MAXAM Il

MACRO ASSEMBLER
EDITOR
MONITOR

For the CP/M Plus Operating System

Amstrad PCW 8256/8512
CPC 6128

Issue 1, (c) Arnor Ltd., March 1987

All rights reserved. It is illegal to reproduce or transmit’ either sthis manual or the
accompanying computer program in any form without the written permission of the
copyright holder. Software piracy is theft.

Any correspondence relating to Arnor products is welcomed. Specific comments should
quote the version number, which is displayed at the top of the assembly listing and in the
editor and monitor status screens.

This manual was written using PROTEXT and printed from camera-ready copy produced by
PROTEXT on a Juki 6100 printer.

The MAXAM II programs were written using MAXAM and subsequently MAXAM 1I.

Arnor Ltd., 611 Lincoln Road, Peterborough PE1 3HA, England.

CONTENTS

INTRODUCTION
CREATING A START OF DAY DISC
DEVELOPING A PROGRAM WITH MAXAM II

THE ASSEMBLER
Assembler error messages
Symbols
Conditional assembly
Writing object code to a file
Seven parts of a listing
External commands
Linking separately assembled source files
Linking assembler and Arnor C programs
Macros

THE MONITOR
Editing memory
Editing the registers
The expression evaluator and the Monitor
Error trapping
Single stepping
Breakpoints
Configuration
Debugging a CP/M plus program
9 ways to crash the monitor
-Monitor commands

THE EDITOR
Edit mode
Defining a block
Find and replace
Command mode
Editor commands
Large files
Two file editing
Special characters
SETPRINT and CONFIG

COMMANDS COMMON TO THE EDITOR, MONITOR AND C
Phrases and function keys
Exec files

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

VI
VIII
IX

Bibliography

Assembler directives, commands and errors
Z80 instructions

Monitor commands and syntax

Useful BDOS functions

Programming with CP/M plus

The expression evaluator

Key translations

System error messages

GLOSSARY OF TERMS

INDEX

A1l that is gold does not glitter,
Not all who wander are lost;
The old that is strong does not wither,

Deep roots are not reached by the frost.

From the ashes a fire shall be woken,

A light from the shadows shall spring;
Renewed shall be blade £hat was broken,
The crownless again shall be king.

J.R.R.Tolkien

126
127
129
132
135
137
142
144
146

149
153

INTRODUCTION

The Maxam II Assembler, Editor and Monitor provide the most versatile assembly language
programming environment available for CP/M Plus on the CPC 6128, PCW 8256 and PCW
8512.

The macro assembler is an enhanced version of the best selling Maxam assembier. It has
been specially tailored to meet all CP/M Plus programming requirements and, with the
addition of macros, is extremely fast and powerful.

The editor is a full implementation of the Program mode of Protext.

The monitor has been written to complement the assembler, including many new features
not available in other monitors, such as bank switching, conditional breakpoints and
symbolic debugging.

Production of a program from coding using the editor through assembly with the macro
assembler to final de-bugging using the monitor is a straight-forward process. All the
programs link with each other: the assembler reads the editor {files, the monitor
disassembles code produced by the assembler and allows the symbol table to be loaded for
symbolic debugging, and the editor can read spooled files from both the assembler and
monitor.

The syntax used by the assembler and monitor in assembly mode is identical, you can
even overwrite or add to code within the monitor using the in-built assembler and include
the same symbols you defined in the Assembler.

Throughout this manual! you will find detailed explanations of each feature with many
examples of how to use them. As well as the three main sections on the assembler,
editor and monitor there are a number of appendices providing information on the CP/M
BDOS calis including how to access discs, reading the keyboard and writing to the screen.

For the beginner there is also a section introducing CP/M plus which will help you to
start writing programs almost immediately. If you are new to the Z80 Microprocessor the
section on the assembler provides much of the information you need, and the appendix
listing all the Z80 mnemonics is provide so you can easily find the instructions you
require.

This manual does not attempt to teach machine code programming, and assumes basic
familiarity with the Z80 assembly language. If you are a newcomer to machine code
programming you will need to consult a book on the subject. Though it may seem
bewildering at first, persevere - machine code programming is both rewarding and
enjoyable. You have made the right decision to purchase MAXAM II - as well as providing

a sophisticated program development environment it is the ideal system for learning
machine code.

CREATING A START OF DAY DISC

Before using Maxam Il you will need to create a start of day disc. This ensures that you
do not damage your original master disc and allows you to configure the disc to your own
requirements.

You will need two CP/M Plus formatted discs with system tracks. On the CPC 6128 you
can do this using DISCKIT3. On a PCW computer use DISCKIT. Simply follow the on-
screen instructions. One of the discs must be formatted on both sides.

Label the disc you formatted on one side only "MAXAM II Start of day". Label SIDE | of
the other disc "MAXAM II LARGE" and the other side "MAXAM I SMALL".

Follow the instructions in the appropriate section below.

PCW 8256/8512

l. Load CP/M
2. Insert the supplied MAXAM II disc in drive A with side 1 to the left.
3. Type one of the following:
APED <MAKES&512 (For PCW 8512)
APED <MAKES8256 (For PCW 8256)
4. Follow the on-screen instructions

CPC6128 with two disc drives

1. Load CP/M
2. Insert the supplied MAXAM II disc in drive A with side 1 uppermost.
3. Type:

APED <MAKE®6128 (For CPC 6128 with two drives)

4. Follow the on-screen instructions

5. Type DCOPY

6. Insert your MAXAM II LARGE disc in drive A
7. Insert the supplied MAXAM 1I disc in drive B
8. Press S and wait until copying is complete

9. Turn over the disc in drive A

10. Turn over the disc in drive B

11. Press "Y" then press "S"

12. When copying is complete press "N" to return

to the editor.

