Amsoft DEVPAC

The Complete HiSoft Assembler,
dis-assembler, editor and monitor.
Revised and enhanced for the AMSTRAD
CPC464

Published by AMSOFT, a division of
Amstrad Consumer Electronics plc |
Brentwood House
169 Kings Road
Brentwood
Essex

All rights reserved
First edition 1984
Reproduction or translation of any part of this publication without permission of the copyright owner is
unlawful. Amstrad and HiSoft reserve the right to amend or alter the specification without notice. While
every effort has been made to verify that this complex software works as described, it is not possible to
test any program of this complexity under all possible conditions. Therefore HiSoft DEVPAC is provided
“as is” without warranty of any kind either express or implied.

SOFT116
Copyright © 1984 HiSoft and Amstrad Consumer Electronics plc

AMSTRAD DEVPAC for CPC464 . @

Foreword

HiSoft’s DEVPAC has been widely recognised as the most complete software tool for
low level machine code programming. It incorporates virtually every feature
available on much larger microcomputer systems, and is the product of several
years development and experience. Amsoft is particularly grateful to David Link
for his efforts to enhance the program to take advantage of the advanced features of
the CPC464.

The AMSOFT user group magazine will be continuing the general background to
machine language programming with the CPC464; and the Concise Firmware
manual (SOFT 158) is an essential companion publication for users wanting to gain
access to the wealth of built-in firmware that binds the BASIC and hardware
together in such an effective manner.

Page numbers are presented in the form:

(Section).(Page Number)

Updates and further information may be published from time to time in the
Amstrad user club magazine.

Notes on style in this manual

Please note that the typestyles used in AMSOFT publications are intended to help
identify the different operations and sequences used in computer operation:

Text that is typed at the keyboard and appears on the screen is shown in an OCR-B
typeface:

19 FOR N= 1 TO 50

Where clarity is enhanced, keyboard actions that instruct a command sequence but
do not necessarily have a corresponding representation on the screen are shown in
Helvetica 75 typeface. Non-printing keys are shown enclosed in square brackets:

[P] As a command, with no corresponding displayed character
[ESC]

General narrative and descriptive text will be shown in one of a variety of serif
typestyles, eg: Century, Palatino, Times etc.

FOREWORD AMSTRAD DEVPAC for the CPC464

INDEX

ASCH M3P2.11, M3P2.7
Arguments G3P3.2
Assemble 04, G3AP3.3, G3AP3.4
Assembler 0.1
Assembler M3P2.15
Assembler commands G3P2.2, G3AP2.1, G3P2.8
Assembler directive 0.3,63P2.3,
...................................... G3P25, G3AP2.1, G3P2.7, M3P2.6
Assembler listing G3P22
Assembler statement G3P2.3
Assembling G3P3.7
Assembly listing 04,07
BC G3P39
Breakpaint M3P2.10,
................................... M3P2.13, M3P2.3, M3P2.5, M3P29
Cassette Speed G3P3.7
Change Mode G3P36
Character modes G3P33
Cammandsccoeoveceeroreerroreree G3P32, G3P2.3, G3P3.1
Compression G3P3.1
Conditional Psuedo-mnemonics ... G3P2.8
DEFB G3P2.7
DEFB M3P26
DEFM G3P28
DEFS G3P2.7
DEFW G3pP2.7
Data areas M3P26
Debugger G3P3.8
Decimalcoocooeevvrerrcrs G3P2.9, M3P2.1, M3P2.2 M3P24
Delete G3P34
Delimiter G3P3.8
Dis-assamble M3P26
Dis-assembly M3p2.1
Disassembler/debugger 0.1
ELSE G3P28
END G3P28
ENT G3AP3 4, G3P2.8, G3P3.8
EQU G3P2.4, G3P2.5, G3P2.7
Editing G3P35
Editor G3P3.1
Eject G3P23
End of Line charactercocorvererreerces G3P2.3,G3P28
Errar numbers G3AP1.1
Errars G3P2.2, G3P24
Example G3P3.10
Exacute code M3P2.3
Expressions G3pP2.7,G3P2.5
Fill memory M3P2.5
Find G3P35, G3P36
Front panel M3P1.1
Heading G3P29
Help G3P38
Hexadecimal G3P239,M3P21,
M3PZ.2, M3P2.4, M3P1.1

IF G3P28
Include ... G3AP36, G3P29, G3P2.1, G3AP3.1
Insert G3P33
Insert Mode G3P36

Hisoft DEVPAC for the CPC 464

Intelligent copy M3P2.3
Label e G3P2.3, M3P2 6, G3P2.4, M3P2.7
List G3P3.4, M3P2.14, M3P2.4
Listing G3P23
Loading MONA 3 M3P1.1
Loading GENA3 G3P1.1
Location counter G3P2.2, G3P25, G3P256, G3P2.7
Machine-code 01
Memary POIMEEDoooooweumeernecccssesssoes M3P2.1, M3P2.10,
................................. M3P2.13, M3P2.14, M3P2.4, M3P29
Mnemonic G3P2.3, G3AP2.1
Modifying memary ... M3P2.13, M3P2.14
Modifying registers M3P2.15
Move ... G3P3.5, G3AP1.1, G3P2.1, G3P2.5, G3P2.7
Object code 63P2.2, M3P25
Operands G3P23
Operating system G3P38
Operator G3P25
Option 6 G3AP33
Options 04,07, G3P2.1
Pass 1 G3p2.2
Pass 2 G3P23
3 71 N G3P3.8, M3P2.14, M3P2.6
Program counter M3P2.13, M3P2.15, M3P2.3
Register painter M3P2.15
Relative addressing G3P26
Relative displacementcccocovrverisenne M3P24, M3P2.8
Renumber G3AP3.3
Renumbared G3P35
Reserved Words G3AP2.1
Run G3AP3S
Running G3P3.7
Screen-editing G3P34
Search memary M3p2.2
Single step M3P2.13, M3P2.11
Single-SEPRINGcccocomcrrenee M3P2.10, M3P2.3, M3P2.5
Stack M3r26
Substitute G3P35, G3P36
Symbal table ... G3AP1.1, G3P1.1, 63P2.3, G3P2.5, G3P2.1
TEXTEND G3P3.9, M3P2.7
Tape G3P2.10, 63P2.9, M3P29
Tape commands G3P3.7
Term G3P25
Test listing G3P34
Text Editing G3P34
Text Insertion G3P33
Textfile G3P3.1, 63P3.3, G3P3.9, M3P2.6, M3P2.7
Verification G3P3.7
Workspace M3P26
INDEX.

HiSoft DEVPAC for
the CPC464

Introduction

Welcome to the land of low-level assembler programming! A land where there are
many rewards for the patient programmer (fast, compact programs) and many,
many pits into which the unwary programmer may (will) fall.

In this section we shall attempt to give you a taste of the benefits that can be reaped
from careful assembly language programming. If you are already experienced in
this type of programming, then please feel free to skip this section and move on to
the other Sections which give the technical details of Hisoft Devpac.

Hisoft Devpac is a suite of two programs; GENAS3 - a Z80 assembler and MONA3 - a
disassembler/debugger. Firstly, what on earth does that mean?

As you undoubtedly know, computers think in binary - all the computer’s memory
and all the instructions that it obeys are just a string of 1’s and @’s or on’s and off’s.

A high-level language, like BASIC or Pascal, groups these machine instructions
together to form English-like, commands such as PRINT. The advantage of this is
that these high-level commands are easy to understand and therefore relatively
easy to use. The disadvantage is that one high-level command may be equivalent to
hundreds, or even thousands, of machine, or low-level, instructions. Thus programs
written in high-level languages can be slow to run and large in size, although they
are generally very easy to write. So, if we want to be able to write fast and compact
programs, it would seem advantageous to be able to produce low-level programs
consisting of machine-code instructions - instructions that the computer’s brain
understands directly. But, as we said above, these instructions are just a string of
1’s and @’s (or bits, BInary digiTs) and nobody wants to have to remember (or even
look up) the pattern of bits for each instruction. You don’t have to: assembly
language comes to the rescue by providing reasonably English-like words for each
machine-code instruction. So you can write a low-level language program by using
mnemonics that correspond one-for-one to machine-code instructions. Then you
must convert your assembly-language program into machine-code; you do this with
an assembler. GENAS3 is an assembler for the Z80 microprocessor and it contains its
own editor that enables you to create the assembler program and then assemble it
(convert it to machine-code) in a very simple and interactive manner,

Hisoft DEVPAC for the CPC 464 Page 0.1

Occasionally, you might wish to look at a piece of machine-code and try to
understand how it works. To do this you may want to convert the machine-code into
the corresponding assembler mnemonics so that it is easier to understand - a
program that does this backwards conversion is called a disassembler. You may
want other facilities to help you to understand the low-level program such as being
able to see how each instruction affects the state of the processor in the computer -so
you may want to single-step those instructions one at a time, seeing how the Z80’s
registers and flags (the working store of the processor) change as each instruction is
executed. You may also want to run a number of instructions and then stop and look
at the machine state i.e. set a breakpoint in the program so that execution breaks at
that point. A package that lets you do all these things is called a debugger - it helps
you to get rid of all those horrible little bugs. MONA3 is a combined
disassembler/debugger which gives you many powerful commands to help you
explore and understand machine-code programs.

So that is what Devpac gives you - confused? We hope not. Impatient? Ok let’s
produce an assembler program:

Load your Devpac cassette into the CPC464 tape deck, press the button marked
[PLAY] and then type:

RUN " [ENTER]

on the keyboard.
After a short while, the message

Load Address?
will appear on the screen. Leave the tape deck as it is and type:

1000 [ENTER]

on the keyboard. The assembler will now be loaded into the memory of the CPC464,
starting at address 1@@0. When the loading is finished (it should take roughly 135
seconds) the assembler will run automatically and produce a sign-on message on
the screen and a ‘>’ sign followed by the normal block cursor. Press [CAPS LOCK]
and then type:

110,10 [ENTER]

and you will be greeted with the number 10 at the left side of the screen followed by
a space. We can now enter some assembler mnemonics finishing each line with
[ENTER] and the lines will be entered into the program at the line numbers given
on the left. So, following the 18, type:

ENT $ [ENTER]

LD B,26 [ENTER]

LD A,"A" [ENTER]

LOOP: CALL #BBS5A [ENTER]
INC A [ENTER]

DJNZ LOOP [ENTER]

RET [ENTER]

Page 0.2 Hisoft DEVPAC for the CPC 464

and finally type [CTRL]C - this means hold the [CTRL] key down and press C. You
will now be back in the editor’s command mode with the ‘>’ prompt again. List your

program by typing:
L [ENTER]

Notice how the listing is neatly tabulated.
Well, what does this program do and how to we make it work?

Let’s look at the program line by line:
18 ENT $

This simply tells the editor that, if you want to run the program, then the program
should be entered at this point. ENT does not generate any machine code - it is what
is called an assembler directive.

20 LD B,26

This puts the value 26 in one of the Z80 registers - register B.

30 LD A,"A"

This puts the value of the ASCII character ‘A’ in the Z80’s A register.
40 LOOP: CALL #BB5A

A CALL instruction is used to invoke a subroutine somewhere else in the machine.
The subroutine at #BB5 A calls a routine in the operating system which prints out
on the screen whatever character is in the A register and then returns to the
instruction following the CALL. So this should print out ‘A’.

50 INC A

This simply increments by one the value held in the A register. It so happens that
ASCII characters have sequential values, so that ‘B’ comes after ‘A’. Thus register A
is increased to hold the value ‘B’.

