.

BIT bit test n1 n2 > f1
This word expects two numbers on the stack, n1 and n2. The result, f1, is a copy of the n2th
bit of n1, n2 should be in the range 0 to 15 (since numbers are stored in 16 bits) and is taken
modulus 16 if greater than 15 (ie. 31 represents bit 15 etc.).

Stack Operations
DUP n1 > n1 n1
Duplicates the top item on the stack.

123

SWAP n1 n2 > n2 n1
Swaps the top two stack items over.

OVER n1 n2 > n1 n2 n1
The second from top stack item is copied onto the top of the stack without removing it from
its original position.

ROT n1 n2 n3 > n2 n3 n1
Rotates the top three stack items around as shown in the diagram.

Other Words

ON has the value 1 > 1
Places 1 on the stack.

OFF has the value 0 > 0
Places 0 on the stack.

DROP n1 >
Remove the top number from stack.

NOP >
This is a dummy command that does nothing. It is equivalent to a Z80 NOP.

KEY > n1
Stack the value of the last key pressed. This facility is included to allow the analyser to be
externally controlled. This is particularly useful if you are using a complex definition that
slows program execution. This facility can be used to switch the definition on and off as
required. If no key is being pressed the value '0' will be stacked.

For example,suppose we wished the analyser to execute a word called CHECK1 before the
"A" key were pressed, and then to execute a word called CHECK2 after the "A" key were
pressed . We could use the following definition:

TESTA KEY DUP "A" = SWAP "a" = OR DUP
This would leave 2 true flags on the stack if the "A" key were pressed or 2 false flags
otherwise.

TEST1 TESTA IF CHECK2
This will use the first flag which, if true, ("A" has been pressed), would cause CHECK2 to
execute.

CHECK TEST1 NOT IF CHECK1
This is the complete definition which will execute CHECK1 if "a" has not been pressed and
CHECK2 if "A" has been pressed.

CALL
The word CALL allows extra functions to be added to the Analyser which cannot be made
up from other, already defined words. CALL calls the machine code routine whose address
is held on top of the stack. On entry to the routine the following registers are set up:

HL: Address of a routine that will pop the top item off the analyser's stacking place it in the
register pair BC, this routine is called DROPBC.

DE : Address of a routine that places the value of BC onto the Analyser's stack, this routine
is called STKBC.

IX: Address of a table containing the values of the registers in the program currently being
slow run, the table is set out as follows:

IX+0,1 SP
IX+2,3 IX
IX+4,5 IY

124

IX+6,7 PC
IX+8,9 BC
IX+10,11 DE
IX+12,13 HL
IX+14 flag byte
IX+15 A
IX+16,17 BC'
IX+18,19 DE'
IX+20,21 HL'
IX+22 F'
IX+23 A'

The routines STKBC and DROPBC can be used to pass parameters into and out of the
machine code using the Analyser's stack, the layout of any code used within the CALL word
should be as follows:

1. Read required parameters off the stack using DROPBC.
2. Perform required operation.
3. Put any return parameters back on the stack using STKBC.

For example, lo write a routine which will 'beep' if the top stack item is a true flag (i.e. nonzero)
the following will be required:

Amstrad
BEEP : CALL DROPBC ; Fetch parameter from stack

 LD A,C
 OR B ; If BC=0 then just return
 RET Z
 LD A,7 ; Otherwise use firmware to print a chr$(7)
 JP #BB5A

DROPBC : JP (HL) ; This routine jumps to the routine whose
; address is held in HL (i.e. DROPBC)

Spectrum
BEEP : CALL DROPBC ; Fetch parameter from stack

 LD A,C
 OR B ; If BC=0 then just return
 RET Z
 LD HL,#100 ; Otherwise use ROM routine to make a beep
 LD DE,#80
 JP #3B5

DROPBC : JP (HL) ; This routine jumps to the routine whose
; address is held in HL (i.e. DROPBC)

If the appropriate routine from above was assembled in a free area of memory e.g. #ABE0
on the Spectrum or #6978 on the Amstrad an Analyser word BEEP could be defined which
would perform 'conditional beeps':

SPECTRUM: $BEEP #ABE0 CALL
AMSTRAD: $BEEP #6978 CALL

and could be used thus:
$STOP1 PC #A000 = BEEP 0

This would cause a beep sound to be made each time the location at #A000 was slow run
note that the zero on the end is required because the STOP word expects a value on the
stack at the end of the definition and 0 tells the Analyser not to stop.

AMSTRAD only

The virtual screen window may be defined from within the analyser using the following set
of commands. Each of these commands removes one entry from the stack.

COL! n1 >
ROW! n1 >

125

LEN! n1 >
HGT! n1 >

The appropriate window parameter is set to the value on the stack eg.
EVAL 1 COL! will set the window column to 1.
EVAL 1 2 3 4 COL! ROW! HGT! LEN!
will set the window column to 4
will set the window row to 3
will set the window height to 2
will set the window length to 1

USEFUL DEFINITIONS
Given below are a list of useful words that can be defined and then used to make up more
powerful definitions (none of the definitions already exist in the Analyser and so must be
defined by you when you require theme:

RANGE range checking n1 n2 n3 > f1
$RANGE:ROT SWAP OVER >= ROT ROT <= &

Checks if the value n1 is in the range of n2 to n3 inclusive, for example HL #8000 #80FF
RANGE checks if HL lies in the range #8000 to #80FF inclusive.

WORD STATE OF STACK
RANGE n1 n2 n3
ROT n2 n3 n1
SWAP n2 n1 n3
OVER n2 n1 n3 n1
>= n2 n1 f1
ROT n1 f1 n2
ROT f1 n2 n1
<= f1 f2
& f3

MEMWR Memory Protection n1 n2 > f1
=MEMWR:ADDR >= SWAP ADDR <= & WR &

This word can be used to protect areas of memory from being written to by the machine
code being slow run. N1 and n2 represent the start and finish addresses of an area of
memory that should not be written to. For example :

$STOP9:#8000 #8FFF MEMWR #0 #1FF MEMWR OR

This stop definition would cause the program to stop if it starts to write to the area from
#8000 to #8FFF inclusive and #0 to #1FF inclusive.

LXOR Logical exclusive-or f1 f2 > f3
$LXOR:0> SWAP 0> XOR

The word LXOR is different to XOR since it treats the two numbers on top of the stack as
flags (0=false, 0<>TRUE). The logical XOR can be used to chain conditions for example
you might want a program to stop if either condition1 or condition2 were true but not if
both are true, this would be written:

$STOP0:condition1 condition2 LXOR

The following definition, with the associated piece of machine code, will print, in
hexadecimal the value on top of the stack in the top lefthand corner of the screen, assume
the code is at either #ABE0 for SPECTRUM or #6978 for the AMSTRAD (it could be any
piece of free RAM), The new definition will be called PRINT.