CPC 6128 with one disc drive

1. Load CP/M

2. Insert the supplied Maxam II disc in drive A with side 1 uppermost.
3. Type: DCOPY

4, Follow the on-screen prompts inserting SIDE 1| of

the supplied Maxam 1I disc at the "original disc"
prompt, and inserting your MAXAM II LARGE disc
at the "Copy disc" prompt

5. When copying is complete type "Y"
to copy another disc

6. Follow the on-screen prompts inserting SIDE 2 of
the supplied Maxam 1I disc at the "original disc"
prompt, and inserting your MAXAM II SMALL disc
at the "Copy disc" prompt.

7. Type "N" to finish copying discs
8. Type: APED to enter the Arnor program editor.
9. From now on at the prompt "Disc for A" insert your

start of day disc in the drive, and at the prompt
"Disc for B" insert your CP/M plus system disc
(purple disc 1) in the drive.

10. Type COPY B:*EMS A and follow the prompts.

11. Type COPY B:SUBMIT.COM A and follow the prompts.

12. Press ESC.

13. Type APED then press RETURN

14. Press ESC.

15. Type SAVE A:PROFILE.SUB

16. Insert your start of day disc at the prompt "Disc for A"
and SIDE 2 of the Maxam I Master disc at the prompt
"Disc for B.

17. Type COPY B:A*.* A and follow the prompts.

18. Type COPY B:*.PTR A and follow the prompts.

DEVELOPING A PROGRAM WITH MAXAM I

This section assumes basic familiarity with the editor. If you are unsure how to type in
any examples read the section on the editor.

The following program calls the console input function via BDOS, stores each character
entered and quits when RETURN is pressed. There is a deliberate bug introduced into the
program. If you haven't spotted it yet we'll find out what it is when we look at
debugging the program.

org &100 s Start
conin equ 1 s BDOS console input function
bdos equ 5 ; BDOS call entry point
return equ &2a ; Carriage return
1d hl,buffer 3 Start of input buffer

loop 1d c,conin s BDOS function number
call bdos ;s Get a character
cp return s Is it return?
jr z,done ; Yes, go to done
1d (hl),a ; No, store it in the buffer
inc hl s Increment pointer intc buffer
jr loop s Get another character

done ret

buffer rmem &100 ; Reserve &0100 bytes of memory
end s End of program

To assemble this program put your start of day disc into drive A and enter CP/M. On a
CPC 6128 type:

|cpM
or on a PCW switch on or press:

SHIFT-ALT-EXIT.

This takes you automatically into the editor. Once in the editor type in the program
exactly as it appears and save by typing:

SAVE MYPROG
while in command mode then enter:
ASM MYPROG

Provided all is well you will see the program assembling on the screen. On completion of
assembly the program MYPROG.COM is saved to disc.

Now run the program by typing:
*MYPROG

You will see that you can type in characters but can't quit by pressing RETURN. Type:
*

you'll see why in a minute.

S0, we've found a bug. Well, there's a simple way of fixing that. Type:
MM MYPROG

This takes you into the monitor which loads in your program automatically.

We are now ready to debug the program. To do this we'll set a conditional breakpoint.
Type:

SC A=13
This- means "If the contents of register A is 13 then stop".
To run the program type:

SS

This means single step slowly. You'll see a number of lines of information scrolling by at
the bottom of the screen. They are showing you the contents of the registers and flags
and the current instruction being executed. Now type in some characters at the keyboard.
You should see the contents of HL is incremented each time you do so. This is correct
because characters are being entered into the buffer pointed to by HL which is
incremented each time. Now to test the program press RETURN.

The scrolling has stopped and the next instruction to be executed is shown at the bottom
of the window on the left. It should read: CP &2A. We set the conditional breakpoint
routine to stop if A=13 but now we're checking whether a=&Z2a which is a "*".

Here's the bug, we were checking for the wrong character. Now we've solved the problem
quit from the monitor by typing:

Q followed by Y

Re-enter the editor by typing:
APED

Then reload the source code and replace the line:
return equ &2a

with:
return equ 13

Having done this, and assuming there are no further errors, you can assemble a working
program. :

Although this is deliberately a simple example, you will see how easy it is to develop and
debug a program by going through these three simple stages.

Of course, there are many more facilities available within Maxam Il which extend the
ease of development far further. These are all explained step by step as you progress
through the manual.

11

THE ASSEMBLER

You can run the assembler either from the editor or from CP/M. From the editor type
ASM <filename>. 1f the filename is omitted the current program being edited will be
assembled. 1f there is no program in memory you will be prompted. The object filename
defaults to the source filename with the extension .COM, or may be specified by a
second parameter in the command tail.

From CP/M type MA <filename>. Again, if no filename is specified you will be prompted.

Program format

The program to be assembled consists of a sequence of statements. Each statement has
the format:

<label field> <instruction field> <comment field>

One line may contain several statements, separated by colons. A statement is made up of
the three parts shown above, each of which may be empty. The comment field, if
present, must start with a semicolon - the effect of a semicolon is that the assembler
will ignore all characters until the next colon or end of line. To allow colons in
comments use two semicolons together. All characters to the end of the line are then
ignored.

Instructions and names used in the source code may be typed in upper or lower case.
Thus 'START', 'start' and 'Start' all refer to the same label.