60 DJNZ LOOP

A fairly powerful instruction this. It says: decrement the B register by one and, if
not zero, then goto LOOP. So we can use this instruction to do something many
times - a bit like a FOR..NEXT loop. Here register B was 26 so DJNZ LOOP
decrements it to 25 and then jumps to LOOP (since B is non-zero). Now the
instruction at LOOP prints out the value in the A register so that ‘B’ is now printed
on the screen. Then register A is incremented again (to ‘C’) and we come to DJNZ
LOOP again. So we will keep going round the loop 26 times until register B is equal
to zero and then we will drop through to:

Hisoft DEVPAC for the CPC 464 Page 0.3

7TORET

This RE Turns to the editor. Generally RET returns from a subroutine. In this case
we were not in a subroutine but if we run the program from the editor then it is
treated as a subroutine and so control returns to the editor.

Right, what about running it then? Well, at the moment, all that we have is the
source text of our program - we haven’t actually converted it to machine-code yet.
We do that with the editor command ‘A’ (for Assemble). So type:

A [ENTER]
You will see the message:
Table size:

appear. In most cases you do not have to enter a value here so just press [ENTER].
Now the message:

Options:

appears. There are many assembly options but the default will do us here - so just
press [ENTER] again. You will now get a listing on the screen, the assembly listing.
The main body of this tells you the machine-code corresponding to your assembler
program and where that machine code has been placed in memory. The first 4
characters tell you the memory address (in hexadecimal, base 16) of your
machine-code and these are followed by the actual machine-code. So you can see
that LD B,26 generates @6 1A in the machine. This @6 1A is actually another
representation of the actual bits set, each character corresponds to 4 bits e.g. @ is
0060, 6 is 8110, 1 is 8861 and A is 1810. But you don’t need to worry
about all that; the important thing is that you have now produced your
machine-code in memory. You can run it very simply, just type:

R [ENTER]

What happened? You should have seen the alphabet printed. Run it again (press R
[ENTERY])) .. and again. Easy?

Now change it. Type:

20 LD B,60 [ENTER]
A [ENTER]

Press [ENTER] after Table size? and Options? and then run the new program by
typing:

R [ENTER]

Page 04 Hisoft DEVPAC for the CPC 464

This time you got 60 characters displayed.

Assemblers are intended to make the task of the low-level programmer easier and
GENAS3 contains many features that enable you to create more easily understood
programs. Let’s delete the above program and re-type it in a more readable form.
Delete it by typing:

D10,70 [ENTER]

Note that this has only deleted the source of the program (the assembler mnemonics
etc.); it has not deleted the machine-code from memory (try the R command again).
Now enter a new program:

118,10 [ENTER]

LENGTH: EQU 26 [ENTER]
FIRST: EQU "A" [ENTER]
CONOUT: EQU #BB5A [ENTER]
[ENTER]

ENT $ [ENTER]

LD B,LENGTH [ENTER]

LD A,FIRST [ENTER]

Loop: CALL CONOUT [ENTER]
INC A [ENTER]

DJNZ Loop [ENTER]

RET [ENTER]

[CTRL/C)

List the program (using L [ENTER]) - it is more readable isn’t it? We have used the
EQU assembler directive (remember directives don’t generate any machine code) to
assign values to variable-like names. They are not really variables because you
cannot change them at any time but they do allow the program to have more
meaning. Now assemble the program (A [ENTERY]), pressing [ENTER] after Table
size: and Options: and run it (R [ENTER]). It produces the same results as the
earlier, more primitive program.

Well that’s about as much as we can do without writing a whole book on the subject
and that’s been done before! If you are new to assembly language then you should
buy (or borrow) a good book and use it in conjunction with the rest of this manual.
The classic book is ‘Programming the Z80’ by Rodney Zaks although this can be
heavy going for absolute beginners. With the advent of inexpensive micros, books
on assembly language are many and varied - just remember that you need one on
780 assembly language and not 6502, 68008 etc. etc. Good luck and, just to
show you why people use machine-code, delete your program by:

D16,110 [ENTER]

Hisoft DEVPAC for the CPC 464 Page 0.5

and enter this one:

110,10 [ENTER]
ENT $ [ENTER]
COUNT: EQU 10000 [ENTER]
PLOT: EQU #BBEA [ENTER]

MODE: EQU #BCBE [ENTER]
GRPEN: EQU #BBDE [ENTER]
[ENTER]

LD A,71 [ENTER]

CALL MODE [ENTER]

LD HL,300 [ENTER]

LD (RANUM) ,HL [ENTER]

LD BC,COUNT [ENTER]

[ENTER]

LOOP: PUSH BC [ENTER]

BIT 4,C [ENTER]

JP Z,NOSET [ENTER]

LD A,C [ENTER]

CALL GRPEN [ENTER]
NOSET:CALL RANDOM [ENTER]
PUSH HL [ENTER]

CALL RANDOM [ENTER]

POP DE [ENTER]

CALL PLOT [ENTER]

POP BC [ENTER]

DEC BC [ENTER]

LD A,B [ENTER]

OR C [ENTER]

JP NZ,LOOP [ENTER]

RET [ENTER]

[ENTER]

RANDOM: LD DE,(RANUM) [ENTER]
LD H,E [ENTER]

LD L,-3 [ENTER]

LD A,D [ENTER]

SBC HL,DE [ENTER]

SBC A,@ [ENTER]

SBC HL,DE [ENTER]

SBC A,@ [ENTER]

LD E,A [ENTER]

LD D,@ [ENTER]

SBC HL,DE [ENTER]

JP NC,RAN1 [ENTER]

INC HL [ENTER]

RANT: LD (RANUM) ,HL [ENTER]
LD A,H [ENTER]

AND Z00000081 [ENTER]

LD H,A [ENTER]

RET [ENTER]

[ENTER]
RANUM:
[CTRL/C]

DEFS 2 [ENTER]

Page 0.6

Hisoft DEVPAC for the CPC 464

Now assemble this program (A [ENTER]) - you might like to use option 4 (ent-
er 4 [ENTER] after the Options: message) to turn off the assembly list-
ing and run it using R [ENTER]. You should find that the plotting speed is some-
thing like 1580 points per second. We could make it even faster by accessing the
screen memory directly. But let’s look at a similar program in BASIC. From within-
the assembler type:

B [ENTER]
This will take you back into BASIC, so type:

NEW [ENTER]
AUTO [ENTER]

CLS [ENTER]

J%=1 [ENTER]

FOR I1%=1 TO 10000 [ENTER]

X%=RND*639 : Y%=RND*399 [ENTER]

IF (I%MOD, 20)=@ THEN J%=INT(RND*3)+1 [ENTER].
PLOT X%,Y%,J% [ENTER]

NEXT I% [ENTER]

[ESC]

RUN [ENTER]

The result is far slower than the machine-code routine, by roughly 20 times.
Nevertheless, this is actually a good speed for BASIC and you can normally expect
machine-code programs to run up to 1000 times faster than the equivalent BASIC
program. However, as you can see, the machine-code version is much more difficult
to understand - you always have to compromise!

For information, here are the times of this ‘Night Sky’ routine written in BASIC,
Pascal and machine-code:

150 seconds, 22 seconds and 8 seconds respectively.

We hope that this section has whetted your appetite for assembler-language pro-
gramming and we urge you to work through the rest of this manual slowly and care-
fully, trying things out as you go along. There is an extended example of using the
assembler in Appendix 3 and an example of using the disassembler/debugger in
Section 2.11 of the MONA3 manual.

Hisoft DEVPAC for the CPC 464 Page 0.7

Assembler and
Editor - SsEcTION 1

GENAS3 is a powerful and easy-to-use Z80 assembler which is very close to the
standard Zilog assembler in definition. Unlike many other assemblers available for
microcomputers, GENA3 is an extensive, professional piece of software and you are
urged to study the following sections, together with the example in Appendix 3,
very carefully before attempting to use the assembler. If you are a complete novice,
work through Appendix 3 first, and/or Section O first.

GENAS is roughly 7K bytes in length, once relocated. It contains its own integral
line editor which places the textfile immediately after the GENA3 code while the
assembler’s symbol table is created after the textfile. Thus when loading GENA3
you must allow enough room to include the assembler itself and the maximum
symbol table and text size that you are likely to use in the current session. It will
often be convenient, therefore, to load GENA3 into low memory.

To load GENAS into your Amstrad computer, simply type:
RUN"[ENTER]

and press [PLAY] on the tape deck. Firstly, a short BASIC program will be loaded
and this will automatically run itself and produce the message:

Load Address?

You should enter a decimal number between 1000 and 30000 and then press
[ENTER]. The number you enter is the address at which the disassembler will be
loaded - a good address is 18@8. After you have entered this number the message:

Please wait..loading GENA3..

will appear on the screen and the tape recorder will be started again automatically.
The assembler is now being loaded into the computer; this will take roughly 130
seconds. When GENAS has been fully loaded loaded, it will run itself and produce a
sign-on message, and a ‘Help‘ screen showing the commands inveked by capital
letters.

Note: if you intend to have both GENAS3, the assembler, and MONAS3, the
disassembler/debugger, in the computer at the same time, then always load GENA3
in low memory (say at 100@) and MONA3 in high memory (say at 30000). In
this case GENA3 should be loaded last.

DEVPAC FOR CPC 464 GENA3 PAGE 1.1

SECTION 2
Details of GENAS.

2.0 How GENA3 Works.

GENA3 is a fast, two-pass Z80 assembler which is easily adaptable to run on most
780 systems. The assembler assembles all standard Z80 mnemonics and has added
features which include conditional assembly, many assembler commands and a
binary-tree symbol table.

When you invoke an assembly (using the editor ‘A’ command - see section 3) you
will first be asked to specify ‘Table size:’ in decimal. This is the amount of
space that will be allocated to the symbol table during the assembly. If you default
(by simply hitting [ENTER]) then GENA3 will choose a symbol table size that it
thinks is suitable for the size of the text - normally this will be perfectly acceptable.
Note that when using the ‘include’ option you may have to specify a larger than
normal symbol table size; the assembler cannot predict the size of the file that will
be included.

After ‘Table size:’ you will be asked for any ‘Options:’ that you require.
Enter these in decimal adding the option numbers together if you want more than
one option. The options available are:

Option 1 Produce a symbol table listing at the end of the second pass of the
assembly

Option 2 Do not generate any object code.
Option 4 Do not produce an assembly listing.
Option 8 Direct any assembly listing to the printer.

Option 16 Simply place the object code, if generated, after the symbol table. The
Location Counter is still updated by the ORG so that object code can be
placed in one section of memory but designed to run elsewhere.

Option 32 Turn off the check of where the object code is going - useful for
speeding up assembly.

Example: Option 36 produces a fast assembly - no listing is generated and no
checks are made to see where the object code is being placed.

Note that if you have used Option 16 then the ENT assembler directive will have
no effect. You can work out where the object code has been placed if Option 16 has
been specified by using the editor X’ command to find out the end of the text (the
second number displayed) and then adding to this the amount of symbol table allo-
cated + 2.

DEVPAC FOR CPC 464 GENA 3 PAGE 2.1

Assembly takes place in two passes; during the first pass GENA3 searches for
errors and compiles the symbol table, the second pass generates object code (if
option 2 is not specified). During the first pass nothing is displayed on the screen
or printer unless an error is detected, in which case the rogue line will be displayed
with an error number below it (see Appendix 1). The assembly is paused - press [C-
TRL]C to return to the editor or any other key to continue the assembly from the
next line.

At the end of the first pass the message:

Pass 1 errors: nn

will be displayed. If any errors have been detected the assembly will then halt and
not proceed to the second pass. If any labels were referenced in the operand field but
never declared in a label field then the message ‘*WARNING* Label
absent’ will be displayed for each missing label declaration.

It is during the second pass that object code is generated (unless generation has
been turned off by Option 2 - see above). An assembler listing is generated during
this pass unless it has been switched off by Option 4 or the assembler command
*L-. The assembler listing is normally of the form:

cooo 210100 25 Label LD HL,1

1 6 15 21 28 33

The first entry in the line is the value of the Location Counter at the start of
processing this line, unless the mnemonic in this line is one of the
pseudo-mnemonics ORG, EQU or ENT (see Section 2.6) in which case the first
entry will represent the value in the operand field of the instruction. This entry is
normally displayed in hexadecimal but may be displayed in unsigned decimal
through use of the assembler command *D+ (see Section 2.8).