126

The machine code part:

Amstrad
#6978 #CD #99 #69 CALL #6999 ; CALL the DROPBC routine
#697B #3E #1E LD A,#30
#697D #CD #5A #BB CALL #BB5A ; send a character 30 to the VDU
#6980 #78 LD A,B
#6981 #85 #85 #69 CALL #6985 ; print most significant byte
#6984 #79 LD A,C ; print Least significant byte
#6985 #F5 PUSH AF ; Routine which prints the
#6986 #07 RLCA ; contents of A in hexadecimal
#6987 #07 RLCA
#6988 #07 RLCA
#6989 #07 RLCA
#698A #CD #8E #69 CALL #698E
#698D #F1 POP AF
#698E #E6 #0F AND #0F
#6990 #C6 #90 AND A,#90
#6992 #27 DAA
#6995 #CE #40 ADC A,#40
#6995 #27 DAA
#6996 #C3 #5A #BB JP #BB5A ; firmware's print routine
#6999 #E9 JP (HL) ; HL holds the address of DROPBC

Spectrum
#ABE0 #CD #01 #AC CALL #AC01 ; Call the DROPBC routine
#ABE3 #3E #16 LD A,22
#ABE5 #D7 RST #10 ; print an AT control character
#ABE6 #AF XOR A
#ABE7 #D7 RST #10 ; followed by two 0, puts print
#ABE8 #D7 RST #10 ; position at 0,0's
#ABE9 #78 LD A,B
#ABEA #CD #EE #AB CALL #ABEE ; print most significant byte
#ABED #79 LD A,C ; print least significant byte
#ABEE #F5 PUSH AF ; print the value of A
#ABEF #07 RLCA ; in hexadecimal
#ABF0 #07 RLCA
#ABF1 #07 RLCA
#ABF2 #07 RLCA
#ABF3 #CD #F7 #AB CALL #ABF7
#ABF6 #F1 POP AF
#ABF7 #E6 #0F AND #F
#ABF9 #C6 #90 ADD A,#90
#ABFB #27 DAA
#ABFC #CE #40 ADC A,#40
#ABFE #27 DAA
#ABFF #D7 RST #10 ; print character using ROM

; routine
#AC00 #C9 RET
#AC01 #E9 JP (HL) ; HL contains address of DROPBC

(Spectrum-ensure before running the above program that IY has the value #5C3A or it will
not work!)

The Analyser definition for the new word is:

SPECTRUM: $PRINT #ABE0 CALL
AMSTRAD: $PRINT #6978 CALL

PRINT prints the value on top of the stack n1 >

The word PRINT will not print the number on top of stack in hexadecimal in the top
lefthand corner of the screen. For example to monitor the contents of a particular memory
location while slow running the following definition could be used:

127

$STOP1 address @ PRINT 0

Where 'address' is the address to be monitored and the 0 on the end ensures that the stop
condition is never met and so the Analyser doesn't halt.

ALTBC get the value of BC' > n1

There are no words in the Analyser to read the values of any of the alternate registers, CALL
can be used to get around this. ALTBC fetches the value of BC'. CALL can be used since on
entry to the CALL's machine code IX points to a table of register values which includes the
alternate registers (see definition of the CALL word for a layout of this table).

The code to perform the ALTBC is given below:

AMSTRAD
#6978 #DD #4E #10 LD C,(IX+16) ; fetch the value of BC' from the table
#697B #DD #46 #11 LD B,(IX+17)
#697E #D5 PUSH DE ; DE holds the address of STKBC
#697F #C9 RET ; exit via STKBC

SPECTRUM
#ABE0 #DD #4E #10 LD C,(IX+16)
#ABE3 #DD #46 #11 LD B,(IX+17)
#ABE6 #D5 PUSH DE
#ABE7 #C9 RET

The Analyser definition for the above will be:
SPECTRUM: $ALTBC #ABE0 CALL
AMSTRAD: $ALTBC #6978 CALL

The ALTBC word will now place the value of BC' on the stack and can be used just although
it were one of the other register words. To define words that get the value of other registers
just read different parts of the register table.

10. EXAMPLES
For most real time applications it is not practical to slow run the entire program so a breakpoint
structure has been provided that allows discrete sections of the code to be analysed
while the remainder runs at full Z80 speed.

By no means do the examples here exhaust all of the facilities contained within the
monitor/analyser but they do exhibit the workings of the system to some degree. The programs
used on the following examples are simple because the examples are included to demonstrate
the monitor/analyser in action as clearly as possible.

Example 1 - demonstrates slow and fast execution

Load the low version of the monitor/analyser provided and enter it by typing:

for Amstrad CALL 5927
for Spectrum RANDOMIZE USB 25003

Now set the memory pointer so that the example program can be entered using the DATA
command

SPECTRUM type: MEM=#ABE0
AMSTRAD type: MEM=#6978

Now enter the example program using the DATA command.
SOURCE AMSTRAD SPECTRUM
LOOP LD B,5 #06,#05 #06,#05

LD IX,WORD1 #DD,#21,#93,#69 #DD,#21,#FB,#AB
CALL SEARCH #CD,#83,#69 #CD,#EB,#AB
JR LOOP #18,#F5 #18,#F5

SEARCH PUSH IX #DD,#E5 #DD,#E5
POP HL #E1 #E1

128

LOOP1 BIT 7,(HL) #CB,#7E #CB,#7E
INC HL #23 #23
JRZ,LOOP1 #28,#FB #28,#FB

L00P2 PUSH HL #E5 #E5
P0P IX #DD,#E1 #DD,#E1
DJNZ LOOP1 #10,#F6 #10,#F6
RET #C9 #C9
DEFS 2 #00,#00 #00,#00

WORD1 DEFB "ONE",#80 "ONE",#80 "ONE",#80
DEFB "TWO",#80 "TWO",#80 "TWO",#80
DEFB "THREEE",#80 "THREE",#80 "THREE",#80
DEFB "FOUR",#80 "FOUR",#80 "FOUR",#80
DEFB "FIVE",#80 "FIVE",#80 "FIVE",#80
DEFB "SIX",#80 "SIX",#80 "SIX",#80

Review the program using the LIST or DISS command to check that it is correct. As this
program will be used again you may wish to save this code in case you have any mishaps,
if so

for AMSTRAD type: SAVE "EXAMP",#6978,#698B
for SPECTRUM type: SAVE "EXAMP",#ABE0,#AC20

Now set the program counter

SPECTRUM type: PC=#ABE0
AMSTRAD type: PC=#6978

Now define two breakpoints

SPECTRUM type DEFBRK 1,16,#ABEE - slow to fast
 type DEFBRK 2,3,#ABF3 - slow mode 3

AMSTRAD type DEFBRK 1,16,#6986 - slow to fast
 type DEFBRK 2,3,#698B - slow mode 3

Now type SLOW3 or JUMP

The program will run under control of the monitor. The program contains a continuous
loop. The program will run in slow mode 3 from LOOP2 to LOOP1 and at full speed from
LOOP1 to LOOP2. Therefore the display will only exhibit register values etc., for the section
of code after LOOP2 and before LOOP1.

If left, this program would continuity run forever. Therefore, we must intervene. While the
monitor is running in any slow mode it may be halted by typing:

for AMSTRAD ESC
for SPECTRUM SS & A

Example 2 - Using the Analyser to update the screen

It is unusual to require the front panel to be updated on every instruction. The program
typed in for example 1 will now be used to demonstrate how MEMory display may be updated
less often under the control of the analyser. The analyser will be programmed so that
the MEMory displayable be updated only when the IX register changes value and the MEMory
pointer will follow the value in IX whenever an update occurs.