The label may be preceded by a full stop. This tells the assembler that what follows is a
label. If there is no full stop the assembler will attempt to recognise a Z80 instruction or
assembler directive, and if it fails will take the first item as a label. Labels must begin
with a letter and can be any length.

Thus to use a Z80 instruction as a label it must be prefixed with a full stop, e.g. '.halt'.

Assembler error messages

Whenever an error occurs during an assembly the offending line is listed, a beep is
sounded, and a self explanatory message is displayed.

12

There are 3 degrees of severity of error that can be produced by the assembler. The
most serious is 'fatal error' which causes the assembler to give up immediately. The
different fatal errors are listed in the reference section.

Fatal errors are reported on the first pass. All other errors are reported on the second
pass, and do not cause the assembler to give up. Instead the numbers of each type are
counted and the total numbers are printed when the assembly is finished.

The least serious is 'warning'. A warning message is given for something which can be
assembled but it is likely that the programmer meant something different. This occurs in
the following cases:

1. An expression evaluates to more than & bits, when an 8 bit value is
required, e.g. LD A,300. Note: a warning is not given if the high order 8
bits are all 1, so e.g. LD C,-3 is allowed.

2. Spurious text is found after the statement has been correctly assembled.
This may be the result of missing out a colon or semicolon.

All other errors are labelled 'error'. If any occur the program will have to be re-
assembled.

The ORG directive

In the absence of a directive telling the assembler where to put the code it will
automatically assemble it at &0100. The ORG directive tells the assembler what address
to use.

Notes: (1) Any number of ORG directives may be used.
(ii) The expression may not contain undefined symbols.

NOCODE and CODE

Syntax: NOCODE
Syntax: CODE

Occasionally it is useful to assemble a program without writing any code to file -
perhaps just to check that it assembles correctly, or to assemble a small routine which
is to be input in hexadecimal (maybe on another computer). The directive NOCODE
achieves this. The directive CODE cancels the effect of NOCODE.

w3030

If you are writing code you wish to transport to an 8080 based micro you can still write
the code using Z80 mnemonics (many of which have direct 8080 equivalents) but using
the W8080 directive you will be warned of any instructions which are not 8080
compatible during assembly. This also makes it easier to adapt Z80 code to 8080.

Note that 8080 code may be directly converted to 8088/8086 code, and so this mode
should be used if programs will need to be converted to run on an IBM PC or Amstrad
1512.
The END directive

Syntax: END

The END directive simply tells the assembler to stop. It may be omitted, but has two
uses:

L. To avoid assembling the whole program - temporarily put in an END
directive.

2. END causes the storage location to be output in the listing. A useful ploy is
to put 'LIST:END' as the last line of source code so you can see where the
end of the program is.

Expressions
Arithmetic expressions may be used throughout the assembler - wherever a number is
required. This includes operands of Z80 instructions and assembler directives. The

expression evaluator is documented in the appendix on "The Expression Evaluator.

All expressions are evaluated to 16 bit unsigned integers. Overflow is ignored, and the
least significant 16 bits of the result is used.

Symbols

The assembler keeps a table of symbols, each with an assigned 16 bit value. A symbol is
similar to a BASIC variable. The assembler makes two passes; on the first pass it sets up
the symbol table and on the second pass it creates the object code using the symbol table
to calculate jump addresses etc. On the first pass, when a symbol that has not yet been
defined is referred to it is put into the symbol table. The value is filled in when the
symbol is defined. These forward references must all be resolved on the first pass; error
messages will indicate any symbols that remained undefined. No symbol may be assigned
different values on the two passes - if this occurs the assembler may generate many
errors.

Macro names and local macro labels are also included in the symbol table.

There are some assembler directives which do not allow any forward references because
the expression value must be known on pass 1. These include ORG - the code origin must
be well-defined for it would otherwise be impossible for the assembler to generate the
correct symbol table. The full list of these directives is given in the reference section.

An identifier is the name of a symbol. Valid identifiers must satisfy the following rules:

1. The first character must be a letter.

2. The other characters may be any of: letter, digit, question mark (?), full
stop (.), underline ().

There is no length restriction, nor are there any reserved words.
4 ways to define a symbol
l. As a label. This is an identifier at the start of a statement, possibly
preceded by a full stop. The symbol is assigned the value of the current

code location.

2. By the EQU (equate) directive.
<identifier> EQU <expression>

The symbol is defined and assigned the value of the expression, which must be well-
defined (i.e. contain no forward references). If the symbol is already defined an error
message will be given (unless the old value and the new are the same). In other words,
EQU may not be used to redefine a symbol.

3. By the LET directive.
LET <identifier> = <expression>

This has the same effect as EQU except that LET allows redefinition of symbols. Note:
for compatibility with other assemblers this may be written <identifier> DEFL
<expression>.

4, As a macro (see "MACROS").
Putting data into the object code
The 3 directives explained in this section cause data to be assembled at the current code
location. In all cases both the code location and storage location are incremented.
BYTE <list of expressions and strings>
TEXT <list of expressions and strings>
BYTE and TEXT are different names for the same thing. They take a list of parameters,
each of which can be an arithmetic expression or a text.string. Each expression is
evaluated and the result put in the object code. Each string is sent directly to the object

code, character by character. Strings may be enclosed in either single or double quotes; if
the closing quote is omitted the string is assumed to be the rest of the line.

Note: a single character string is considered a numeric constant, so expressions such
as "A"+&80 are allowed.

Examples: BYTE 1,3,count*3+1,"q" or 128
TEXT "A string ending with cr-1f",13,10

WORD [list of expressions>
Each expression is evaluated and the 2 byte result put in the object code, low byte first.