The next entry, from column 6, is up to 8 characters in length (representing up to 4
bytes) and is the object code produced by the current instruction.

Then comes the line number - an integer in the range 1 to 32767 inclusive.

Columns 21 — 26 of the line contain the first 6 characters of any label defined in this
line.

Then follows the mnemonic, operands (if any) and comments.

The assembly listing may be paused at the end of a line by hitting any key
- subsequently hit [CTRL]C to return to the editor or any other key to continue the
listing.

The only errors that can occur during the second pass are *xERROR* 10 (see
Appendix 1) and ‘Bad ORG!’ (which occurs when the object code will overwrite
GENAS3, the textfile or the symbol table - the detection of this can be turned off by
Option 32). *ERROR* 1@ is non-fatal and you may continue the assembly as
for first pass errors whereas ‘Bad ORG!’ is fatal and immediately returns control
to the editor. A ‘**File Closed** warning may occur if an ORG directive is
used while saving the object code to tape via the *T assembler command - this
warns that the current tape object file has been closed and the *T command turned
off.

GENA 3 PAGE 2.2. DEVPAC FOR THE CPC 464

At the end of the second pass the message:
Pass 2 errors:nn

will be displayed followed by warnings of any absent labels - see above. The
following message is now displayed:

Table used: xxxxx from yyyyy

This informs you of how much of the symbol table was used compared with how
much was allocated.

At this point, if the assembler directive ENT has been used correctly, the message
‘Executes : nnnnn’

is displayed. This shows the run address of the object code -you can execute the code
by using the editor ‘R’ command. Be careful using the ‘R’ command unless you have
just finished a successful assembly and seen the ‘Exe cut e s : nnnnn’ message.

Finally, if option 1 has been specified, an alphabetic list of the labels used and
their associated values will be produced.

Control now returns to the editor.

2.1 Assembler Statement Format.

Each line of text that is to be processed by GENA3 should have the following
format where certain fields are optional:

LABEL: MNEMONIC OPERANDS COMMENT
start: LD HL,label ;load HL with Llabel

Spaces and tab characters (inserted by the editor) are generally ignored.
The line is processed in the following way:

The first character of the line is inspected and the following action is taken if this
characterisa‘;’, ‘*’ or end-of-line character:

[3

; the whole line is treated as a comment i.e. effectively ignored.

*’ expects the next character(s) to constitute an assembler command (see
Section 2.8). Treats all characters after the command as a comment.

(end-of-line character) simply ignores the line.

If the first character is any character other than those listed above then the line is
searched for a space, tab character or colon ‘:’. If a colon is found first then all the
preceeding characters are taken as making up a label, otherwise it is assumed that
the first non-space, non-tab character is the first character of the mnemonic.

DEVPAC FOR THE CPC 464 GENA 3PAGE 2.3

After processing a valid label, or if no label is detected, the assembler searches for
the next non-space/tab character and expects this to be either an end-of-line
character or the start of a Z80 mnemonic (see Appendix 2) of up to 4 characters in
length and terminated by a space/tab or end-of-line character. If the mnemonic is
valid and requires one or more operands then spaces/tabs are skipped and the
operand field is processed.

Labels may be present alone in an assembler statement; useful for increasing the
readability of the listing.

Comments may occur anywhere after the operand field or, if a mnemonic takes no
arguments, after the mnemonic field.

The mnemonic must always be followed by a space, [TAB] or [ENTER] character.
2.2 Labels.

A label is a symbol which represents up to 16 bits of information.

A label can be used to specify the address of a particular instruction or data area or
it can be used as a constant via the EQU directive (see Section 2.6).

If a label is associated with a value greater than 8 bits and it is then used in a
context where an 8 bit constant is applicable then the assembler will generate an
error message e.g.

Label: EQU #1234
LD A,label

will cause *ERROR* 1@ to be generated when the second statement is
processed during the second pass.

A label may contain any number of valid characters (see below) although only the
first 6 are treated as significant; these first 6 characters must be unique since a
label cannot be re-defined (*ERROR* 4). A label must be terminated by a colon,
‘:’, and must not constitute a Reserved Word (see Appendix 2) although a Reserved
Word may be embedded as part of a label.

The characters which may be legally used within a label are @ - 9, $ and A - z.
Note that ‘A - z’ includes all the upper and lower case alphabetics together with the
characters [,\,],. ," and _. A label must begin with an alphabetic character.

Some examples of valid labels are:

LOOP:

loop:
a_long_label:
LC1]:

LL2]:

a:
LDIR: LDIR isnotaReserved Word.
twoib5:

GENA 3PAGE 24 DEVPAC FOR THE CPC 464

2.3 Location Counter.

The assembler maintains a Location Counter so that a symbol in the label field can
be associated with an address and entered into the Symbol Table. This Location
Counter may be set to any value via the ORG assembler directive (see Section 2.6).

The symbol ‘$’ can be used to refer to the current value of the Location Counter e.g.
LD HL,$+5 would generate code that would load the register pair HL with a
value 5 greater than the current Location Counter value.

2.4 Symbol Table.

When a label is encountered for the first time it is entered into a table along with
two pointers which indicate, at a later time, how this label is related alphabetically
to other labels within the table. If the first occurrence of the label is in the label field
then its value (as given by the Location Counter or the value of the expression after
an EQU assembler directive) is entered into the Symbol Table. Otherwise the value
is entered whenever the symbol is subsequently found in the label field.

This type of symbol table is called a Binary Tree Symbol Table and its structure
enables symbols to be entered into and recovered from the table in a very short time
- essential for large programs. The size of an entry in the table varies from 8 bytes to
13 bytes depending on the length of the symbol.

If, during the first pass, a symbol is defined more than once then an error
{(*ERROR* 4) will be generated since the assembler does not know which value
should be associated with the symbol.

If a symbol is never associated with a value then the message ‘*WARNING*
symbol absent’ will be generated at the end of the assembly. The absence of a
symbol definition does not prevent the assembly from continuing.

Note that only the first 6 characters of a symbol are entered into the Symbol Table
in order to keep down the size of the table.

At the end of the assembly you will be given a message stating how much memory
was used by the Symbol Table during this assembly - you may change how much
memory is allocated to the Symbol Table by responding to the ‘Table: ’ prompt when
starting the assembly (see Section 2.0).

2.5 Expressions.

An expression is an operand entry consisting of either a single TERM or a
combination of TERMs each separated by an OPERATOR. The definitions of
TERM and OPERATOR follow:

TERM:
decimal constante.g. 1029
hexadecimal constant e.g. #4685
binary constante.g. %1000101

DEVPAC FOR THE CPC 464 GENA 3 PAGE 2.5

character constante.g. "a

labele.g. L1829

also ‘¢’ may be used to denote the current value of the Location Counter.

OPERATOR ‘+’ addition
‘—’ subtraction
‘&’ logical AND
‘@’ logical OR
‘17]ogical XOR
‘*’ integer multiplication
¢/’ integer division
“2’MOD function(a ? b=a - (a/b)*b)

Notes: ‘#’ is used to denote the start of a hexadecimal number, ‘%’ for a binary
number and ‘' for a character constant. When reading a number (decimal,
hexadecimal or binary) GENAS3 takes the least significant 16 bits of the number
(i.e. MOD 65536)e.g. 70016 becomes 4480 and #5A2 C4 becomes #AZ2C4.

A wide variety of operators are provided but no operator precedence is observed
-expressions are evaluated strictly from left to right. The operators ‘*’/” and ? are
provided merely for added convenience and not as part of a full expression handler
which would increase the size of GENAS.

If an expression is enclosed within parentheses then it is taken as representing a
memory address as in the instruction LD HL,(loc+5) which would load the register
pair HL with the 16 bit value contained at memory location loc+5’.

Certain Z80 instructions (JR and DJNZ) expect operands which have an 8 bit
value and not a 16 bit one - this is called relative addressing. When relative
addresses are specified GENA3 automatically subtracts the value of the Location
Counter at the next instruction from the value given in the operand field of the
current instruction in order to obtain the relative address for the current
instruction. The range of values allowed as a relative address are the Location
Counter value of the next instruction -128 to +127.

If, instead, you wish to specify a relative offset from the Location Counter value of
the current instruction then you should use the symbol ‘$’ (a Reserved Word)
followed by the required displacement. Since this is now relative to the current
instruction’s Location Counter value the displacement must be in the range -126 to
+129 inclusive.

Examples of valid expressions:

#5000 - Label

%1081101 ! %1811 gives 21000110
#3456 #1000 gives #456
t+5%3-8 gives 19
$—Llabel +8

2345 /7-1 gives 334
"A"+128

|lyl|_ll;ll+7

(5%Llabel—#1000 & %1111

17@7%1000 gives 25

GENA 3PAGE 2.6 DEVPAC FOR THE CPC 464

Note that spaces may be inserted between TERMs and OPERATORs and vice
versa but not within TERMs.

If a multiplication operation would result in an absolute value greater than
32767 then *ERROR* 15 is reported while if a division operation involves
a division by zero then *ERROR#* 14 is given - otherwise overflow is ignored.
All arithmetic uses the two’s complement form where any numbers greater than
32767 aretreated asnegativee.g. 60000 =-5536 (60000-65536).

2.6 Assembler Directives.

Certain ‘pseudo-mnemonics’ are recognised by GENA3. These assembler directives,
as they are called, have no effect on the Z80 processor at run - time i.e. they are not
decoded into opcodes, they simply direct the assembler to take certain actions at
assembly time. These actions have the effect of changing, in some way, the object
code produced by GENA3.

Pseudo-mnemonics are assembled exactly like executable instructions; they may be
preceded by a label (necessary for EQU) and followed by a comment. The directives
available are:

ORG expression

sets the Location Counter to the value of ‘expression’. If option 2 and option 16 are
both not selected and an ORG would result in the overwriting of the GENA3
program, the textfile or the symbol table then the message ‘Bad ORG!’ is
displayed and the assembly is aborted. See Section 2.0 for more details on how
options 2 and 16 affect the use of ORG.

EQU expression

must be preceded by a label. Sets the value of the label to the value of ‘expression’.
The expression cannot contain a symbol which has not yet been assigned a value
(*ERROR* 13).

DEFB expression,expression,....

each ‘expression’ must evaluate to 8 bits; the byte at the address currently held by
the Location Counter is set to the value of ‘expression’ and the Location Counter
advanced by 1. Repeats for each expression.

DEFW expression,expression,....

sets the ‘word’ (two bytes) at the address currently held by the Location Counter to
the value of ‘expression’ and advances the Location Counter by 2. The less
significant byte is placed first followed by the more significant byte. Repeats for
each expression.

DEFS expression

increases the Location Counter by the value of ‘expression’ - equivalent to reserving
a block of memory of size equal to the value of ‘expression‘. Zeroes are written
throughout the allocated space.

DEVPAC FOR THE CPC 464 GENA 3PAGE 2.7

DEFM"s"

defines the contents of n bytes of memory to be equal to the ASCII representation of
the string s, where n is the length of the string and may be, in theory, in the range 1
to 255 inclusive although, in practice, the length of the string is limited by the
length of the line you can enter from the editor. The first character in the operand
field (‘' above) is taken as the string delimiter and the string s is defined as those
characters between two delimiters; the end-of-line character also acts as a
terminator of the string.

ENT expression

sets the execute address of the assembled object code to the value of expression -used
in conjunction with the editor ‘R’ command (see Section 3). There is no default for
the execute address.

2.7 Conditional Pseudo - mnemonics.

Conditional pseudo-mnemonics provide the programmer with the capability of
including or not including certain sections of source text in the assembly process.
This is made available through the use of IF, ELSE and END.

IF expression

this evaluates ‘expression’. If the result is zero then the assembly of subsequent
lines is turned off until either an ‘ELSE’ or an ‘END’ pseudo-mnemonic is
encountered. If the value of ‘expression’ is non-zero then the assembly continues
normally.