To use the analyser a program space must be defined.
SPECTRUM type: PROG=42000,42499
AMSTRAD type: PROG=25000,25499

To use the TRACE facility we must also define a workspace for the trace.
SPECTRUM type: WORK=42500,43000
AMSTRAD type: WORK=25500,26000

Now reset the program counter to the start of the example program by typing:
SPECTRUM type: PC=#ABE0
AMSTRAD type: PC=#6978

129

bearing in mind that the faster execution is obtained in slow mode 0 define two breakpoints
as follows:
SPECTRUM

type: DEFBRK 1,16,#ABEE - slow to fast
DEFBRK 2,3,#ABF3 - continue in slow mode 0

AMSTRAD
type: DEFBRK 1,16,#6986 - slow to fast

DEFBRK 2,3,#698B - continue in slow mode 0
Type ANALYSER ON

Define two analyser STOP words as follows:
$STOP 0:IX MEM ! 0 for both SPECTRUM and AMSTRAD

and EITHER
$STOP 1:#ABF9@IX <> ? SCR1 I X #ABF9 ! 0 for the SPECTRUM

OR
$STOP 1:#6991 @ IX <> ? SCR1 IX #6991 ! 0 for the AMSTRAD

Both the STOP definitions above are terminated with a zero for the same reason. The
analyser expects to find a single flag on the stack when a definition has been evaluated. If
the zero's are omitted from the above definitions they will leave the stack empty. The value
zero has been chosen so that the value left on the stack ie. zero is false, therefore the
analyser will not stop the program.

Now set the monitor into action by typing either SLOW 0 or JUMP.

Observe the following effects:

a) The program runs fast (full Z80 speed) from LOOP1 to LOOP2.

b) The program runs under the control of the monitor in slow mode 0 from LOOP2 to
LOOP1.

c) Whenever IX is assigned a new value the memos display is updated.

d) Despite the definition of two analyser STOP words, the analyser does not stop because
both STOP words evaluate to '0' (see above).

e) Each time STOP0 is evaluated (after every instruction during the SLOW0 phase) the
value of IX is copied into the MEMory pointer.

d) Each time STOP1 is evaluated the old value of IX, stored at either #AB99 on the SPECTRUM
or at #6991 on the Amstrad, is compared with the program value and if they differ the
memory display is updated then the program value of IX is stored so it becomes
the old value of IX for the next time that STOP1 is evaluated.

Example 3 - Debugging

The following section shows how the Analyser can be used to track down bugs, it assumes
that the area of memory around

#ABE0 on the Spectrum
or #6978 on the Amstrad

is free. To demonstrate the Analyser we need a piece of machine code with an error in it.

Specification: The program given below SHOULD add up the ten numbers held in the bytes
from #ABE0 to #ABE9 on the Spectrum (#6978 to #6981 on the Amstrad) and place the total
in the last element of the table:

SPECTRUM

#ABEA LD B,10 ; Length of table is 10 bytes
#ABEC LD HL,#ABE0 ; HL points to the start of the table
#ABEF XOR A ; Keep the total in A
#ABEF0 ADD A,(HL) ; Start the loop which adds up the ten values

130

#ABF1 INC HL ; Go on to next element in the table
#ABF2 DJNZ #ABF0 ; Repeat loop ten times
#ABF4 LD (HL),A ; Store result in last element
#ABF5 RET

AMSTRAD
#6982 LD B,10 ; Length of table is 10 bytes
#6984 LD HL,#6978 ; HL points to start of table
#6987 XOR A ; Keep total in A
#6988 ADD A,(HL) ; Start of loop which adds up ten values
#6989 INC HL ; Go on to next element in the table
#698A DJNZ #6988 ; Repeat loop ten times
#698C LD (HL),A ; Store result in in last element
#698D RET

To enter this program in memory type the following :

SPECTRUM AMSTRAD
MEM=#ABEA MEM=#6982
DATA 6,#A,#21,#E0,#AB,#AF DATA 6,#A,#21,#E0,#AB,#AF
DATA #86,#23,#10,#FC,#77,#C9 DATA #86,#23,#10,#FC,#77,#C9

The program requires ten numbers in the ten locations from #ABE0 on the Spectrum (from
#6978 on the Amstrad). Place some data there by typing :

SPECTRUM AMSTRAD
MEM=#ABE0 MEM=#6978
DATA 1,2,3,4,5 DATA 1,2,3,4,5
DATA 6,7,8,9,0 DATA 6,7,8,9,0

To make sure that we have the program and data in the memory we can check it by listing
it, but first define the memory used as a data area using the command:

SPECTRUM AMSTRAD
DB 1 #ABE0 #ABE9 DB 1 #6978 #6981

and use the following to list it:

SPECTRUM AMSTRAD
LIST #ABE0,#ABF5 LIST #6978,#698D

The program can now be run using :

SPECTRUM: CALL #ABEA
AMSTRAD: CALL#6982

The answer 45 (#2D) should have been placed in the last location of the table,either #ABE9
or #6981 (the location originally containing 0). Examining the location shows that it still
holds the value 0, a bug! If we list the program using LIST we also notice that the program
has become corrupted, the first byte has changed from #6 to #2D. Assuming we don't
know immediately why the program isn't working we can use the Analyser to find out why
the total is not being placed in the correct place in the data area and why the first byte of the
program is being corrupted.

First define some program space:

SPECTRUM AMSTRAD
PROG=42000,42200 PROG=25000,25200

We could start out by trying to find out why the byte at #ABE9/#6981 (SPECTRUM/
AMSTRAD) was corrupted.

131

ln this case there is only one instruction which writes to memory, the instruction at #ABF4/
#698C. Using the Analyser here illustrates how a similar bug in a much longer program
could be found, in a longer program memory would be written to in many places and only
one would be causing the bug.

The following definition will set up the Analyser to detect when this byte is being written to:

SPECTRUM AMSTRAD
$STOP1 ADDR #ABEA = WR & $STOP1 ADDR #6982 = WR &

Before we can run the program again the first byte of the program should be returned to its
original value and the PC should be reset.

SPECTRUM AMSTRAD

MEM=#ABEA MEM=#6982
DATA 6 DATA 6
PC=#ABEA PC=#6982

Now run the program again,
SLOW 0 (remember that the Analyser can only be used when slow running)

The program will stop with "Press any key" as usual but in addition gives the error
message "Stop number #1" indicating that STOP1 has been fulfilled. The instruction
executed will be the LD (HL),A instruction located at the end of the addition program. This
will tell us that the answer is being placed in the wrong place, ie. #ABEA instead of #ABE9
on the Spectrum, #6982 instead of #6981 on the Amstrad.

To see exactly what is happening we can single step the program but since the program
loops around several times this will waste time especially since we can assume that the
addition part of the program is working. Suppose we want to single step from when the last
byte of the table is read up to there we can slow run the program.