Example: WORD &C000,address

16

STR (list of strings>

STR is similar to BYTE and TEXT with the exception that it will only take a list of
strings and the last character in each string has the top bit set. This is useful when
printing a string character by character, as you then only need test if each character
has its top bit set to know when you've reached the end of a string.

Example: STR '"Hello world"
RMEM <expression>
RMEM causes the assembler to reserve the specified number of bytes of memory. The
object code location is incremented by the value of the expression. The reserved space is
filled with zeros. The expression may not contain forward references.
Examples:

.buffer256 RMEM 256

.word RMEM 2
Occasionally the reserved space needs to be filled with a value other than zero. This can
be done by giving a second expression parameter. The space is filled with the least

significant byte of the expression's value.

Example:
.data RMEM &200,&FF

Compatibility with other assemblers:
The following alternative directive names are allowed:
DEFB, DB, DEFM ... same as BYTE, TEXT.

DEFW, DW ... same as WORD.
DEFS, DS ... same as RMEM.

Conditional assembly

Conditional assembly is used when two or more versions of a program are needed (eg.
Amsdos and CP/M Plus versions on a CPC 6128). This feature enables any number of
different versions to be assembled from the same source code.

This is done by defining blocks of source code that are to be assembled only if some
condition holds. The formats of IF blocks are:

1. IF <expression>
<code to be assembled if expression is true>
ENDIF

2. IF <expression>
<code to be assembled if expression is true>
ELSE
<code to be assembled if expression is false>
ENDIF

The expression may be any arithmetic expression. In this context the value of the
expression is considered to be a signed 16 bit number, with 'true' represented by any non-
zero number and 'false' by zero.

Examples: IF FLAG AND 32
IF $-start>&2000
IF FLAG1 OR FLAG2

A recommended use is to define a variable which holds the value -1 for true and O for
false.

Example: suppose a program comes in two versions, for Amsdos and CP/M Plus, and there
are a few differences between the two. Define a variable at the start of the source code:

LET amsdos=-1 s to assemble the amsdos version
LET amsdos=0 ; to assemble the CP/M version

Then enclose each section where the code differs in an IF block, as follows:

IF amsdos

<code for amsdos version>
ELSE

<code for CP/M version>
ENDIF

18

Complex expressions may be used in IF directives, and will work as expected if true is
any positive or negative value and false is zero. So if variables which only ever hold the
values 0 or -1 are used the usual results hold (-1 OR 0 is true, -1 AND 0 is false, NOT
-1 is false, and so on).

Example: IF flagi=1 and flag2=2

Warning: although 1 and 2 both represent true, the expression flagl and flag2 evaluates to
0 (i.e. false). Use instead:

IF [flag1>0] and [flag2>0]
IFNOT

For convenience IFNOT may be used instead of IF. It simply reverses the logic of the IF
directive. It is retained for compatibility with the MAXAM I assembler and is the same
as IF NOT <expression>.

IFNOT <expression>

<code to be assembled if expression is false>
ELSE

<code to be assembled if expression is true>
ENDIF

Nesting IF blocks

IF blocks may be nested up to a depth of 10. It is, however, unusual to need nesting
deeper than 2 levels.

Example: IF amsdos
<amsdos code>
ELSE: IF large cpm
<CP/M code>
ELSE
<CP/M small version code>
ENDIF
ENDIF

IF1, 1IF2
These special forms of the IF directive return the value ‘true' on pass | and 2 of the

assembly, respectively. They may be of some use for printing different messages on each
pass, but Z80 instructions and directives should not be placed within an IFl or IF2 block.

19

REPEAT/UNTIL
A Repeat/Until loop is a powerful form of conditional assembly allowing you to assemble
sections of code (possibly adapting parts using IF etc.) repeatedly until the condition
following the UNTIL is true.
Example: LET row=1

REPEAT

IF row=1 or row=8
BYTE 1,1,1,1,1,1,1,1

ELSE
BYTE 1,0,0,0,0,0,0,1

ENDIF

LET row=row+1
UNTIL row=9

‘This example creates an 8 by 8 data table with a border of ones around the outside. Of
course you could develop the above routine even further by allowing for a data table of n
by n size, and so on.

Note: REPEAT must be on a line of its own and REPEAT/UNTIL loops cannot be nested.
Reading source code from a file

Syntax: READ <filename>

When the assembler finds a READ directive it will open the specified file, assemble the
contents of the file, and then return to the line in memory following the READ directive.

The file should be a text file (produced by APED or another editor). The filename can be
enclosed in quotes. If quotes are omitted the assembler will assume the filename to be
the string following the READ directive to the end of the line.

Nested reads are supported. So a file read in can also read from another file.

Note: Nothing can follow a READ statement on the same line.

20

STOP

The STOP command causes reading from the file containing the STOP to terminate. In
the case of nested reads the assembly returns to the last read file. This command may e
useful when reading a number of subroutines from a file leaving out others.

A useful hint

Although READ displays each filename it only does so on the second pass. If the program
is split between several text files it is helpful for the assembler to print the name of
each file it reads on the first pass allowing you to keep track of the assembly. This is
easily accomplished by making the first line of each file something like:

1 PRINT "<name of file> <date>"

This is also useful when editing; without a name at the top of a file it is easy to forget
which file you are editing.

The number | causes the assembler to reset its line counter to 1. This means that error
messages will give the correct physical line number within the file where the error
occurred. The editor has a command to move to a specified line, so using these features
together speeds up debugging.