ELSE

this pseudo-mnemonic simply flips the assembly on and off. If the assembly is on
before the ‘ELSE’ is encountered then it will subsequently be turned off and vice
versa.

END
‘END’ simply turns the assembly on.

Note: Conditional pseudo-mnemonics cannot be nested; no check is made for nested
IF's so any attempt to nest these mnemonics will have unspecified results.

2.8 Assembler Commands.

Assembler commands, like assembler directives, have no effect on the Z80 processor
at runtime since they are not decoded into opcodes. However, unlike assembler
directives, they also have no effect on the object code produced by the assembler
-assembler commands simply modify the listing format.

An assembler command is a line of the source text that begins with an asterisk ‘*’.
The letter after the asterisk determines the type of the command and must be in
upper case. the remainder of the line may be any text except that the commands ‘L’,
‘T’ and ‘D’ expect a ‘4’ or a ‘—’ after the command.

GENA 3PAGE 28 DEVPAC FOR THE CPC 464

The following commands are available:

*E

(eject) causes three blank lines to be sent to the screen or a new page character to be
sent to the printer - useful for separating modules.

*Hs

causes string s to be taken as a heading which is printed after each eject (*E). *H
automatically performs a *E.

*§

causes the listing to be stopped at this line. The listing may be reactivated by
pressing any key on the keyboard. Useful for reading addresses in the middle of the
listing. Note: *S is still recognised after a *L-, *S does not halt printing.

*L—
causes listing and printing to be turned off beginning with this line.
*L+

_causes listing and printing to be turned on starting with this line.
*D+

causes the value of the Location Counter to be given in decimal at the beginning of
each line instead of the normal hexadecimal .Unsigned decimal is used

*D—

reverts to using hexadecimal for the value of the Location Counter at the start of
each line.

*F filename

This is a very powerful command which allows you to assemble text from tape - the
textfile is read from the tape into a buffer, a block at a time, and then assembled
from the buffer; this allows you to create large amounts of object code since the text
being assembled does not take up valuable memory space.

The filename (up to 8 characters) of the textfile you wish to ‘include’ at this point in
the assembly may, optionally, be specified after the ‘F’ and must be preceded with a
space. If no filename is given then the first textfile found on the tape is included.

Any textfile that you wish to include via this option must have been previously
dumped to tape using the editor’s ‘P’ command.

Whenever the assembler detects an ‘F’ command it asks you to ‘Press PLAY
then any key’ and this will happen in the first and second passes since the
include text must be scanned in each pass. The tape is then searched for an include
file with the required filename, or for the first file. If an include file is found whose
filename does not match that required then the message ‘Found filename’is
displayed and searching continues, otherwise ‘Loading filename’ is
displayed, the file loaded, block by block, and included.

See Appendix 3 for an example of the use of this command.

DEVPAC FOR THE CPC 464 GENA 3PAGE 2.9

*T+

This command is used to dump object code to tape (under the given filename) while
the assembly is taking place. This output of object code may be halted by a *T—
command, an ORG directive or the end of the assembly. The code so saved may be

re-loaded using BASIC or the debugger MONAS.

*T-
Closes the current object code tape file.
Assembler commands, other than *F, are recognised only within the second pass.

If assembly has been turned off by one of the conditional pseudo-mnemonics then
the effect of any assembler command is also turned off.

GENA 3 PAGE 2.10 DEVPAC FOR THE CPC 464

SECTION 3
The Integral Editor.

3.1 Introduction to the Editor.

The editor supplied with all versions of GENA3 is a simple, line - based editor
designed to work with all Z80 operating systems while maintaining ease of use and
the ability to edit programs quickly and efficiently.

In order to reduce the size of the textfile, a certain amount of compression of spaces
is performed by the editor. This takes place according to the following scheme:
whenever a line is typed in from the keyboard it is entered, character by character
into a buffer internal to the assembler; then, when the line is finished (i.e. you hit
[ENTERY)), it is transferred from the buffer into the textfile. It is during this transfer
that certain spaces are compressed: the line is scanned from its first character, if
this is a space then a tab character is entered into the textfile and all subsequent
spaces are skipped. If the first character is not a space then characters are
transferred from the buffer to the textfile until a space is detected whereupon the
action taken is the same as if the next character was the first character in the line.
This is then repeated a further time with the result that tab characters are inserted
at the front of the line or between the label and the mnemonic and between the
mnemonic and the operands. Of course, if any carriage return [ENTER] character is
detected at any time then the transfer is finished and control returned to the editor.

This compression process is transparent to the user who may simply use the [TAB]
key to produce a neatly tabulated textfile which, at the same time, is economic on
storage.

Note that spaces are not compressed within comments and spaces should not be
present within a label, mnemonic or operand field.

The Editor is entered automatically when GENAS3 is executed and displays the
message:

Hisoft GENA3 Assembler
Copyright Hisoft 1984
ALl rights reserved

followed by the editor prompt >’.

DEVPAC FOR CPC 464 GENA3P3.1

In response to the prompt you may enter a command line of the following format:

C N1,N2,S1,S2 followedby [ENTER]

C is the command to be executed (see Section 3.2 below).
N1 is a number in the range 1 - 32767 inclusive.

N2 is a number in the range 1 - 32767 inclusive.

S 1 is a string of characters with a maximum length of 20.
S 2 is a string of characters with a maximum length of 20.

The comma is used to separate the various arguments (although this can be
changed - see the ‘S’ command) and spaces are ignored, except within the strings.
None of the arguments are mandatory although some of the commands (e.g. the
‘D’elete command) will not proceed without N1 and N2 being specified. The editor
remembers the previous numbers and strings that you entered and uses these
former values, where applicable, if you do not specify a particular argument within
the command line. The values of N1 and N2 are initially set to 10 and the strings
are initially empty. If you enter an illegal command line such as
F-1,100,HELLO then the line will be ignored and the message ‘Pardon?’
displayed - you should then retype the line correctly e.g. F1,100 ,HELLO. This
error message will also be displayed if the length of S2 exceeds 20; if the length of S1
is greater than 20 then any excess characters are ignored.

Commands may be entered in upper or lower case.

While entering a command line, certain control functions may be used e.g.[CTRL]X
to delete to the beginning of the line, [TAB] to advance the cursor to the next tab
position.

The following sub-section details the various commands available within the editor
- note that wherever an argument is enclosed by the symbols ‘< >’ then that
argument must be present for the command to proceed.

GENA 3 PAGE 3.2 DEVPAC FOR CPC 464

The Editor Commands.

3.2.1 Text Insertion.

Text may be inserted into the textfile either by typing a line number, a space and
then the required text or by use of the ‘I’ command. Note that if you type a line
number followed by [ENTER] (i.e. without any text) then that line will be deleted
from the text if it exists. Whenever text is being entered then the control functions
[CTRL]X (delete to the beginning of the line), [TAB] (go to the next tab position) and
[CTRL]C (return to the command loop) may be employed.

The [DEL] key will produce a destructive backspace (but not beyond the beginning
of the text line). Text is entered into an internal buffer within GENAS3 and if this
buffer should become full then you will be prevented from entering any more text -
you must then use [DEL] or [CTRL]X to free space in the buffer.

If, during text insertion, the editor detects that the end of text is nearing the top of
RAM it displays the message ‘Bad Memory !’ This indicates that no more text
can be inserted and that the current textfile, or at least part of it, should be saved to
tape for later retrieval.

Command: I n,m

Use of this command gains entry to the automatic insert mode: you are prompted
with line numbers starting at n and incrementing in steps of m. You enter the
required text after the displayed line number, using the various control codes if
desired and terminating the text line with [ENTER]. To exit from this mode use
[CTRL]C.

If you enter a line with a line number that already exists in the text then the
existing line will be deleted and replaced with the new line, after you have pressed
[ENTER]. If the automatic incrementing of the line number produces a line number
greater than 32767 then the Insert mode will exit automatically.

If, when typing in text, you get to the end of a screen line without having entered 80
characters (the buffer size) then the screen will be scrolled up and you may continue
typing on the next line.

DEVPAC FOR CPC 464 GENA3 P33

3.2.2 Text Listing.

Command: L n,m

This lists the current text to the display device from line number n to line number m
inclusive. The default value for n is always 1 and the default value for m is always
32767 i.e. default values are not taken from previously entered arguments. To list
the entire textfile simply use ‘L’ without any arguments. Tabulation of the line is
automatic, resulting in a clear separation of the various fields with the line. The
number of screen lines listed on the display device is always 24. After listing 24
lines the list will pause (if not yet at line number m), hit [CTRL]C to return to the
main editor loop or any other key to continue the listing.

3.2.3 Text Editing.

Once some text has been created there will inevitably be a need to edit some lines.
Various commands are provided to enable lines to be amended, deleted, moved and
renumbered. In addition to the many line-orientated commands given below, some
elementary form of screen-editing is allowed when using the editor on the CPC464
viz at any time while in the editor command mode you may move the cursor around
the screen, using the cursor control keys, and copy text from the screen into the
editor’s buffer, using the [COPY] key. This will mainly be useful in circumstances
where you notice that some label or mnemonic is spelt incorrectly and a simple
over-typing will correct the mistake: simply move the cursor up to the line
concerned, copy the line (using the [COPY] key) into the editor’s buffer (including
the line number) up to the point at which you wish to make a change - now type in
the correction from the keyboard and then copy the remainder of the line, finishing
with [ENTER]. Obviously, this facility must be used with care especially with
regard to the [DEL] key, which will delete a character from the internal buffer and
this will not necessarily be the character behind the cursor on the screen. Do not use
the cursor keys while using the | or E commands..

Other editing commands available are:

Command: D <a,m>

All lines from n to m inclusive are deleted from the textfile. If mn, or less than two
arguments are specified, then no action will be taken; this is to help prevent
careless mistakes. A single line may be deleted by making m=n ; this-can also be
accomplished by simply typing the line number followed by [ENTER].

GENA3 PAGE 34 DEVPAC FOR CPC 464

Command: M n,m

This causes the text at line n to be entered at line m deleting any text that already
exists there. Note that line n is left alone. So this command allows you to ‘M’ove a
line of text to another position within the textfile. If line number n does not exist
then no action is taken.

Command: N <n,m>

Use of the ‘N’ command causes the textfile to be renumbered with a first line
number of n and in line number steps of m. Both n and m must be present and if the
renumbering would cause any line number to exceed 32767 then the original
numbering is retained.

Command: F n,m/(fs

The text existing within the line range n < x < m is searched for an occurrence of
the string f - the ‘find’ string. If such an occurrence is found then the relevant text
line is displayed and the Edit mode is entered - see below. You may then use
commands within the Edit mode to search for subsequent occurrences of the string f
within the defined line range or to substitute the string s (the ‘substitute’ string) for
the current occurrence of f and then search for the next occurrence of f, see below for
more details.

Note that the line range and the two strings may have been set up previously by
any other command so that it may only be necessary to enter ‘F’ to initiate the
search - see the example in Section 3.3 for clarification.

Command: E n

Edit the line with line number n. If n does not exist then no action is taken;
otherwise the line is copied into a buffer and displayed on the screen (with the line
number), the line number is displayed again underneath the line and the Edit
mode is entered. All subsequent editing takes place within the buffer and not in the
text itself; thus the original line can be recovered at any time.

In this mode a pointer is imagined moving through the line (starting at the first
character) and various sub-commands are supported which allow you to edit the
line. The sub-commands are:

‘_’ (space) - increment the text pointer by one i.e. point to the next character in the
line. You cannot step beyond the end of the line.

[DEL] - decrement the text pointer by one to point at the previous character in the
line. You cannot step backwards beyond the first character in the line.

[ENTER] - end the edit of this line keeping all the changes made.

Q - quit the edit of this line i.e. leave the edit ignoring all the changes made and
leaving the line as it was before the edit was initiated.