The following definition sets up STOP1 to detect when the last byte in the table is read
(#ABE9/#6981)

SPECTRUM AMSTRAD
CLEAR CLEAR
$STOP1 ADDR #ABE9 = RD & $STOP1 ADDR #6981 = RD &

Now run the program again (remember to correct the program first):

SPECTRUM AMSTRAD
MEM=#ABEA MEM=#6982
DATA 6 DATA 6
PC=#ABEA PC=#6982

The program will now stop at the ADD A,(HL) instruction at #ABF0/#6988 with HL=#ABE9/
#6981. We can now use single stepping to investigate what happens from here, what
should happen is that the total (held in A) should be loaded into #ABE9/#6981 (the current
value of HL). The next instruction is an INC HL, single step this (use CTRL S or symbol shift
D). Single step the DJNZ instruction and you will reach the LD (HL),A, note that HL now has
the value #ABEA/#6982 and not #ABE9/#6981, this is because of the INC HL just
executed, the error has been found! We cannot remove the INC HL because it is needed in
the loops instead a DEC HL is needed between the DJNZ instruction and the LD (HL),A. To
insert this extra instruction use

SPECTRUM AMSTRAD
MEM=#ABF4 MEM=#698C
DATA #2B,#77,#C9 DATA #2B,#77,#C9

Now run the program:
SPECTRUM AMSTRAD
CALL #ABEA CALL #6982

132

afterwards examine the byte at #ABE9/#6981 , it should now contain the value 45 (#2D), the
sum of 1 ,2,3,4,5,6,7,8,9 and 0. Type:

SPECTRUM AMSTRAD
LIST #ABE0,#ABF6 LIST #6978,#698E

and you will see that the program has not been corrupted. Running the program again will
give the result 90 (#5A) since the sum is now that of 1,2,3,4,5,6,7,8,9,45.

Example 4 - STACK CHECKER

The following example is included firstly because it makes fairly comprehensive use of the
analyser's predefined words, and secondly because it performs a test that some
programmers may find useful at some stage.

Under normal circumstances a subroutine is exited with the stack in the same state as it
was when the routine was entered. A common source of error (and one which is often
difficult to trace) occurs when routines are CALLed recursively with conditional RETurns.
The definition in this example will cause a screen update and pause, if a RETurn
(conditional or otherwise) is encountered, with the stack in a different state to that which
was produced by the most recent successful CALL. The definition accumulates nested
CALLS and checks to see whether a conditional CALL was actually executed. All this
amounts to is a definition to check that a subroutine contains matching sets of PUSHes and
POPs,

This example assumes that the low version of the monitor is in use and consists of the
following word definitions.

DEFINITION DESCRIPTION
$ILAST #AC40 (Spectrum) ILAST is a constant which evaluates to
$ILAST #6A00 (Amstrad) the address of the temporary storage of the

last opcode executed. ILAST is therefore
treated as a variable of sorts.

$SP1 #AC41 (Spectrum) SP1 is a constant which evaluates to the
$SP1 #6A01 (Amstrad) address of the temporary storage of the

stack pointer when the last opcode was
executed. SP1 can also be thought of as a
variable.

$SPOINTER #AC43 (Spectrum) SPOINTER is a constant which evaluates to
$SPOINTER #6A03 (Amstrad) the address of the pointer into the table of

stack pointer values stored. Each time a CALL
is successfully executed the SP (after the call)
is added to the table and the value in
SPOINTER is incremented by 2. SPOINTER
can also be thought of as a variable. Each
time a RETurn is encountered the value in
SPOINTER is decremented by 2 to point to the
previous SP value and thus accommodates
nesting.

$UPDATE IF 1 ? SCR1 1 ? SCR2 1 UPDATE will test the flag on the top of the
?PAUSE stack and if a true flag is found, will update

the register display and memory display,
then wait to a key before continuing.

$QC ILAST C@ #CD= Leave a true flag if the last instruction was a
CALL, or a false flag if otherwise.

$QCC ILAST C@ #C7 AND #C4 = Leave a true flag if the last instruction was a
conditional CALL, or a false flag if otherwise.
The opcode is bitwise ANDed with #C7
(%11000111) and if the result is #C4
(%11000100) then it was one of the 8
conditional CALLS.

133

$QRST ILAST C@ #C7 AND #C7 = Leave a true flag if the last instruction was a
restart (RST), or false flag if otherwise. The
opcode is bitwise ANDed with #C7
(%11000111) and if the result is #C7
(%11000111) then it was one of the 8
restarts.

$QCALL QC QCC QRST OR OR SP1 @ Test to see whether : a CALL, OR a conditional
SP <> & CALL, OR a restart, has been executed, AND

the stack has been changed (i.e. a conditional
CALL was successfully executed).This will
therefore leave a true flag if the last
instruction was a successful CALL or a false
flag if it was not.

$QRET PC C@ #C9 = Leave a true flag if the current instruction
(about to be executed) is a RETurn, or a false
flag if otherwise.

$QRETC PC C@ #C7 AND #C0 = Leave a true flag if the current instruction
(about to be executed) is a conditional
RETurn or a false flag if otherwise. The
opcode is bitwise ANDed with #C7
(%11000111) and if the result is #C0 then it is
one of the conditional RETurns.

$SQRETURN QRET QRETC OR Test to see whether the current instruction
is a RETurn or a conditional RETurn and leave
a true flag if it is either or a false flag if it
is neither.

$SPS1 SPOINTER @ DUP SP SWAP ! The first half of the definition for SPS. The
contents of SPOINTER are placed on the
stack (pointer into the stack pointer table),
this value is copied onto the top of the stack
and SP is placed in the table at the specified
position. The other copy of the contents of
SPOINTER is left on the stack for use in the
second half of SPS.

$SPS SPS1 2 + SPOINTER ! Thevalue left on the stack by SPS1 (pointer
into the table) is incremented by two (to
point to the next vacant space in the table)
and the new pointer is put back into
SPOINTER.

$SPF SPOINTER @ 2 - DUP Fetch the pointer into the table onto the
SPOINTER ! @ stack, decrement it by two (points to the

previous value in the table). copy it onto the
top of the stack, store one of them back into
SPOINTER and fetch the SP value from the
address pointedly by the other.

$ISP PC C @ ILAST C ! SP SP1 ! Put the current opcode into the last
instruction location and the current SP into
the last SP location. Before executing the
next instruction these will be used as the
'last instruction' and 'last stack pointer'
values.

$CHECK QCALL ISP IF SPS Tests to see if a successful CALL has been made
and stacks a flag, updates ILAST and SP1 and
then, if a successful CALL was made, update the
table.

134

$RUN CHECK QRETURN This is a full definition which checks to see if a
IF SPF SP <> UPDATE CALL/RETURN sequence is interrupted by a net

stack change.

$STOP0 RUN 0 Defines the STOP condition. The 0 after the
RUN ensures that the STOP condition is never
actually met.

Using the Example Definition

To begin with, a sample program is needed. The following program has no practical
significance but illustrates the use of the stack checker quite clearly. Since we are using the
low version of the monitor we will use memory from #ABE0 on the Spectrum or from
#6978 on the Amstrad.

SPECTRUM:
#ABE0 #3E #20 LD A,#20
#ABE2 #CD #E7 #AB LINE2: CALL #ABE7
#ABE5 #18 #08 JR #ABEF
#ABE7 #E5 LINE4: PUSH HL
#ABE8 #3D DEC A
#ABE9 #C4 #E2 #AB LINE6: CALL NZ,#ABE2
#ABEC #C8 LINE7: RET Z
#ABED #E1 POP HL
#ABEE #C9 RET
#ABEF #0 NOP

AMSTRAD:
#6978 #3E #20 LD A,#20
#697A #CD #7F #69 LINE2: CALL #697F
#697D #18 #08 JR #6987
#697F #E5 LINE4: PUSH HL
#6980 #3D DEC A
#6981 #C4 #7A #69 LINE6: CALL NZ,#697A
#6984 #C8 LINE7: RET Z
#6985 #E1 POP HL
#6986 #C9 RET
#6987 #0 NOP

The program begins by setting A to hold a counter with a value of 32. The CALL at LINE2,
CALLs LINE4 which stacks HL, decrements the counter, and if non-zero, CALLS LINE2 to
loop round again. This cycle continues until A holds zero. At this point the CALL at LINE6 is
not executed and control drops to the RET Z at LINE7. At this point the analyser checks the
stack to see what position it was in when the last CALL (from LINE2) was executed. In this
example a PUSH HL has occurred and so the stack has been changed and the analyser
updates the screen and waits for a key. Note that even if the zero flag were not set at the RET
Z instruction, the analyser will STOP because it knows that if the zero flag had been set an
error was likely and this may therefore be a potential error which needs to be drawn to the
user's attention. The STOP condition could be redefined as an exercise so that a STOP only
occurs if the RET is successfully executed.