Writing object code to a file

Syntax: WRITE <filename>

By default the assembler writes a file to disc using your filename but with a COM
extension. The WRITE directive tells the assembler to create a file using the filename
you specify, and store all subsequent object code in the file (unless disabled with
NOCODE). If no filename extension is given the the extension .COM is used.

The extension .L has a special meaning (see the section on linking).

21

Assembler commands

Commands control the listing and output produced by the assembler. They do not appear
on the assembly listing themselves unless a label is attached to the command or there is
an error in the command.

LIST, NOLIST

LIST turns on the assembler listing. This is the initial state.
NOLIST turns off the assembler listing.

PRINT <string>
The string is displayed on the screen, even if the listing is turned off. The string may,
optionally, be enclosed in quotes. This string can include variables. To print the value of
a variable in hexadecimal precede it with "&" or to print in decimal precede it with ns,
example:

PRINT "The code ends at &endprog and is $len bytes long"
PAUSE <string>
The assembler will wait until a key is pressed. PAUSE only operates if listing is enabled.
It allows part of a long listing to be examined. A string to. be printed can follow the
pause. This string can include variables as with PRINT.

BEEP

BEEP, as .its name suggests, causes the assembler to beep. It is useful in conjunction with
PRINT when prompting to change discs or issuing a warning.

INKEY

The command INKEY instructs the assembler to wait for a key press and set a variable
to the Ascii value returned.

Example: PRINT "Do you want the (Llarge or (S)mall version? "
INKEY version

IF versionz"L" or versionz"1"
<large version code>

ELSE

<small version code>

EN DIF

22

DUMP

1If a DUMP command appears anywhere in the program when listing is enabled a complete
alphabetical list of all defined symbols with their values in hexadecimal will be produced
when the assembly has finished.

Listing to the printer, file or screen

OUTPUT F,S,P

The output command can be followed by any combination of F, S or P (for file, screen or
printer). Output following this command will be directed to the selected output devices.

If you select the F option the file written to will have the filename of the source file by
default. If the WRITE command is used the output file will have that filename. In either
case it will have the extension .PRN.

Seven parts of a listing

There are 7 parts to a listing as can be seen in the following example. They are:

1. Line number. The assembler locks for a line number at the
start of a line (in decimal). It it finds one it uses it,
otherwise it counts the lines. These line numbers refer
to physical lines - colon separators do not change the
line number.

2. Code location.

3. Object code. Up to 4 bytes per line are displayed.
Directives may cause more than 4 bytes to be assembled,
in which case the object code will be listed on more than
one line - 4 bytes to a line.

4. Label field.

5. Instruction field.

6. Operand field.

7. Comment field.

23

00001

00002

00003

00004

00005 0100 (0100)

00006

00007 0100 (0001) conin
00008 0100 (0005) bdos
00009 0100 (000D) return
00010

00011 0100 2171 11 01

00012

00013 0103 OE 01 loop
00014 0105 CD 05 0O

00015 0108 FE 0D

00016 010A 28 04

00017 010C 77

00018 010D 23

00019 010E 18 F3

00020

00021 0110 C9 done
00022

00023 0111 (0100) buffer
00024

00025 0211 (0211)

Errors: 00000 Warnings: 00000

Several directives cause a number to be printed

directives are as follows:

END : the
EQU : the
IF,IFNOT : the
LET : the
ORG : the
RMEM : the
UNTIL : the

output f,s
org &100
equ 1

equ

equ 13

1d hl,buffer
1d c,conin
call bdos

cp return
Jjr z,done
1d (hl),a
inc hl

jr loop
ret

rmem &100
end

storage location.
value assigned.

value of the conditional expression.
value assigned.

storage location.
number of bytes reserved.
value of the conditional expression

24

’

Example listing

Start

BDOS console input
BDOS call entry point
Carriage return

Start of input buffer

BDOS function number
Get a character

Is it return?

Yes, go to done

No, store in buffer
Increment pointer

Get another character

Reserve &100 bytes

End of program

after the address in parentheses.

The

PLEN <expression>

Without a PLEN command the listing is continuous with no page breaks. PLEN defines the
number of lines per page. To use this make sure the printer is at the top of the page
(exactly where the first line is to be printed). Set PLEN to the exact number of lines per
page. This is not the number of lines to be printed - a few blank lines are automatically
left at the bottom of the page.

The value of the expression may be either 0 or between 40 and 255. PLEN 0 tells the
assembler to revert to continuous listing.

Examples: PLEN 66 for 11" paper
PLEN 72 for 12" paper

PAGE (<expression>)

The command PAGE causes a page eject. The page length will be used to calculate the
number of blank lines to be printed so the new page starts at the right place on the

paper.

The expression is optional. If supplied this will be used as the new page number. This may
not exceed 255. If no number is given the page number will be one more than the
previous page number.

PAGE is ignored if listing is disabled.

TITLE <string>

This defines a title to printed at the top of each page. For this to be printed on the
first page, the TITLE command must appear before the first directive or mnemonic. The

title will be printed starting in column 1, so to centre the title include the necessary
number. of spaces in the string.

TITLE with no string will cancel the titling option, whereas TITLE "" will give a blank
title line.

WIDTH <expression>
This sets the number of characters per line in the listing. The default setting is the
current screen width (40 or 80), but it may be set to any value between 40 and 255.

WIDTH 0 causes the default setting to be restored.

Example: WIDTH 132

25

External commands

External commands can be included in a source file by prefacing them with a *. The
commands supported are:

*ERASE <filename>
*DRIVE <name>
*GROUP <number>
*ACCESS <filename>
*PROTECT <filename>

Where wildcards are normally accepted they can be included in these external commands.
Example: *ERASE *.BAK

All external commands are executed on both passes by default. If this is not required you
can select exactly which commands are executed and when using IF, IFNOT, IFl, IF2 and
50 on.