R - reload the edit buffer from the text i.e. forget all changes made on this line and
restore the line as it was originally.

DEVPAC FOR CPC 464 GENA 3 PAGE 3.5

L - list the rest of the line being edited i.e. the remainder of the line beyond the
current pointer position. You remain in the Edit mode with the pointer
re-positioned at the start of the line.

K - kill (delete) the character at the current pointer position.

Z - delete all the characters from (and including) the current pointer position to the
end of the line.

F - find the next occurrence of the ‘find’ string previously defined within a command
line (see the ‘F’ command above). This sub-command will automatically exit the edit
on the current line (keeping the changes) if it does not find another occurrence of
the ‘find’ string in the current line. If an occurrence of the ‘find’ string is detected in
a subsequent line (within the previously specified line range) then the Edit mode
will be entered for the line in which the string is found. Note that the text pointer is
always positioned at the start of the found string.

S - substitute the previously defined ‘substitute’ string for the currently found
occurrence of the ‘find’ string and then perform the sub-command ‘F’ i.e. search for
the next occurrence of the ‘find’ string. This, together with the above ‘F
sub-command, is used to step through the textfile optionally replacing occurrences
of the ‘find’ string with the ‘substitute’ string - see Section 3.3 for an example.

| - insert characters at the current pointer position. You will remain in this
sub-mode until you press [ENTER] - this will return you to the main Edit mode with
the pointer positioned after the last character that you inserted. Using
[DEL] within this sub - mode will cause the character to the left of the pointer to be
deleted from the buffer, A ‘*’ cursor is displayed while in Insert mode.

X - this advances the pointer to the end of the line and automatically enters the
insert sub-mode detailed above.

C - change sub - mode. This allows you to overwrite the character at the current
pointer position and then advances the pointer by one. You remain in the change
sub - mode until you press [ENTER] whence you are taken back to the Edit mode
with the pointer positioned after the last character you changed. [DEL] within this
sub -mode simply decrements the pointer by one i.e. moves it left while [TAB] has no
effect. A ‘+’ cursor is displayed while in change mode.

GENA3 PAGE 3.6 DEVPAC FOR CPC 464

3.2.4 Tape commands.

Text may be saved to tape or loaded from tape using the commands ‘P’, 'V’ and ‘G’,
while object code may be saved using the ‘O’ command.

Command: Pn,m,s

The line range defined by n < x < m is saved to tape under the filename specified by
the string s. Remember that these arguments may have been set by a previous
command. Before entering this command make sure that your datacorder is
in RECORD mode.

Command: G,,s

The tape is searched for a file with a filename of s; when found, it is loaded at the
end of the current text. If a null string is specified as the filename then the first
textfile on the tape is loaded.

After you have entered the ‘G’ command, you should press PLAY on your recorder.
A search is now made for a text file with the specified filename, or the first textfile if
anull filename is given. If a match is made then the message:

‘Loading filename’

is displayed, otherwise ‘Found filename’ is shown and the search of the tape
continues.

Note that if any textfile is already present in the memory then the textfile that is
loaded from tape will be appended to the existing file and the whole file will be
renumbered starting with line 1 in steps of 1.

Command: V,,s

Verifies a file on tape with the existing textfile in the memory. Displays
‘Verified or ‘Failed!’ dependingon the outcome of the verification.

Command: O,,s

Outputs the object code produced by the latest assembly to tape under the filename
s. Use MONA3 or BASIC to re-load this object code.

Command: Tn

Changes the speed of any subsequent cassette dump. ‘T’ followed By [ENTER] selects
the slow cassette speed, whereas ‘T’ followed by a number greater than 0, and then
[ENTERY], selects the fast cassette speed..

3.2.5 Assembling and Running from the Editor.

Command: A

This causes the text to be assembled from the first line in the textfile. See Section 2
for further details.

DEVPAC FOR CPC 464 GENA 3 PAGE 3.7

Command: R

If the source has been assembled without errors and an execute address has been
specified by the use of the ENT assembler directive then the ‘R’ command may be
used to execute the object program. The object program can use a RET (#C9)
instruction to return to the editor so long as the stack is in the same position at the
end of the execution of the program as it was at the beginning. Note that ENT will
have no effect if Option 16 has been specified for the assembly.

3.2.6 Other Commands.

Command: H

Provides a help screen of the various commands (given by CAPITAL letters)
available in GENA3.

Command: B

This simply returns control to the operating system. To re-enter the assembler use
either a cold start (The origial load address +2) or a warm start (The original load
address +4).

Command: S,,d

This command allows you to change the delimiter which is taken as separating the
arguments in the command line. On entry to the editor the comma ,’ is taken as
the delimiter; this may be changed by the use of the ‘S’ command to the first
character of the specified string d. Remember that once you have defined a new
delimiter it must be used (even within the ‘S’ command) until another one is
specified.

Note that the separator may not be a space.

Command: C

The ‘C’ command displays the current values of the delimiter and N1, N2, S1 and S2
i.e. the two default line numbers and the default strings. This is useful before
entering any command in which you are going to use default values, to check that
these values are correct.

Command: Zn,m

The ‘Z’ command causes the section of text between lines n and m inclusive to be
output to the printer. If both n and m are defaulted then the whole textfile will be
printed. If no printer is present, then "No Printer!" is displayed, and no
action is taken. During a list to the printer you may pause the printing at the end of
a line by hitting any key. Then press [CTRL]C to abort the list or any other key to
continue,

Command: X

‘X’ simply causes the start and end address of the textfile to be displayed in decimal.
This is useful if you wish to save the text from within BASIC, or if you want to see
how much memory you have left after the textfile.

GENA 3 PAGE 3.8 DEVPAC FOR CPC 464

‘X’ is also used in conjunction with MONA3 when using MONA3’s disassembler to
disassemble to a textfile for use by GENA3. To interface a textfile generated by
MONA3 to the assembler we must first move that textfile to GENA3’s
TEXTSTART, or generate the file directly at that address.

Now, the first address displayed, when ‘X’ is used, is the address of the start of the
GENAS textfile, which may be empty - this is the address at which the textfile gene-
rated by MONA3 must start. So arrange to disassemble the code to start at this ad-
dress and then note down the ‘Text end’ address as given by the disassembler; we
must now amend GENA3’s TEXTEND to this address. TEXTEND is stored at
‘Start of GENA3’ + 7 so, if we loaded GENA3 at 1000 then TEXTEND would be
stored in 1007 and 1008 (low byte first). So, take the value of “Text end’ specified by
MONAS (in hex) and poke the low byte in 1007 and the high byte in 1008 and then
enter GENAS3 via a warm start (via 1004 in this case). The disassembled textfile can
now be edited and assembled by GENAS3.

Command: W
‘W’ simply flips the character display between 40 and 80 character modes.

Command: J

Enters the debugger MONAS if this present and has been used at least once. If
MONAS is not present, or has not been used then ‘J’ has no effect.

3.3 An Example of the use of the Editor.
Let us assume that you have typed in the following program (using 110, 10):

;g *h 16 BIT RANDOM NUMBERS

30 ;INPUT: HL contains previous random number or
ded;-OUTPUT: HL contains new randon number.

Zg Random: PUSH AF ;save registers

70 PUSH BC

80 PUSH HL

90 ADD HL,HL ;=*2

100 ADD HL,HL ;*4

110 ADD HL,HL ;*8

120 ADD HL,HL ;*16

130 ADD HL,HL ;*32

140 ADD HL,HL ;*64

150 PIP BC ;old random number
160 ADD HL,DE

170 LD DE,41

1880 ADD HL,DE

190 POP € ;restore registers
200 POP AF

210 REY

DEVPAC FOR CPC 464 GENA3 PAGE 3.9

This program has a number of errors which are as follows:

Line 10: a lower case ‘h’ has been used in the assembler command *H.
Line 40: ‘randon’instead of ‘random’.

Line 150: ‘P I P’ instead of ‘POP’.

Line 160: needs a comment (not an error - merely style).

Line 210: ‘RE Y’ should be ‘RET’.

Also 2 extra lines of ADD HL,HL should be added between lines 140 and 150 and all
references to the register pair DE in lines 160 to 180 should be to register pair BC.

To put all this right we can proceed as follows:

E10 [ENTER]then _ (space) C(enter change mode) H [ENTER] [ENTER]
F40,40,randon,random[ENTER]then the ‘S’ sub - command.

1142 ,2 [ENTER]
142 ADD HL,HL ;%128

144 ADD HL,HL ;%256

[CTRL]C

F150,150,PIP,POP [ENTER]thenthe ‘S’ sub - command.

E160 [ENTER]then X __ ; *257+4 1 [ENTER] [ENTER]
F160,180,DE,BC [ENTER] then repeated use of the sub - command ‘S’.

E210 [ENTERL_ _ _ _ _ _ _ _ _ _ (10 spaces) C (change mode) T [ENTER]
[ENTER]

N10, 10 [ENTER] to renumber the text.

You are strongly recommended to work through the above example actually using
the editor.

DEVPAC FOR CPC 464 GENA3 PAGE3.10

APPENDIX 1

Error numbers and
their meanings.

ERROR 1 Errorin the context of this line.
ERROR 2 Mnemonic not recognised.
ERROR 3 Statement badly formed.
ERROR 4 Symbol defined more than once.

ERROR 5 This line contains an illegal character i.e. a character which is not
valid in a particular context.

ERROR 6 One of the operands in this line is illegal.
ERROR 7 A symbol in this line is a Reserved Word.
ERROR 8 Mismatch of registers.

ERROR 9 Too many registers in this line.

ERROR 10 An expression that should evaluate to 8 bits evaluates to more than
8 bits.

ERROR 11 The instructions JP (IX£n) and JP (IY £n) are illegal.
ERROR 12 Error in the formation of an assembler directive.

ERROR 13 Illegal forward reference i.e. an E@QUate has been made to a symbol
which has not yet been defined.

ERROR 14 Division by zero.
ERROR 15 Overflow in a multiplication operation.

Bad ORG! An ORG has been made to an address that would corrupt GENA, its
textfile or the Symbol Table. Control returns to the editor.

Out of Table space! Occurs during the first pass if insufficient memory has
been allowed for the Symbol Table. Control returns
immediately to the editor.

Bad Memory! This is displayed if there is no room for any more text to be
inserted i.e. the end of text is near the top of RAM. You should
save the current textfile, or part of it, to tape.

GENA3 APP1.1 DEVPAC FOR CPC 464

APPENDIX 2

Reserved words,
mnemonics etc.

The following is a list of the Reserved Words within GENA. These symbols may not
be used as labels although they may form part of a label. Note that all the Reserved
Words are composed of capital letters.

A B C D E H L I R $

AF AF BC DE HL IX
1Y SP NC / NZ M
P PE PO

There now follows a list of the valid Z80 mnemonics, assembler directives and
assembler commands. Note that these also must be entered in capital letters.

ADC ADD AND BIT CALL CCF cp CPD CPDR
CPI CPIR CPL DAA DEC DI DJNZ EI EX
EXX HALT IM IN INC IND INDR INI INIR
JP JR LD LDD LDDR LDI LDIR NEG NOP
OR OTDR OTIR OUT OUTD OUTI POP PUSH RES
RET RETI RETN RL RLA RLC RLCA RLD RR
RRA RRC RRCA RRD RST SBC SCF SET SLA

SRA SRL SUB XOR

DEFB DEFM DEFS DEFW ELSE END ENT EQU IF

ORG
*D *xE *H * L *S *C *F *T

GENA3 APP21 DEVPAC FOR CPC 464

APPENDIX 3

A Worked Example.

There follows an example of a typical session using GENAS3 - if you are a newcomer
to the world of assembler programs or if you are simply a little unsure how to use
the editor/assembler then we urge you to work through this example carefully. Note
that each line is terminated by pressing the key marked [ENTER] in the usual
way.

Session objective:

To write and test a fast integer multiply routine, the text of which is to be saved to
tape using the editor’s ‘P’ command so that it can easily be ‘included’ in future
programs.