To run the example itself:

 (i) SPECTRUM :type PROG=42000,42200
AMSTRAD :type PROG=25000,25200
to reserve program space for the definitions.

 (ii) Type in each of the definitions previously listed.

 (iii) Use the "." command to enter the sample program in the same manner as the
previous examples.

 (iv) Type EVAL 0 ILAST C! <ENTER>
to initialise ILAST.

135

 (v) Type EVAL SP SP1 ! <ENTER>
to initialise SP1.

 (vi) SPECTRUM : type EVAL #AC45 SPOINTER ! <ENTER>
AMSTRAD : type EVAL #6A05 SPOINTER ! <ENTER>
to initialise SPOINTER.

 (vii) SPECTRUM : type PC=#ABE0 <ENTER>
AMSTRAD : type PC=#6978 <ENTER>
to set the PC to the start of the sample program.

 (viii) Type - ANALYSER ON <ENTER>
to ensure the analyser is activated.

 (ix) Type - SLOW 0 <ENTER>
to set the program running under the scrutiny of the analyser.

Example 5- Virtual Screen Usage
Spectrum:

Type MEM=#ABE0 and enter the following program data :
DATA #21,0,#40 LD HL,#4000
DATA #36,#66 LOOP: LD(HL),#66
DATA #23 INC HL
DATA #7C LD A,H
DATA #FE,#58 CP #58
DATA #20,#F8 JRNZ,LOOP
DATA #C9 R E T

We will now define the memory area for the virtual screen by typing :
SCRN=#E000<ENTER> (There must be 6912 free

bytes from #E000 onwards)
and then type

SCRN ON <ENTER>

To verify that a virtual screen has been set up type:

SCRN<ENTER>
The whole screen should go blank; press any key to continue.

Now type PC=#ABE0<ENTER>
Now type CALL<ENTER>

The screen should go blank then fill up with a candy stripe pattern. Finally the message
"press a key" will appear at the foot of the screen. Press any key and the monitor screen will
be recreated.

Now type SCRN <ENTER>

The screen will now display the contents of the virtual screen memory. Press any key to
continue.

Amstrad:

Type MEM=#6978 and enter the following program data :
DATA #21,0,#C0 LD HL,#C000
DATA #36,#55 LOOP: LD(HL),#55
DATA #23 INC HL
DATA #AF XOR A
DATA #B4 OR H
DATA #20,#F9 JRNZ,LOOP
DATA #C9 R E T

We will now define the memory area for the virtual screen by typing:
SCRN=#7000<ENTER>

and then
SCRN ON<ENTER>

We will define a screen window 6 characters wide and 8 characters high, in the top left
corner of the screen by typing :

COL=0<ENTER>
ROW=0<ENTER>
HGT=8<ENTER>
LEN=6<ENTER>

Press CTRL and V together to invert the window to verify that it is correct.

Now type SCRCLR<ENTER>

This command clears the memory from #7000 to #72FF the amount required for saving
the current window.

Type DISS #6978<ENTER> to check the program.

Now type SCRN <ENTER>

The window will go blank. Press any key and the window will be restored.

Now type PC=#6978<ENTER>

Now type CALL<ENTER>

The screen should go blank then fill up with a candy stripe pattern. The message "press a
key" will appear at the bottom of the screen. Press any key and the monitor screen will be
recreated.

Now type SCRN<ENTER>

The contents of the virtual screen memory will be displayed in the window until any other
key is pressed then the monitor screen will be replaced.

137

APPENDIX A - KEY SUMMARY

Abreviations:
S = Shift
CS = Caps shift
SS = Symbol shift

AMSTRAD SPECTRUM
← CS & 5 Command line cursor left

→ CS & 8 Command line cursor right

DEL CS & 0 Delete character left of cursor

CLR SS & 0 Delete character at cursor

COPY CS & 1 Insert a space, move characters from
cursor the right

CTRL & L SS & A Clear the command input line

ESC SS & A Used to exit from SLOW running,
(STOP) LlSTing, DlSSassembling and DUMPing.

ENTER ENTER Execute the command in the command
input line, irrespective of cursor position

S & ← SS & Q Decrement the MEMory pointer

S & → SS & E Increment the MEMory pointer

S & ↑ SS & W Subtract 8 from memory pointer
(up 1 line of MEMory dump)

S & ↓ SS & S Add 8 to MEMory pointer

(down 1 line of MEMory dump)
S & COPY CS & 9 Advance MEMory pointer to next

instruction
CTRL & N SS & Y Equivalentto "NEXT" when searching

CTRL & I CS & 6 Incrementing PC register

CTRL & D CS & 7 Decrementthe PC register

CTRL & K SS & G Advance PC to the next instruction

CTRL & S SS & D Single step, i.e. execute the instruction
pointed to by PC, advance PC to the next
instruction

CTRL & E SS & F Single step the instruction pointed to
by PC except CALL's or RST's which are
executed at normal speed, advance PC
to the next instruction

CTRL & V - Highlight the virtual screen window
(AMSTRAD only)

138

APPENDIX B - MONITOR COMMAND SUMMARY
COMMAND PARAMETER ACTION
A= <byte> Assigns value in <byte> to the A register.

AF= <word> Assigns value in <word> to the AF register pair.

ANALYSER flag Switch the analyser on or off according to <flag>.
<flag>=0 turns analyser off.

B= <byte> Assigns value in <byte> to the B register.

BC= <word> Assigns value in <word> to the BC register pair.

(BC)= <byte> Places the value <byte> in memory at the
address in BC.

BREAK <brk number>,<flag>,<addr>Define breakpoint number <brk number>.
If the address <addr> is met, the monitor
will resume control.
The breakpoint may be on or off, set by <flag>

BRK <brk number>,<flag> The breakpoint <brk_number> is switched on
or off according to the value of <flag>.

BUFFER= <address> The 2048 bytes of memory starting at <address>
will be used as a buffer during FLIST or during the
load of ASCII files (AMSTRAD only).

C= <byte> Assigns value in <byte> to the C register

CALL A call to the address in PC is made. Code executes
at normal Z80 speed but a return address, to the
monitor, is placed on the stack.

CALL <addr> As CALL but control is passed to the machine code
at <addr> rather than PC.

CAT List the tape/disc/microdrive directory to the
screen.

CHECK <start1>,<finish1>,<start2> Compares byte for byte, the contents of memory
lying between <start1> and <finish1> inclusive,
with the area starting at address <start2>.

CLEAR Resets program space and switches analyser on.

CTRL & N / SS & Y Shorthand for NEXT

D= <byte> Assigns value in <byte> to the D register.

DATA <byte list> The byte list is placed into memory.

DB Lists the current selection of data areas.