Example: IF1
¥ERASE ¥.BAK
ENDIF
IF2
¥RENAME <newname> <oldname>
ENDIF

26

LINKING SEPARATELY ASSEMBLED SOURCE FILES

MAXAM 1I allows you to link files in many ways. The following shows how you can link
two programs produced by the assembler. It is also possible to link programs with Arnor
C object code. How to do this is explained at the end of the section.

SYM

The SYM command saves all the symbols used in your program to disc. This symbol table
can be used later to link programs together or can be loaded into the monitor along with
a program allowing symbolic debugging.

SYM should only be entered after the last symbol has been defined. The best place to put
it is just before END statement.

Example: SYM progname.sym
END

LINK

LINK enables you to link two programs together. A program to be linked has all its
symbols saved, unlike with other assemblers where only the symbols declared PUBLIC are
saved. This ensures that no symbols are missing. Also, a program to be linked is not
relocatable but this is not important as will be seen below.

The command LINK must be entered before any symbols are defined.
A program that is going to be linked must follow this format:

ORG &101

WORD endofprog-$

<main program>

endofprog SYM progname.sym
END

This is to pass the length of the program to the link routme The bytes following WORD
are replaced on linking with a jump address which points to the start of 2nd program.

27

A program that is linking in another must follow this format:

ORG &100

JP start

LINK "progname.com" "progname.sym"
<main program>

e

start

END

So each time you link, the previously assembled program is always loaded in at &0103.
Execution will begin with the last assembled section of code.

This makes it easy for you to create a library of subroutines which you use all the time,

assemble it once and thereafter link in the assembled code, thus saving a lot of
unnecessary re-assembly.

All three Maxam II programs were written this way.

28

LINKING ASSEMBLER AND ARNOR C PROGRAMS

WRITE

Specifying a write filename with the extension .L creates an Arnor C link file. When this
happens the following two commands become available.

PUBLIC (list of symbols>

PUBLIC causes only those symbols following the command to be stored in the link file.
These symbols can then be accessed by the C linker.

EXTERN <(list of symbols>
The symbols specified by an extern command will have been created by the C compiler.
You must declare the symbols you will be using for them to become available to your

program.

A link file must be fully relocatable. For this reason there are a number of rules you
must remember when creating a link file.

1. If you are creating a link file you must not use ORG.
2. If you are not creating a link file you can not use PUBLIC or EXTERN.

3. Your code length may not exceed 32k. If this occurs an error message will
be displayed. The code should then be split into two or more sections.

29

4. Care must be taken to ensure code is relocatable. All 2 byte operands with
a value between &100 and &80FF (the highest allowed code address) are
considered relocatable. If an operand is a constant it should not be used as
a 16 bit value - instead of LD HL,constant use LD H,highbyte:LD
L,lowbyte. Relocatable & bit values should be avoided - instead of LD
A,address MOD 256 use LD BC,address:ld A,C

An explanation of how to use an assembler link file with Arnor C is included in the C
manual.
DRW (list of expressions>

Define relocatable word. This is the same as the WORD directive except that the values
of the expressions are considered relocatable.

30

MACROS

Macros are ideal for making your source code more legible to other people (and yourself
when you come back to it at a later date), reducing the size of your source code and
building libraries of routines which assemble according to the parameters passed. Here is
an example of a listing including macros:

PRINT "Macro examples"

MLON
ORG &100
MACRO addhla
add a,l1
1d 1,a
Jjr nc,addhlan
inc h

addhlal MEND
MACRO swap $regl $reg2
push $regl
push $reg2
pop $regl
pop $reg2
MEND
MACRO mulhl128
rr h:1d h,1
rr h:1d 1,0
rr 1
MEND
MACRO divhl1128
rl 1:1d 1,h
rl 1:1d h,0
rl h
MEND

31

MACRO data $num $a
LET counter=0
REPEAT

text "ga"
LET counter=counter+1
UNTIL counter=$num

MEND

start 1d hl,&1234
1d bc,&5
1d a,&6
addhla
swap hl bc
mulhli128
divhl128
data 3 12345678
data 10 01010101
end

Macros MUST be defined before they are referenced, otherwise macro calls will be
considered as references to addresses. If you have a number of macros it might be useful
to save them in a separate file and read them in when required.

Macro names

Macro names and their parameters must be on a line of their own, so must the
accompanying MEND - except that it can be preceded by a local label.

MLON/MLOFF
Looking at the start of the above listing you will see the command MLON. This informs
the assembler to list macros when they are used. MLOFF turns macro listing off - this is

the default setting. Macros are always listed (if listing is turned on) when they are
defined.

32

Local macro labels

Labels within a macro are considered local. This means they adopt a different value each
time a macro is used. They may not be accessed from outside a macro.

Example: MACRO addhla
add a,l
1d 1,a
jr nc,addhlal
inc h
addhlan MEND

However, global labels can be accessed from within a macro but only if there is not a
local label with the same name. The assembler looks for a local variable first, if one is
not found it looks for a global variable.

Example: MACRO length?
1d hl,endofprog
1d bc,startofprog
or a:sbc hl,bc
MEND

Parameters and textual substitution

Variables passed to macros simply follow the macro name (eg. swap hl bc). Within a
macro references to parameters must be preceded by a "$". Each parameter is passed as
a string of characters and is referred to by the argument name in the macro definition
line. Whenever a macro is used, any occurrence of the name of an argument preceded by
a "$" is replaced by the corresponding parameter string.