Session workplan:

1. Write the multiply routine as a subroutine and save it to tape using the editor’s
‘P’ command so that it can be easily retrieved and edited during this session, should
bugs be present.

2. De-bug the multiply subroutine, editing as necessary.

3. Save the de-bugged routine to tape, using the editor’s ‘P’ command so that the
routine may be ‘included’ in other programs.

Stage 1 - write the integer multiply routine.

We use the editor’s ‘I’ command to insert the text using TAB, if desired, to obtain a
tabulated listing. We do not need to use TAB, a list of the text will always perform
the tabulation for us. Note that the addresses shown in the example assembler
listings that follow may not correspond to those produced on your machine; they
serve an illustrative purpose only.

DEVPAC FPR CPC 464 GENA3 APP3.1

>110,10 [ENTER]

1@ ;A fast integer multiply
20 ;routine. Multiplies HL
30 ;by DE. Return the result
4@ ;in HL. C flag set on an
50 ;overflow.

60

70 ORG #7F@0

80

9@ Mult: OR A

180 SBC HL,DE ;HL>DE?

110 ADD HL,DE

128 JR NC,Mu1l;yes

130 EX DE,HL

140 Mul1:0R D

150 SCF

168 RET NZ ;OVERflowifDE>255
178 OR E;times 07?

180 LD E,D

198 JR NZ,MU4 ;no

208 EX DE_,HL ;@

218 RET

220

238 ;Main routine.

240

250 Mu?Z2: EX DE,HL

260 ADD HL,DE

270 EX DE,HL

280 Mu3: ADD HL,HL

298 RETC ;overflow

3008 Mué4: RRA

318 JR NC,Mu3

320 OR A

3386 JR NZ,Mu2

348 ADD HL,DE

350 RET

360 [CTRL]C
>P10,350 ,Mult [ENTER]

The above will create the text of the routine and save it to tape. Remember to have
your tape recorder in RECORD mode before issuing the P’ command.

GENA 3 APP3.2 DEVPAC FOR CPC 464

Stage 2 - de-bug the routine.

First, let’s see if the text assembles correctly. We will use option 6 so that no listing
is produced and no object code generated.

>A

Table size:[ENTER] (default the symbol table size)

Options: 6 [ENTER]

Hisoft GENA3 Assembler. Page 1.

Pass 1 errors: 00
Pass 2 errors: 00

WARNING MU4 absent

Table used: 74 from 156
>

We see from this assembly that we have made a mistake in line 190 and entered
MU4 instead of Mu4 which is the label we wish to branch to. So edit line 190:
>F198,190,MU4 ,Mué [ENTER]

190 JR NZ, now use the ‘S’ sub-command
>

Now assemble the text again and you should find that it assembles without errors.
So now we must write some code to test the routine:

>N300,10 renumber so that we can write some more text
>110,10

10 ;Some code to test
20 ;the Mult routine.

30
40 LD HL,50
50 LD DE,20

68 CALL Mult ;Multiply
78 LD A,H ;o/p result
88 CALL Aout

98 LD A,L

188 CALL Aout

110 RET

120

130 ;Routine to o/p A in hex
140

150 Aout: PUSH AF

160 RRCA

DEVPAC FOR CPC 464 GENA 3 APP3.3

170 RRCA

180 RRCA

190 RECA

2080 CALL Nibble

210 POP AF

220 Nibble:AND %1111
238 ADD A, #90

2408 DAA

250 ADC A,#40

260 DAA

278 ;0utput a character call
280 CALL #BB5A

2980 RET

300 [CTRLIC

>

Now assemble the test routine and the Mult routine together.

>A

Table size: [ENTER]

Options: 6 [ENTER]

Hisoft GENA3 Assembler. Page 1.
268D 190 RECA

ERROR @2

hit any key to continue

Pass 1 errors: 01

Table used: 88 from 201
>

We have an error in our routine; RE C A should be RRCA in line 190. So:

>E190
190 RECA
190 _ _ _ _ ____ _ (9 spaces)Clenter change mode]R [ENTER][ENTER]

Now assemble again, using simply option 4 (no list), and the text should assemble
correctly. Assuming it does, we are now in a position to test the working of our Mult
routine so we need to tell the editor where it can execute the code from. We do this
with the ENT directive:

>35 ENT $ [ENTER]

GENA3 APP34 DEVPAC FOR CPC 464

Now assemble the text again and the assembly should terminate correctly with the
messages:

Table used: 88 from 282

Executes: 9847
>

or something similar. Now we can run our code using the editor’s ‘R’ command. We
should expect it to multiply 5@ by 2@ producing 1808 which is #3E8 in
hexadecimal.

>R [ENTER] @632>

It doesn’t work! Why not? List the lines 380 to 580 (L3806 ,500). You will see
that at line 430 the instruction is an OR D followed, effectively, by a RET NZ.
What this is doing is a logical OR between the D register.and the accumulatos A
and returning with an error flag set (the C flag) if the result is non-zero. The object
of this is to ensure that DE <256 so that the multiplication does not overflow - it
does this by checking that D is zero ... but the OR will only work correctly in this
case if the accumulator A is zero to start with, and we have no guarantee that this is
80.

We must ensure that A is zero before doing the OR D, otherwise we will get unpre-
dictable overflow with the higher number returned as the result. From inspection of
the code we see that the OR A at line 380 could be made into a XOR A thus setting
the flags for the SBC HL,DE instruction and setting A to zero. So:

>E380 [ENTER]
380 Mult: OR A

380 ________ (8 spaces) | [enter insert mode] X [ENTER] [ENTER]

Now assemble again (option 4) and run the code, using ‘R’. The answer should now
be correct - #3ES8.

We can further check the routine by editing lines 40 and 50 to multiply different
numbers and then assembling and running - you should find that the routine works
perfectly.

Now we have perfected the routine we can save it to tape.

>P300,999,Mult [ENTER]

GENA 3 APP3.5 DEVPAC FOR CPC 464

Remember to start the recorder in [RECJord mode before pressing [ENTER]. Once
the routine has been saved like this it may be included in a program as shown
below:

588 RET

510

5280 ;include the mult routine here
530

540 *F Mult

550

568 ;The next routine

When the above text is assembled the assembler will ask you to ‘Press
PLAY. ... when it gets to line 540 on both the first and second pass. Therefore
you should have the Mult dump cued up on the tape in both cases. This will
normally mean rewinding the tape after the first pass. You could record two dumps
of Mult on the tape, following each other, and use one for the first pass and the other
for the second pass.

Please study the above example carefully and try it out for yourself.

GENA 3 APP3.6 DEVPAC FOR CPC 464

Disassembler &
Monitor: SECTION 1

MONAS3 is supplied in a relocatable form; you simply load it at the address that you
wish it to execute from and then enter MONAS3 via that address. If you wish to enter
MONAS3 again (having returned from MONA3 to BASIC) then you should execute
an address 2 (decimal) greater than the original address.

To load MONAS3 into your Amstrad CPC464, simply type:
RUN " [ENTER]

and press [PLAY] on the tape deck. Firstly, a short BASIC program will be loaded
and this will automatically run itself and produce the message:

Load Address?

You should enter a decimal number between 1008 and 30000 and then press
[ENTER]. The number you enter is the address at which the disassembler will be
loaded - a good address is 3@@@@. After you have entered this number the
message:

Please wait..loading MONA3..

will appear on the screen and the tape recorder will be started again automatically.
The disassembler is now being loaded into the computer; this will take roughly 100
seconds. When MONAS3 has been loaded, it will run itself and produce a sign-on
message on the screen - then the ‘Front Panel’ will appear, ready for you to enter. a
command - see Section 2.

Note: if you intend to have both GENAS3, the assembler, and MONA3, the
disassembler/debugger, in the computer at the same time, then always load the one
that is going lowest in memory last. It is normally a good idea to have GENA3 in
low memory (say at 18@0) and MONAS3 in high memory (say at 30008). In this
case GENA3 should be loaded last.

Commands take effect immediately - there is no need to terminate them with
[ENTER]. Invalid commands are ignored. The entire ‘front panel’ display is updated
after each command is processed, so that you can observe any results of the
particular command.

Many commands require the input of a hexadecimal number. When entering a
hexadecimal number you may enter as many hexadecimal digits (0-9 and A-F or a-f)
as you wish, and terminate them with any non-hex digit. If the terminator is a valid
command, then the command is obeyed after any previous command has been
processed. If the terminator is a minus sign “—', then the negative of the
hexadecimal number entered is returned in two’s complement form:

eg: 1800~ yields E80O

If you enter more than four digits when typing a hexadecimal number, then only
the last 4 typed are retained and displayed on the sereen.

DEVPACFOR CPC 464 - MONA3PAGE11

SECTION 2

The commands available.

The following commands are available from within MONA3. In this section,
whenever [ENTER] is used to terminate a hexadecimal number this in fact can be
any non-hex character (see Section 1). Also ‘_’ is used to denote a space where
applicable.

[CTRL]X
Return to BASIC or to whatever program called MONA3
[CTRL] D

flip the number base in which addresses are displayed between base 16
(hexadecimal) and base 1@ (denary). On entry to MONAS3, addresses are shown in
hexadecimal, use [CTRL] D to flip to a decimal display and [CTRL] D again to
revert to the hexadecimal format. This affects all addresses displayed by MONA3
including those generated by the dis-assembler but it does not change the display of
memory contents - 8 bit numbers are always displayed in hexadecimal, and
numbers are always entered from the keyboard in hexadecimal.

[CTRL] A

Display a page of dis-assembly starting from the address held in the Memory
Pointer. Useful to look ahead of your current position to see what instructions are
coming up. Hit [CTRL] A again to return to the ‘Front Panel’ display or another key
to get a further page of dis-assembly.

‘-’ Cursor right

increment the Memory Pointer by one so that the 32 byte memory display is now
centred around an address one greater than it was previously.

‘«’ Cursor left

decrement the Memory Pointer by one.

‘1’ Cursor up

decrement the Memory Pointer by eight - used to step backwards quickly.
‘|’ Cursor down

increment the Memory Pointer by eight - used to step forwards quickly.

DEVPAC FOR CPC 464 MONA 3 PAGE 2.1

‘G’
search memory for a specified string (‘G’et a string).

You are prompted with a ‘:’ and you should then enter the first byte for which you
want to search followed by [ENTER] - now keep entering subsequent bytes (and
[ENTERY]) in response to the ‘:’ until you have defined the whole string. Then just
press [ENTER] in response to the ‘:’; this will terminate the definition of the string
and search memory, starting from the current Memory Pointer address, for the first
occurrence of the specified string.

When the string is found the ‘front panel’ display will be updated so that the
Memory Pointer is positioned at the first character of the string. Example:

Say that you wish to search memory, starting from #8808, for occurrences of the
pattern #3E #F F (2 bytes) - proceed as follows;

M:8000 [ENTER] set the Memory Pointer to #8000.
G:3E [ENTER] define the first byte of the string.
FF [ENTER] déﬁhe the second byte of the string.
[ENTER] terminate the string.

After the final [ENTER] (or any non-hex character) ‘G’ proceeds to search memory
from #8000 for the first occurrenceof #3E #FF.

When found, the display is updated; to find subsequent occurrences of the string use
the ‘N’ command.

‘H’

convert a decimal number to its hexadecimal equivalent.

You are prompted with ‘=’ to enter a decimal number terminated by any non-digit
(i.e. any character other than #..9 inclusive). Once the number has been
terminated, an ‘=’ sign is displayed on the same line followed by the hexadecimal
equivalent of the decimalmumber.

Now hit any key to return to the command mode. Example:

H:41472_=A200 here a space was used as the terminator.

MONA 3 PAGE 2.2 DEVPAC FOR CPC 464

‘I’

intelligent copy.

This is used to copy a block of memory from one location to another - it is intelligent
in that the block of memory may be copied to locations where it would overlap its
previous locations.