DB <db number> Deletes the specified area <db number>.

DB <db number>,<start>, Defines a data area.
<finish>

DE= <word> Assigns value in <word> to the DE register pair.

(DE)= <byte> Places the value <byte> in memory at the
address in DE.

139

DEFBRK <brk number>,<type>, Define SPECIAL breakpoint number <brk number>.
<addr> If the address <addr> is met, the monitor will act

according to the value of <type>.
DEFBRK <brk number>,<type>, Define SPECIAL breakpoint number <brk number>.

<addr>,<count> If the address <addr> is encountered then
<count> is decremented.
When <count> reaches zero the monitor
will act according to the value of <type>.

DEFLOAD "<string>" Load the analyser definitions from the file
named "<string>".

DEFSAVE "<string>" Save the current analyser definitions to
a file named "<string>".

DELETE <brk number> Removes the breakpoint <brk number>
definition.

DI Disable interrupts.

DISC Select disc as the current input/output device.

DISS Disassemble the contents of memory, starting
at address MEM,to the top left hand window
of the screen until ESC/SS & A is pressed.

DISS <start> As "DISS" but starting at the address <start>
rather than MEM until ESC/SS & A is pressed.

DISS <start>,<finish> As "DISS <start>'' until either the address
finish is reached or until ESC/SS & A is pressed.

DRIVE <letter> Direct firmware to required drive (Amstrad only).

DUMP Output contents of memory, starting at
address MEM, to the SCREEN, until ESC/SS & A is
pressed.

DUMP <start> Output contents of memory, starting at address
<start> to the SCREEN, until ESC/SS & A is
pressed.

DUMP <start>,<finish> Output contents of memory, starting at address
<start>, to the SCREEN, until either address
<finish> is reached or until ESC/SS & A is pressed.

E= <byte> Assigns value in <byte> to the E register.

EDIT <word name> Edit the specified analyser definition.

EI Enable interrupts.

ERA "<string>" Delete from disc/microdrive, the file named
"<string>" (not tape versions).

EVAL <definition> Evaluate the <definition> and print
state of analyser stack.

EXAF The alternative "AF" register is displayed.
Swap AF for AF' or vice versa.

EXIT Return from the monitored the calling routine.

EXX The alternative register set is displayed.
Swap BC,DE & HL for BC', DE' and HL' or
vice versa.

140

F= <byte> Assigns value in <byte> to the F register.

FILL <start>,<finish>,<byte> The value <byte> s placed in the memory area

ranging from <start> to <finish> inclusive.
FLIST <filename>,<start>,<finish> Dissassembles the content of memory lying

between <start> and <finish> inclusive to
tape, disc or microdrive.

H= <byte> Assigns value in <byte> to the H register.

HL= <word> Assigns value in <word> to the HL register pair.

(HL)= <byte> Places the value <byte> in memory at the
address in HL.

IX= <word> Assigns value in <word> to the HL register pair.

(IX)= <byte> Places the value <byte> in memory at the
address in IX.

IY= <word> Assigns value in <word> to the IY register pair.

(IY)= <byte> Places the value <byte> in memory at the
address in IY.

JUMP Monitor passes control to the machine code
starting at the address in PC. Code will execute at
normal Z80 speed. Unless "breakpoints" are
encountered the monitor will not be re-entered.

JUMP <addr> As JUMP, but control is passed to the machine
code at <addr> rather than PC.

L= <byte> Assigns value in <byte> to the L register.

LBRK List the 8 breakpoint definitions.

LDEF List the user's analyser definitions.

LDUMP As "DUMP" but output to printer (duplicate to
screen is controlled by OPTION 2).

LDUMP <start> As "DUMP <start>" but output to printer (duplicate
to screen is controlled by OPTION 2).

LDUMP <start>,<finish> As "DUMP <start>,<finish>" but output to printer
(duplicate to screen is controlled by OPTION 2).

LIST As "DISS" but uses the whole screen.
LIST <start> As "DISS <start>" but uses the whole screen.
LIST <start>,<finish> As "DISS <start>,<finish>" but uses the whole

screen.

LLIST As "LIST" but output to the printer.
LLIST <start> As "LIST <start>" but output to the printer.
LLIST <start>,<finish> As "LIST <start>,<finish>" but output to the

printer.

LOAD <filename> Load the specified file from tape or microdrive to
the address found in the header block
(Spectrum only).

141

LOAD <filename>,<addr> Load the specied file from tape or microdrive to
the address <addr> (Spectrum only).

LOAD <filename>,<addr> The specified file is loaded into memory starting
at address <addr>. PC may be set to the
execution address. (Amstrad only).

LTRACE The contents of the Trace memory will be listed to
the printer.

LTRACE <number> The specified number of instructions are listed to
the printer. The most recent values are used.

MAP Display the current memory usage.

MDRV Select microdrive number 1 as the current
input/output device.

MDRV <drive> Select the indicated microdrive as the current
input/output device.

MEM <addr> The memory pointer is set to the value <addr> and
updates MEMory dump accordingly.

MODE <mode number> Selects the screen mode according to
<mode number>, 1=40 column, 2= 80 column
(Amstrad only).

MOVE <start1>,<finish1>,<start2> Copy the contents of memory area lying between
<start1> and <finish1> inclusive to the area
starting at <start2>.

NEXT After a match is found the SEARCH is continued.

OPTION <option number>,<flag> The various options <option number> may be
switched on or off, depending on the value in
<flag>.

1,<flag> ON=DECIMAL
OFF=HEXADECIMAL

2,<flag> ON=PRINTER ONLY
OFF=PRNTER AND SCREEN

3,<flag> ON=FLIST to file and screen
OFF=FLIST to file only

4,<flag> ON=slow run on ROM calls and jumps
OFF=fast execute ROM calls and jumps

5,<flag> ON=FLIST without labels
OFF=FLIST with labels

6,<flag> ON=maintain screen during JUMP,CALL or SLOW
OFF=clear screen before JUMP,CALL or SLOW

7,<flag> ON=printer output to KEMPSTON Centronics
 interface (Spectrum only)
OFF=printer output to ZX printer

8,<flag> ON=carriage returns only
OFF=carriage returns are followed by line feeds

(PC)= <byte> Place the value <byte> in memory at the address
in PC.

PDEF List the user's analyser definitions to the printer.

142

POP The SP register (stack pointer) is incremented
twice.

PROG= <addr1>,<addr2> Define the memory between <addr1> and
<addr2> as the analyser program space.

PUSH <word> The value <word> is placed on the stack and the
stack pointer is decremented twice.

ROM <flag> Switches either the main ROM or the shadow ROM
depending on the state of <flag>.

ROM <flag1>,<flag2> Switch the lower ROM either on or off, according
to the state of <flag1>.
Switch the currently selected upper ROM either
on or off, according to the state of <flag2>.
(Amstrad only).

ROM <flag1>,<flag2>, As "ROM <flag1>,<flag2>" but alter the currently
<rom number> selected upper ROM to <rom number>.

(Amstrad only).

SAVE <filename>,<start>,<finish> The contents of memory lying between <start>
and <finish> inclusive is saved to tape, disc or
microdrive with the specified <filename>.

SAVE <filename>,<start>, As "SAVE <filename>,<start>,<finish>" but an
<finish>,<exec> execution address <exec> is saved also.

See LOAD above (Amstrad only).