This "textual substitution" is a powerful method of passing parameters as any part of the
code can be variable. The parameter can represent an operand, label, instruction or even
any combination or part of these.

To pass the string 123 to macro fred you need only type: fred 123. But if your string
contains spaces it must be enclosed in quotes.

In the case of the above macro DATA the variable $a is enclosed in quotes. This is

because, although the string is textually substituted, when it is assembled 12345678 will
be evaluated as a number unless enclosed in quotes.

33

MAXAM II MONITOR

The Maxam II Monitor offers the most flexible system of debugging and tracing CP/M
programs available for the CPC 6128 and PCW micros. It includes a disassembler, one
pass assembler, automatic or manual single stepping, evaluated conditional breakpoints,
memory editor and relocator.

The monitor also supports bank switching, all the major disc functions, printer controf,
expression evaluation, user breakpoint routines and symbolic debugging.

There are two versions of the monitor; small and large. The small version is cut down
with many of the least used functions removed. This has been included to enable larger
programs to be debugged.

The front panel

On entry to the monitor you are presented with a panel display as shown in figure 1. This
panel is divided into 4 windows.

06D0 09 C3 4B @9 C3 OF BB (3 Cg CC jCIAF 0000 () = -~ == - - -

00E0 C3 A3 02 C3 70 61 €3 63 Ci. CE CcBC 0000 01 89 7F ID 49 C3 81 ...aIC.
00E8 ol C3 04 01 C3 19 02 C3 .C,.C..C|DE 0000 01 83 7F ED 49 C3 91 ...nIC.
00F0 90 02 C3 2F 0C 02 ,.C/,C..|HL 0000 01 83 7F ED 49 (3 31 ...aiC.
00F8 3 98 03 C3 3 61 C..CB.CB Ix 0000 01 89 7F ED 49 (3 91 ...nIC.

4F ,Cr.el.U)TY 0000 01 89 7F ED 49 (3 91 ...mIC,
500 U, SPFFFFFFFFFFFFFFFF

LIS M
101 0a"u={R, PC 0100 92 . LD
FBC .. UDMo¢ 0101 (37205 Cr, (JP &05?é
2BE LLPYIRY| 0104 S e PUSH HL

012¢ FF 80 2148 BEC
0128 01 3200 50 592

Figure 1. The Front Panel

34

The top window is the status window. In this you will find various information about the
computer such as Himem, Lomem and the current program being debugged. Himem is the
highest address in memory your programs can use and lomem is set to the end of your
programs. Memory directly following lomem is often used by the monitor when cataloguing
discs and so on.

The window in the middle on the left is the memory window. Here memory can be edited
in either Ascii or Hexadecimal, or you can disassemble both backwards and forwards and
assemble with the one pass assembly option.

The right-hand window in the middle is the register window. Here the contents of all the
registers and the memory addressed by them is displayed. There is also a disassembly
from the Program Counter.

The bottom window is the main window. This is where you type in all commands and
results from cataloguing discs, listing memory and so on are displayed. The height of this
window can be changed to suit your requirements, and it can also be enlarged to cover
the whole screen, replacing the memory and register windows.

There is also a fifth window which appears at the bottom of the main window when you
define any breakpoints. Any text you have in the main window is scrolled up accordingly
when the breakpeoint window is created.

Finally, at the bottom of the screen there is the CP/M command line. Most error

messages are displayed here. Also on PCWs you have usual access to printer operations on
this line.

35

EDITING MEMORY

There are a number of ways you can edit memory using the monitor. The first and
simplest is to press ESC or STOP in command mode. This takes you directly into the
memory window at the address pointed to by the memory pointer (MP).

The large version of the monitor allows you to set the value of MP to ah expression. For
example, typing MP PC causes the MP to follow the program counter each time the
window is updated. Or, typing MP &234 will keep MP pointing to location &234.

When you enter the memory window having pressed ESC or STOP you will be in either
Hex or Ascii mode, depending on the mode you last used. You can easily switch between
the two but let's assume we've entered in Ascii mode first.

Depending on the height of the main window there are a number of lines of Hexadecimal
characters with the address the MP is pointing to on the middle line. This is where your
cursor starts.

You can now move around inside the window using the cursor keys. If you are at the top
or bottom of the window and try to move out of it, the memory displayed scrolls past. In
this way we can truly think of the memory window as a window into the computer's
memory.

You can also use the cursor keys in conjunction with the SHIFT or CONTROL/ALT keys.
The possible combinations are shown in table I.

. - » A \J
NORMAL Left a char Right a char Up a line Down a line
SHIFT Far left Far right Scroll up Scroll down
CONTROL/ALT Top left Bottom right Up a page Down a page

Table I Cursor editing in Hexadecimal mode

Once you have selected the area of memory you wish to edit you can simply type over
the bytes already there and they will be immediately stored in memory in the currently
selected bank.

You can also edit using Ascii by pressing TAB. This takes you over to the right-hand side

of the window where all the cursor controls are identical but pressing any other key will
store the corresponding value in memory.

36

To quit from the memory window simply press ESC or STOP at any time.

If you need to see a disassembly of the memory you are inspecting you press COPY. The
window is then cleared and replaced with disassembly of the code with the address
pointed to by the MP in the centre and your cursor on top of the first character.

This is not always the case because the monitor allows you two forms of disassembly: one
intelligent and the other simple. By default you enter in the intelligent mode. What this
does is to inspect the code you are disassembling and place you on the fisst legal
instruction following the address pointed to by the MP.