91 prompts for the inclusive start and end addresses of the block to be copied
(‘First:’, ‘Last:’) and then for the address to which the block is to be moved
(‘To:"); enter hexadecimal numbers in response to each of these prompts. If the
start address is greater than the end address then the command is aborted
-otherwise the block is moved as directed.

‘J,

execute code from a specified address.

This command prompts, via ¢:’, for a hexadecimal number - once this is entered the
internal stack is reset, the screen cleared and execution transferred to the specified
address. If you wish to return to the ‘front panel’ after executing code then set a
breakpoint (see the ¥ command) at the point where you wish to return to the
display.

Example:

J :BOAO [ENTER] executes the code starting at #B000.
You may abort this command before you terminate the address by using [ESC].
[CTRL]C

N.B. continue execution from the address currently held in the Program Counter
(PC).

This command will probably be used most frequently in conjunction with the ¥
command - an example should help to clarify this usage:

Say you are single-stepping (using [CTRL] 8) through the code given below and
you have reached address #8920. You are now not interested in stepping through
the subroutine at #9080 but wish to see how the flags are set up after the call to
the subroutine at #8800.

891E 3EFF LD A,-1

8920 CDAG9@ CALL #9000

8923 2A0080 LD HL, (#8000)
8926 TE LD A,(HL)
8927 111488 LD DE, #8814
892A CDPG8S CALL #8800

892D 2003 JR NZ,lab1
892F 320280 LD (#8002) ,A

8932 211488 lab1: LD HL, #8814

Proceed as follows: set a breakpoint, using ¥, at location #892D (remember to use
‘M’ first to set the Memory Pointer) and then issue a {CTRL] C’ command.

DEVPAC FOR CPC 464 MONA3 PAGE 23

Execution continues from the address held in the PC which, in this case,
is #8920. Execution will then continue until the address at which the breakpoint
was set (#892D) at which point the display will pause, now hit any key and the
front panel will appear, and you can inspect the state of the flags etc. after the call
to the subroutine at #88@@. Then you can resume single-stepping through the
code.

¢L’
tabulate, or list, a block of memory starting from the address currently held in the
Memory Pointer.

‘L’ clears the screen and displays the hexadecimal representation and ASCII
equivalents of the 160 bytes of memory starting from the current value of the
Memory Pointer. Addresses will be shown in either hexadecimal or decimal
depending on the current state of the Front Panel (see [CTRL] D above).

The display consists of 20 rows with 8 bytes per row, the ASCII being shown at the
end of each row. For the purposes of the ASCII display any values above 127 are
decremented by 128 and any values between 0 and 31 inclusive are shown as ‘. .

At the end of a page of the list you have the option of returning to the main ‘front
panel’ display by pressing [ESCJ]ape or continuing with the next page of 160 bytes
by pressing any other key.

‘M’
set the Memory Pointer to a specified address.

You are prompted with ‘:’ to enter a hexadecimal address (see Section 1). The
Memory Pointer is then updated with the address entered and the memory display
of the front panel changes accordingly.

‘M’ is essential as a prelude to entering code, tabulating memory ete.

‘N’

find the next occurrence of the hex string last specified by the ‘G’ command.

‘N’ begins searching from the Memory Pointer and updates the memory display
when the next occurrence of the string is found.

‘o’

go to the destination of a relative displacement.

The command takes the byte currently addressed by the Memory Pointer, treats it
as a relative displacement and updates the memory display accordingly.

MONA 3 PAGE24 DEVPAC FOR CPC 464

Example:

Say the Memory Pointer is set to #6800 and that the contents of
locations #67FF and #6808 are #20 and #16 respectively - this could
be intepreted as a JR NZ,$+24 instruction. To find out where this branch
would go on a Non-Zero condition simply press ‘O’ when the Memory Pointer is
addressing the displacement byte #16. The display will then update to centre
around #6817, the required destination of the branch.

Remember that relative displacements of greater then #7F (127) are treated as
negative by the Z80 processor; ‘O’ takes this into account.

See also the ‘U’ command in connection with ‘O’.

‘P’

fill memory between specified limits with a specified byte.

‘P’ prompts for ‘First:’, ‘Last:’ and ‘With:’ Enter hexadecimal numbers in
response to these prompts; respectively, the start and end addresses (inclusive) of

the block that you wish to fill and the byte with which you want to fill the block of
memory. Example:

P

First:70@0 [ENTER]
Last:77FF [ENTER]
With:55 [ENTER]

will fill locations #7000 to #77FF (inclusive) with thebyte #55 (‘U’).
If the start address is greater than the end address then ‘P’ will be aborted.

‘R’

Reads an object code file from tape - this file may have been produced by MONA3’s
‘W command or GENA3’s ‘O’ or *T’ commands. You are prompted to enter a
filename (just press [ENTER] if you don’t know the filename) and then the address
at which you want the code to be loaded - you MUST specify this address.

‘>7

set a breakpoint after the current instruction and continue execution.
Example:

9000 B7 OR A

9001 C20098 CALL NZ,#9800

9004 010000 LD BC,8

9800 21FFFF LD HL,-1

You are single-stepping the above code and have reached #9881 with a non-zero
value in register A, thus the Zero flag will be in a NZ state after the OR A
instruction. If you now use {CTRL] S’ to continue single-stepping then execution
will continue at address #9800, the address of the subroutine. If you do not wish
to single-step through this routine then issue the >’ command when at address
#9001 and the CALL will be obeyed automatically and execution stopped at
address #9804 for you to continue single-stepping.

DEVPAC FOR CPC 464 MONA 3 PAGE2.5

Remember, ‘>’ sets a breakpoint after the current instruction and then issues a
[CTRL]C command.

See the [CTRL] S’ command for an extended example of single-stepping.

‘s’

update the Memory Pointer so that it contains the address currently on the stack
(indicated by SP). This is useful when you want to look around the return address of
a called routine etc.

‘T’
dis-assemble a block of code, optionally to the printer.

You are first prompted to enter the ‘First:’ and ‘Last :’ addresses of the code
that you wish to dis-assemble - enter these in hexadecimal as detailed in Section 1.
If the start address is greater than the end address then the command is aborted.
After entering these addresses you will be prompted with ‘Printer?’; answer Y’
to direct the dis-assembly to your Printer stream or any other value to send output
to the screen.

Now you are prompted with ‘Tex t :’ to enter, in hexadecimal, the start address of
any textfile that you wish the dis-assembler to produce. If you do not want a textfile
to be generated then simply press [ENTER] after this prompt. If you specify an
address then a textfile of the dis-assembly will be produced, starting at that
address, in a form suitable for use by GENAS.

If you want to use a textfile with GENA3 then you must either generate it at, or
move it to, the first address given by the assembler editor’s ‘X’ command because
this is the address of the start of the text expected by GENAS3. You must also tell
GENAS3 where the end of the textfile is; do this by taking the ‘End of text’ address
given by the dis-assembler (see below) and patching it into the TEXTEND location
of GENAS3 - see the GENA3 manual, Section 3.2. Then you must enter GENA3 by
the warm start entry point, to preserve the text.

If, at any stage when you are generating a textfile, the text would overwrite
MONAS3 then the dis-assembly is aborted - press any key to return to the Front
Panel.

If you specified a textfile address or disassembly to the printer, you are now asked to
specify a ‘Workspace:” address - this should be the start of a spare area of memory
which is used as a primitive symbol table for any labels generated by the
dis-assembler. The amount of memory needed is 2 bytes for each label generated.
You cannot default this address.

After this, you are asked repeatedly for the ‘First:’ and ‘Last:’ \inclusive)
addresses of any data areas that exist within the block that you wish to
dis-assemble. Data areas are areas of, say, text that you do not wish to be
interpreted as Z80 instructions - instead these data areas cause DEFB assembler
directives to be generated by the dis-assembler.

MONA 3 PAGE 2.6 DEVPAC FOR CPC 464

If the value of the data byte is between 32 and 127 (#20 and #7 F) inclusive then
the ASCII interpretaion of the byte is given e.g. #41 is changed to ‘A’ after a
DE FB. When you have finished specifying data areas, or if you do not wish to spec-
ify any, simply type [ENTER] in response to both prompts. The ‘T’ command uses an
area at the end of MONAS3 to store the data area address and so you may set as
many data areas as there is memory available; each data area requires 4 bytes of
storage. Note that using ‘T’ destroys any breakpoints that were previously set - see
the ¥ command.

The screen will now be cleared. If you asked for a textfile to be created then there
will be a short delay (depending on how large a section of memory you wish to
dis-assemble) while the symbol table is constructed. This having been done, the
dis-assembly listing will appear on the screen or printer - you may pause the listing
at the end of a line by hitting any key, subsequently hit [ESC] to return to the Front
Panel display or any other key to continue the dis-assembly. If an invalid opcode is
encountered then it is dis-assembled as NOP and flagged with an asterisk ‘*’ after
the opcode in the listing.

At the end of the dis-assembly the display will pause and, if you have asked for a
textfile to be produced, the message ‘End of text xxxxx’ will be displayed;
xxxxx is the address (in hexadecimal or decimal) that should be POKEd (low order
byte first) into the GENAS3 location TEXTEND in order that the assembler can
pick up this dis-assembled textfile on a warm start. When the dis-assembly has
finished, press any key to return to the Front Panel display.

Labels are generated, where relevant (e.g. in C3@8@78), in the form LXXXX
where ‘XXXX’ is the absolute hex address of the label, but only if the address
concerned is within the limits of the dis-assembly. If the address lies outside this
range then a label is not generated, simply the hexadecimal or decimal address is
given. For example, if we were dis-assembling between #700@ and #8000, then
the instruction

30078

would be dis-assembled as

JP L7800

on the other hand, if we were dis-assembling between #9000 and #9800 then
the C30@78 instruction would be dis-assembled as

JP #7800 or JP 38720

if a decimal display is being used. If a particular address has been referenced in an
instruction within the dis-assembly then its label will appear in the label field

(before the mnemonic) of the dis-assembly of the instruction at that address but
only if the listing is directed to a textfile.

DEVPAC FOR CPC 464 MONA 3 PAGE 2.7

Example:

T
First:8B [ENTER]
Last:9E [ENTER]
Printer? Y
Text: [ENTER]
First:95 [ENTER]
Last:9E [ENTER]
First: [ENTER]
Last: [ENTER]

PP8B FE16 CP #16
o8> 3801 JR (L0890
BO8F 23 INC HL

0098 37 LOGB9@ SCF

BB91 22505¢ LD (#5C5D),HL
pB94 C9 RET

A@95 BFS524E DEFB #BF,"R" ,"N"
ﬂg98 C4494E DEFB #cl"I”I","N"
BB9B 4B4559 DEFB "K","E","Y"
BO9E A4 DEFB #A4

‘U,

used in conjunction with the ‘O’ command.

Remember that ‘O’ updates the memory display according to a relative
displacement i.e. it shows the effectof a JR or DJNZ instruction.

‘U’ is used to update the memory display back to where the last ‘O’ was issued.

Example:

7200 47 7T1F3 77
7201 20 71F4 C9
>7202 F2< >7T1F5 F5<
7203 86 71F6 C5
display 1 display?

MONA 3 PAGE 2.8 DEVPAC FOR CPC 464

You are on display 1 and wish to know where the relative jump 2@ F 2 branches. So
you press ‘O’ and the memory display updates to display 2.

Now you investigate the code following #7 1F5 for a while and then wish to return
to the code following the original relative jump in order to see what happens if the
zero flag is set. So press ‘U’ and the memory display will return to display 1.

Note that you can only use ‘U’ to return to the last occurrence of the ‘O’ command,
all previous uses of ‘O’ are lost.

‘v’
used in conjunction with the X’ command.