SCRCLR Clear the virtual screen memory (Amstrad only).

SCRN View the contents of the virtual screen.
SCRN <flag> Switch the virtual screen on or off accordng to

<flag>.
SCRN= <addr> Define the memory starting at <addr> to be

virtual screen.

SEARCH <start>,<finish>, The memory area defined by the address
<byte list> <start> and <finish> inclusive, is searched for

the byte list.

SLOW <slow mode number> Start a program slow running with update of
monitor display according to <slow mode number>
until ESC/SS & A is pressed or a breakpoint is
reached.

SP= <word> Assigns value in <word> to the SP register pair.

TAPE Select tape as the current input/output device.

TRACE The contents of the TRACE memory will be
displayed using the whole screen.

TRACE <number> The specified number of instructions are listed.
The most recent values are used.

WORD <word name>,<definition> Define an analyser word.

WORK= <start>,<finish> Sets aside a workspace for FLIST.

. <byte list> A shorthand version of DATA.

143

? <word> Convert and display the value <word> in the
4 bases, binary, octal, decimal and hexadecimal.

$ <word name>,<definition> Define an analyser word.

APPENDIX C - SPECTRUM 128K EXTENSIONS

INTRODUCTION
The 128k version of the monitor maintains all the features of the standard Spectrum monitor, athough
the syntax of some of the commands is extended to accommodate the RAM paging facilities.

The extended monitor may reside in any fixed RAM page and this means that to all intents and
purposes, once loaded, it can be treated as a ROM, i.e. the full Z80 address space can be utilised.
The assembler also sits in a fixed RAM page and so it is possible to have the assembler and monitor
co-resident for quick and easy program development.

TAPE MAP
On Tape 2 of the Genius package you will find the following files:

Side A: MON A BASC loader
MONOBJ Monitor object file

Side B: BACKUP of side A

1. OPERATING INSTRUCTIONS

Tape: To load the monitor from tape, use the up and down arrow keys to select the
'TAPE LOADER' option, and press ENTER. The monitor will load, then the question
"Which Page?" will appear. Enter a page number 0-7. The monitor will execute.

Microdrive: If you have produced, and wish to load, a microdrive version of the monitor
you should use the up and down arrow keys to select the '129k BASIC' option and
press ENTER. Having entered BASIC the monitor can be loaded using:

LOAD *"m";1;"MON128"

NOTE: Although the monitor can run in any RAM page, some pages have specific uses eg. 5 and 7
which are screen contended. Realistically the users choice is restricted to 0,1,2,3,4,6 and
possibly 7 if one screen is sufficient.

2. SCREEN LAYOUT

The screen layout is basically the same as that employed by the standard Spectrum version but the
second set of system flags, displayed to the right of the Z80 flags, are all used. There are five flags
displayed, each with its status displayed directly beneath it. The flags have the following options
and significance.

R: This is the ROM status and indicates which of the 3 ROMs is currently paged in.
The ROMs are indicated by D (128k ROM), S (Spectrum ROM) and I (Interface 1 ROM).

M: This indicates the RAM page that the MEM pointer is assumed to be paged into the Z80's
address space at C000 hex. Values are in range 0 to 7.

P: This indicates the RAM page that the PC is assuming to be paged into the Z80's
address space at C000 hex. Values are in range 0 to 7.

NOTE: This means that MEM and PC may point to the same physical address, but
display different instructions.

144

V: This indicates which screen the Spectrum is using for its video memory. Screen 0 or 1 is
indicated by a '0' or '1' respectively.

I: This indicates the interrupt status of the user's program. '0' indicates that the user's
program has interrupts disabled and a '1' indicates interrupts enabled.

3. 128K MONITOR COMMAND SYNTAX

The following commands require revised syntax:

ROM <letter> e.g. ROM D
Page in the selected ROM D = 128k ROM

S = Spectrum ROM
I = Interface 1 ROM (shadow ROM)

RAM <number> e.g. RAM 7
Page in the selected RAM page. There are 8 RAM pages in physical memory and each of these can
be paged into the Z80 address space of address C000-FFFF hex. In fact RAM pages 2 and 5 always
occupy Z80 address space anyway and so there s little point in executing RAM 2 or RAM 5.
The following is a summary:

Physical Memory Z80 Memory
Page 7 (screen 1) Page 0-7 C000-FFFF
Page 6 - Page 2 8000-BFFF
Page 5 (screen 0) Page 5 4000-7FFF
Page 4 -
Page 3 -
Page 2 -
Page 1 -
Page 0 -

BREAK <brk number>,<flag>,<addr>,<page> e.g. BREAK 2,ON,#C070,7
Carries out the same function as the BREAK command described in section 7.6 of the main text but
sets the breakpoint in the appropriate RAM page. Note that <page> will be irrelevant if <addr> is not
in the range C000-FFFF hex, but should still be specified.

DEFBRK <brk number>,<flag>,<addr>,<page>[,<count>]
e.g. DEFBRK 4,0,#D000,6
 DEFBRK 4,0,#D000,6,10

Carries out the same function as the DEFBRK command described in section 7.6 of the main text but
sets the breakpoint in the appropriate RAM page. Note that <page> will be irrelevant if <addr> is not
in the range C000-FFFF hex, but should still be specified.

CALL <addr>[,<page>] e.g. CALL #D000 or CALL #D000,7
Carries out the same functions as the CALL command described in section 5 of the main text. The
second parameter is optional and , if provided, will select the indicated RAM page before executing
the CALL.

CHECK <start1>,<finish1>,<start2>[,<page>]
e.g. CHECK #B000,B7FF,#9000
or CHECK #B000,B7FF,#9000,6

This command verifies that two blocks of memory are identical. One of the two blocks is defined by
<start1>,<finish1> and will lie in the MEMory page. The second block will be defined by <start2>. If
the optional page parameter is entered the second block will lie in that <page>, otherwise the second
block will also lie in the MEMory page.

145

JUMP <addr>[,<page>] e.g. JUMP #D000
or JUMP #D000,7

Carries out the same functions as the JUMP command described in section 5 of the main text. The
second parameter is optional and , if provided, will select the indicated RAM page before executing
the JUMP

MEM= <addr>[,<page>] e.g. MEM=#D000
or MEM=#D000,7

Carries out the same functions as the MEM command described in section 5 of the main text. The
second parameter is optional and , if provided, will select the indicated RAM page before updating the
display.

MEMP=<page> e.g. MEMP=7
Select the indicated RAM page without changing the memory pointer address.

SCRN=<addr>[,<page>] e.g. SCRN=#D000,0
Carries out the same functions as the SCRN command described in section 5 of the main text. The
second parameter is optional and , if provided, will tell the system to select the indicated RAM page
during virtual screen operations.

DB <db number>,<start>,<finish>,<page>
A data area may be defined n any page.

MAP
This command, like the standard Spectrum, allows the user to view the current state of memory
usage within the monitor. The data is displayed in the top left area of the screen and has the following
appearance.

START END P
GMON #61A8 #6728 1
 & #C000 #FC36 1
WORK #FE1C #FFFF 1
PROG #FC4D #FE1B 1
VSCR #C000 #DAFF 6
OPTION 00000000
I/O Tape
VS Off
ANAL Off

These values are typical but they may vary from version to version.

TRACE
Like the standard Spectrum but this trace also shows the program page from which each nstruction
was executed.

WORK=<start>,<finish>,<page>
At start up WORK will lie in the same page as the monitor. If this workspace is insufficient it may be
moved to another page in which case the memory available for PROG= will be larger accordingly.

USER NOTES

(i) 'Prog' space must always be in the same page as the monitor.

(ii) The monitor uses the 128k system variable at #5B5C to keep track of page switching
operations. The user is warned therefore that any page switching must be duplicated
in this variable otherwise the monitor will not keep track. The 128K itself expects to find the
current page data in this system variable so any failure to conform may result in a bug.

146

4. 128k ANALYSER - ADDITIONAL WORDS

MPAGE! n1 >
Sets the memory page used by the memory pointer to the last value on the stack. n1 should be in the
range 0 to 7. If n1 is greater than 7 then n1 mode 8 is used.

MPAGE > n1
Puts the currently selected memory page onto the stack.

PPAGE > n1
Puts a value on the stack which gives the currently selected program page (used by user programs),
the screen select, the ROM select and the Spectrum 48k/Spectrum 128k lock switch.
These are contained in the following bits.

BITS USE
0,1,2 RAM PAGE 0,1,2,3,4,5,6 or 7

3 SCREEN SELECT 0 = page 5, 1 = page 7

4 ROM SELECT 0 = 128k ROM, 1 = Spectrum ROM

5 SPECTRUM LOCK 0 = 128k machine, 1 = 48k Spectrum

147

ASSEMBLER INDEX

ASSEM 16,22,23
ASSEMC 16,22,23
ASSEML 16,22,23
Assembler Directives 5,14,16,25
BASE 12
Binary Operators 6,77
Buffer 7,19
Calculator 12
CARGO 22,73
CAT 15
Character Constant 6
CLEAR 16,18,72
CLS 9
CODE 14,56,71,85
COND 29,30,75
COPY 4,10,71,85
DB 29
DEFB 29
DEFL 30,73
DEFM 29
DEFS 30,37
DEFW 29
DELETE 10,85
DISC 13
DISC.IN 15
DISC.OUT 15
DL 29,30,73
DRIVE.A 13
DRIVE.B 13
DS 30,37,75
DW 29
ELSE 29,30
ENDC 29,30
ENDM 32,73
EQU 22,30,73
ERA 15
Error Messages 4,11,13,23,30,71,73
EXECUTE 19,85
EXIT 20
EXPORT 16,18,22,41,71
Expression 5,9,14
FIND 11,15,85
FORM 12
Immediate Commands 9
IMPORT 16,18,22,41,71
INT 34,37
Labels 5,6,14,16,19
LENGTH 12
LIST 8,10
LMISSING 18
LOAD 2,13,22,71
LOAD ASCII 14,72
Location Counter 6,31
LLIST 10
LTABLE 17
LTABLEN 18
LUNUSED 18
MACRO 32,73
MARGIN 12

MDRV 13
MDRV.IN 15
MDRV.OUT 15
Memory Map 79
MISSING 18
MODE 10
MOVE 10,71
Multiple Statement Lines 7
ORG 6,16,31,75
Paragraphs 7,10
PCHAR 34,36,37
PINT 34,37
PRINT 12,17,33,76
Printer Commands 12
PROTECT 85
PUT 14,20,31,74
REDUCE 16,18,22
REN 15
RENUM 10
REPLACE 11
SAVE 13,71
Screen Buffer 7,10,19
Screen Editor 2
SETSPACE 10,13,71,84
Signed Arithmetic 12,76
STATS 19,32,85
Storage Counter 6
Symbol Table 17,22
TABLE 17,22,32
TABLEN 17,22
TAPE 13
TAPE.IN 15
TAPE.OUT 15
Tape Map 1,84
Text Entry 7
Unary Operators 7,76
Unsigned Arithmetic 76
UNUSED 18
UPRINT 12,76
VERIFY 14
WIDTH 12
WIPE 85
Z80 Instructions 5,19,57
#BEGIN 39
#DI 37,39
#DS 36,37,39,75
#DSE 34,38
#DUE 25,34,36,38
#ELSE 39
#END 39
#ENDIF 39
#ENDW 34,40
#FNC 39,75
#IF 34,39,75
#LIB 41
#PRM 39
#REPEAT 34,40,75
#RETURN 39
#STACK 38,41
#UNTIL 34,40
#WHILE 34,40

*CLOSEOUT 27
*COUNT 28
*ENDW 29
*FORM 26
*INCLUDE 16,22,23,26
*LIST 25,27
*LLIST 26,27
*MACLIST 26
*OPENOUT 27,56
*PRINTER 25,26
*PROMPTS 28
*REPEAT 29,75
*REPORT 16,23,28
*SCREEN 25
*TITLE 26
*UNTIL 29,75
*WHILE 29,37,75

MONITOR INDEX

A= 94
AF= 94
Amstrad Specific Commands 98
ANALYSER 111,117
Analyser Commands 117
Analyser Errors 119
B= 94
BC= 94
(BC)= 95
BREAK 109,145
Breakpoints 107
Breakpoint Commands 109
BRK 109
BUFFER= 90,94,98
C= 94
CALL 90,96,100,103,105,106,107
CAT 97
CHECK 96
CLEAR 117
D= 94
DATA 95
DB 102
DE= 94
(DE)= 95
Debug Commands 105
DEFBRK 109,145
DEFLOAD 118
DEFSAVE 118
DELETE 109
DI 97
Disassembler Commands 102
DISC 98
DISS 102
DRIVE 99
DUMP 95
E= 94
EDIT 118
Editor 93
EI 97
ERA 97
EVAL 117
EXAF 94,95
Example: Relocating Sessions 90
Examples 128
EXIT 95
Extension ROMs (Amstraf) 89
EXX 95
F= 94
FILL 95
FLIST 90,91,103
H= 94
HL= 94
(HL)= 95
IX= 94
(IX)= 95
IY= 94
(IY)= 95
JUMP 96,100,103,105,106,107
Key Usage 93,138

L= 94
LBRK 109
LDEF 118
LDUMP 95
LENGTH= 104
LIST 93,102
LLIST 102
LOAD 90,99,100,102
Low and High Monitor/Analysers 90
LTRACE 107
MAP 98,99
MDRV 100
MEM= 95,128
MODE 98
Monitor Commands 94,139
Monitor Error Messages 109
MOVE 95
NEXT 96
Operating Instructions 87
OPTION 96
(PC)= 95
PDEF 118
POP 96
PROG= 117
PUSH 96
RAM 145
Relocation 88
ROM 98,99,145
SAVE 99,100,104
Saving a Loader 89
Saving a Relocated Version 88
SCRCLR 102
Screen Layout 91
SCRN 100
SCRN= 101
SEARCH 96
Single Stepping 105
Slow Running 106
Slow Running Commands 106
SLOW 100,106,108,116
SP= 94
Spectrum Specific Commands 99
Spectrum 128k 144
TAPE 99,100
TRACE 107
WORD 117
WIDTH= 104
WORK= 104
. 95
? 96
$ 117

NOTES

Note by ROBCFG:

There's a Spectrum version of the Laser Genius that is labeled as follows:

The only difference in the manual seems to be this note on the first page:

IMPORTANT

There is a section in this manual that relates to 128k memory capability. At the
time of printing the software is not available and should be treated as a
separate product.

This is a Spectrum 48k product which is only compatible with the 128k machine.

NOTES

This manual was brought to you by ROBCFG