V' is similar to the ‘U’ command in effect except that it updates the memory display
to where it was before the last ‘X’ command was issued. Example:

8702 AF 842D 18
8783 CD 842E A2
>8704 2F< >842F E5K
8785 84 8430 21
display 1 display 2

You are on display 1 and wish to look at the subroutine at #842F. So you press ‘X’
with the display centred as shown; the memory display then updates to display 2.
You look at this routine for a while and then wish to return to the code after the
original call to the subroutine. So press ‘V’ and display 1 will reappear.

As with ‘U’ you can use this command only to reach the address at which the last X’
command was issued, all previous addresses at which ‘X’ was used are lost.

‘w’

Writes a block of memory to tape under a given filename. Prompts for a filename
and then the first and last (inclusive) addresses of the block of code that you wish to
save.

",
sets a breakpoint at the Memory Pointer.

A ‘breakpoint’, as far as MONAS3 is concerned, is simply a CALL instruction into
a routine within MONA3 that displays the Front Panel thus enabling the
programmer to halt the execution of a program and inspect the Z80 registers, flags
and any relevant memory locations. Thus, if you wish to halt the execution of a
program at #9876, say, then use the ‘M’ command to set the Memory Pointer to
#9876 and then use ‘¥ to set a breakpoint at that address. The 3 bytes of code that
were originally at #9876 are saved and then replaced with a CALL instruction
that halts the execution when obeyed. When this CALL instruction is reached it
causes the original 3 bytes to be replaced at #9876 and execution is paused - hit
any key to enable the Front Panel to be displayed with all the registers and flags in
the state they were just before the breakpoint was executed. You can now use any of
the facilities of MONAS in the usual way.

DEVPAC FOR CPC 464 MONA3 PAGE 2.9

Notes:

MONAS3 uses the area, at the end of itself, that originally contained the relocation
addresses in order to store breakpoint information. This means that you may set as
many breakpoints as there is memory available; each breakpoint requires 5 bytes of
storage. When a breakpoint is executed MONA3 will automatically restore the
memory contents that existed prior to the setting of that breakpoint.

Note that, since the ‘T’ command also uses this area, all breakpoints are lost when
the ‘T’ command is used.

Breakpoints can only be set in RAM. Since a breakpoint consists of a 3 byte CALL
instruction a certain amount of care must be exercised in certain exceptional cases
e.g. consider the code:

8000 3E 8008 00
8001 81 8009 00
8002 18 800OA 06
8003 86 800B @2
>8004 AF< 8pAC 18
8005 @E 80@D F7
8006 FF 800E 06
8007 01 800F 44

If you set a breakpoint at #8804 and then begin execution of the code from
location #8800 then register A will be loaded with the value 1, execution
transferred to #8@@A, register B loaded with the value 2 and execution
transferred to location #8@@5. But #8005 has been overwritten with the low
byte of the breakpoint call and thus we now have corrupted code and unpredictable
results will ocuur. This type of situation is rather unusual but you must attempt to
guard against it - in this case single-stepping the code would provide the answer;
see the f{CTRL] $’ command below for a detailed example of single-stepping.

Also note that, when a breakpoint is detected, execution pauses, waiting for you to
hit any key, before the front panel is displayed.

‘X’
is used to update the Memory Pointer with the destination of an absolute CALL or
J P instruction.

‘X’ takes the the 16 bit address specified by the byte at the Memory Pointer and the
byte at the Memory Pointer +1 and then updates the memory display so that it is
centred around that address. Remember that the low order half of the address is
specified by the first byte and the high order half of the address is given by the
second byte - Intel format. Example:

MONA 3 PAGE 2.10 DEVPAC FOR CPC 464

Say you-wish to look at the routine that the code CD@563 calls; set the Memory
Pointer (using ‘M’) so that it addresses the @5 within the CALL instruction and
then press X’. The memory display will be updated so that it is centred around
location #6305.

See also the ‘V’ command in connection with ‘X’.

‘Y?
enter ASCII from the Memory Pointer.

‘Y’ gives you a new line on which you can enter ASCII characters directly from the
keyboard. These characters are echoed and their hexadecimal equivalents are
entered into memory starting from the current value of the Memory Pointer. The
string of characters should be terminated by [ESC] and [DEL] may be used to delete
characters from the string. When you have finished entering the ASCII characters
then the display is updated so that the Memory Pointer is positioned just after the
end of the string as it was entered into memory.

[CTRL]S
single-step.

Prior to the use of {[CTRL] S’ (or “>’) both the Program Counter (PC) and the
Memory Pointer must be set to the address of the instruction that you wish to
execute.

‘[CTRL] $’ simply executes the current instruction and then updates the Front
Panel to reflect the changes caused by the executed instruction.

Note that you can single-step anywhere in the memory map (RAM or ROM) but
that you cannot single-step through EXX or EX AF,AF’ instructions.

There now follows an extended example which should clarify the use of many of the
debugging commands available within MONAS3 - you are urged to study it carefully
and try it out for yourself.

Let us assume that we have the 3 sections of code shown on the next page in the
machine, the first section is the main program which loads HL and DE with
numbers and then calls a routine to multiply them together (the second section)
with the result in HL and finally calls a routine twice to output the result of the
multiplication to the screen (third section).

7080 2A@@72 LD HL,(#7200) ;SECTION 1
7083 ED5B@272 LD DE,(#7202)

7087 Cp@@71 CALL Mult

708A 7C LD A,H

7088 CD1D71 CALL Aout

708E 7D LD A,L

708F CD1D71 CALL Aout

7092 210000 LD HL,O

DEVPAC FOR CPC 464 MONA3 PAGE 2.11

7100
7101
7103
7104
7106
7107
7108
7109
710A
7108
710¢
710E
710F
7110
7111
7112
7113
7114
7115
7116
7118
7119
7118
711¢C
711D
711E
711F
7120
7121
7122
7125
7126
7128
712A
712B
712D
712E
7131

7200
7202

AF
ED52
19
3001
EB
B2
37
co
B3
5A
2007
EB
c9
EB
19
EB
29
D8
1F
30FB
B7
2BF5
19
c9
F5
OF
OF
aF
aF
CD2671
F1
E6BF
€690
27
CE4LD
27
CD5ABB
c9

1B2A
0200

Mult:

Mu1l:

Mu?:

Mu3:

Mué4:

Aout:

Nibble:

XOR
SBC
ADD
JR
EX
OR
SCF
RET
OR
LD
JR
EX
RET
EX
ADD
EX
ADD
RET
RRA
JR
OR
JR
ADD
RET
PUSH
RRCA
RRCA
RRCA
RRCA
CALL
pPoP
AND
ADD
DAA
ADC
DAA
CALL
RET

DEFW
DEFW

HL,DE
HL,DE
NC,Mu1
DE,HL

NZ

E,D

NZ ,Mub
DE,HL

DE,HL

HL,DE

DE,HL

HL,HL

NC,Mu3

NZ,Mu?2
HL,DE

AF

Nibble
AF
21111
A,#90

A,#4D

#BB5A

10779
2

.
' 4

;SECTION 2

SECTION 3

Now we wish to investigate the above code either to see if it works or maybe how it
works. We can do this with the following set of commands - it should be noted that
this is merely one way of stepping through the code, it is not necessarily efficient
but should serve to demonstrate single-stepping:

MONA 3 PAGE 2.12

DEVPAC FOR CPC 464

M:7080 [ENTER] set Memory Pointer to #7080.

7080. set Program Counter to #7080.
[CTRL]S single step.

[CTRL]S single step.

[CTRL]S follow the CALL
M:7115[ENTER] skip the pre-processing

of the numbers.

! set a breakpoint.

[CTRL] C [ENTER}+ continue execution from #7100
up to breakpoint.

[CTRL]S single step.

[CTRL] S follow the relative jump.
[CTRL]S single step.

[CTRL]S "

[CTRL]S "

[CTRL]S "

[CTRL]S "

[CTRL]S "

[CTRL]S "

[CTRL]S return from multiply routine.
[CTRL]S single step

[CTRL]S follow the CALL
M:7128 [ENTER] set Memory Pointer

to interesting bit.

! set breakpoint.

[CTRL]C [ENTER]+ continue execution from #7110
to breakpoint.

[CTRL]S single step.

[CTRL]S "

[CTRL]S "

[CTRL]S "

S have a look at the return address

! set breakpoint there
[CTRL] C [ENTER]+ and continue.

[CTRL]S single step.

S return from Aout routine

I

[CTRL] C [ENTER]*

[CTRL]S single step.

> obey the whole CALL to Aout.

Please do work through the above example, first typing in the code of the routines
(see ‘Modifying Memory’ below), or using GENA3, and then obeying the commands
detailed above. You will find the example invaluable as an aid to understanding
how to trace a path through a program.

7 N.B. The [ENTER] at this position is an example of ‘any key’ needed to display the
front panel.

DEVPAC FOR CPC 464 MONA3 PAGE 2.13

[CTRLIL

this command is exactly the same as the ‘L’ist command except that the output goes
to the Printer stream instead of to the screen. Remember that, at the end of a page,
you press [ESC] to return to the ‘front panel’ or any other key (except [CTRL] X) to

get another page.

Modifying Memory.

The contents of the address given by the Memory Pointer may be modified by
entering a hexadecimal number followed by a terminator (see Section 1). The two
least significant hex digits (if only one digit is entered then it is padded to the left
with a zero) are entered into the location currently addressed by the Memory
Pointer and then the command (if any) specified by the terminator is obeyed. If the

terminator is not a valid command then it is ignored.

Examples:

F2 -
123 |

EM:EQ@_

8CO

2A5D_

MONA 3 PAGE 2.14

#EF2
#23
#HOE

#8C

#5D

is entered and the Memory Pointer advanced
by 1.

is entered and the Memory Pointer advanced
by 8

is entered at the current Memory Pointer
and then the

Memory Pointer is updated to #E@@. Notice
that a space (‘.’) has been used to terminate
the M command here.

is entered and then the Memory Pointer is
updated

(because of the use of the ‘O’ command) to
the destination

of the relative offset #8C i.e. to its current
value -115.

is entered and the Memory Pointer is not
changed since the terminator is a space, not
a command.

DEVPAC FOR CPC 464

Modifying Registers.

If a hexadecimal number is entered in response to the >’ prompt and is terminated
by a period, ¢.’, then the number specified will be entered into the Z80 register
currently addressed by the right arrow ‘ >’.

On entry to MONAJ >’ points to the Program Counter (PC) and so using ‘.” as a
terminator to a hex number initially will modify the Program Counter. Should you
wish to modify any other register then use ‘.’ by itself (not as a terminator) and the
pointer >’ will cycle round the registers PC to AF. Note that it is not possible to
address (and thus change) either the Stack Pointer (SP) or the IR registers.

Examples:

Assume that the register pointer >’ is initially addressing the PC.

point to IY.
. point to IX.
0. set IX to zero.
. point to HL.
123. set HLto #123.
. point to DE.
. point to BC.
E2A7. set BCto #E2A7.
. point to AF.
FFOO. set A to # F F and reset all the flags.
. point to the PC.
8000. set the PC to #8000.

[CTRLN

This command enters the assembler GENAS, if this is present and has been used at
least once. If the assembler is not present or has not been used, then [CTRL]J has no
effect.

DEVPAC FOR CPC 464 MONA 3 PAGE 2.15

	pag 01
	pag 02
	pag 03
	pag 04
	pag 05
	pag 06
	pag 07
	pag 08
	pag 09
	pag 10
	pag 11
	pag 12
	pag 13
	pag 14
	pag 15
	pag 16
	pag 17
	pag 18
	pag 19
	pag 20
	pag 21
	pag 22
	pag 23
	pag 24
	pag 25
	pag 26
	pag 27
	pag 28
	pag 29
	pag 30
	pag 31
	pag 32
	pag 33
	pag 34
	pag 35
	pag 36
	pag 37
	pag 38
	pag 39
	pag 40
	pag 41
	pag 42
	pag 43
	pag 44
	pag 45
	pag 46
	pag 47
	pag 48
	pag 49
	pag 50
	pag 51
	pag 52
	pag 53
	pag 54
	pag 55