There are two reasons why this will not always work:

1} You may be trying to disassemble some data and of course the disassembly
will be meaningless.

2) Certain opcodes, when read backwards, can be ambiguous. For example:
the opcode for CALL &3DO05 is &CD &05 &3D. However, &3D is DEC A
and &05 is DEC B. So, if you disassemble from half way through this
instruction it will not always be correct.

Nevertheless, the intelligent disassembly usually gets it right. If there is, however, any
ambiguity you can solve the problem by going into simple mode by pressing TAB. Here,
the address being disassembled is shown at the top of the window from the exact address
specified. Pressing TAB again takes you back to intelligent mode.

Moving around in Ascii or disassembly mode is similar to moving in Hexadecimal mode
with the exception that the left and right cursor keys are not used. The keys required are
shown in table II.

- » A v
NORMAL Nothing Nothing Up a line Down a line
SHIFT Nothing Nothing Up a line Down a line

CONTROL/ALT Nothing Nothing Up a page Down a page

Table II Cursor editing in Ascii mode

37

If you are using the large version of the monitor and press any other character the line
you are on is highlighted in inverse video and that character is entered on the line. From
now on whatever you type will be assembled when you press RETURN.

Should you just want to edit the instruction you press RETURN on its own and can then
use the cursor keys to edit the line in the usual way.

All instructions are supported by the assembler including the directives BYTE, WORD and
RMEM Labels can also be defined by placing a full stop before them. Labels previously
defined and variables such as Himem gnd Lomem can be used too.

Any errors reported when assembling a line are shown on the line below. The monitor
then beeps and waits a moment to give you time to read the message before continuing.

Macros are not supported.

As previously mentioned, the assemble option is not available in the small version of the
monitor, but you can disassemble both backwards and forwards.

Returning to Hexadecimal mode is done by pressing COPY again. Each time you enter the
memory window using ESC/STOP or E (for edit) you will enter in the last mode that was
used. Pressing ESC or STOP while in Ascii mode will also quit immediately from the
memory window.

To recap on changing modes:

In Ascii mode: TAB = Intelligent/Simple
COPY = Change to hexadecimal mode
In Hexadecimal mode: TAB = Hexadecimal/Alphanumeric
COPY = Change to Ascii mode

In both case ESC or STOP quits.

38

EDITING THE REGISTERS

The Register window displays the contents of all the registers and the locations in
memory to which they point. Also the contents of the A register is shown to the right of
it as an Ascii character in brackets followed by the states of the flags. At the bottom of
the window there is a disassembly from the PC, depending on the height to which you
have defined your main window.

There are two ways of editing the contents of the registers. The first is by a direct
command such as: BC &1234 or BC PC (where the contents of BC is set to the contents
of the PC). You can also type A= 42 or A= H to set a single register. These commands
are not available in the small version but the second and perhaps the easiest method is.
This is to type ER (Edit Registers) in command mode, which takes you straight into the
register window.

Here you can proceed in a similar fashion to editing in the memory window using the
cursor keys. You can move up and down from register to register with the up and down
cursor keys, or left and right to each single register using the left and right cursor keys.

If you are on the top line, moving right takes you onto the flags which can be edited
singly. To do this move to the flag you wish to change and press any key. Each time you
press a key, whilst the cursor is on top of one of the flags, causes that flag to alternate
between being set and reset. To get back to editing the registers either move all the way
left to the A register or move up or down.

If you have switched off stack checking be very careful when you change the contents of
SP as you may overwrite some important memory with your stack.

Pressing ESC or STOP at any time quits and returns you to the command mode.

39

THE EXPRESSION EVALUATOR AND THE MONITOR

You will already have seen some examples of entering addresses in the form of an
expression in the monitor - full details are given in the appendix on the expression
evaluator. This can only be done when using the large version of the monitor. This is
because the expression evaluator has been left out of the small version to allow you more
room for your programs. Addresses are entered in the same way with the small version
with the exception that the input must be either a decimal or hexadecimal number. (If
hexadecimal it must be prefaced by "&".)

The expression evaluator has been included to make it as simple as possible for you to
find the areas of memory you are interested in and to allow conditional breakpoints.

Most commands will take an expression or a constant as their parameters. Some may
prompt you with a "&" to allow quick entry of hexadecimal numbers. However, if you
wish to enter an expression in place of a number just press DEL or «DEL once to remove
it and type in your expression. If you cannot remove the "&" then the monitor is asking
for a number only. This occurs in places where it is safer to enter a number, as an
incorrect expression might be fatal. One example of this is when you are asked the load
address of a file. If you are unsure of the address required you can work this out in the
large version using the PRINT COMMAND.

One of the main uses you will probably make of the expression evaluator is with
conditional breakpoints. Using the command SC you can set a condition under which the
monitor will halt execution in any of the three single step modes. Conditional breakpoint
expressions can follow the form:

SC HL>42 and [B+E1/2=9 or (PC+23(PC-4)
Although that's a bit of a mouthful you can see how a small expression can be set to

cause your programs to stop under the most complicated or unusual of conditions. And, as
you know, most bugs seem to occur under unusual conditions!

40

If you wanted to you could take levels of indirection to ridiculous extremes in the
following way:

SC (((HL))=BC

Which means:

"Stop if the contents of the address pointed to by the contents of the address pointed to
by the contents of the address pointed to by the contents of HL equals the contents of
BCII

It would be a rare case when you wanted to do that, but it's there if you need it.

41

ERROR TRAPPING

To help you debug programs the monitor has a number of built-in error trap routines.
These include moving the stack pointer out of its boundaries, calls to warm boot,
automatic execution of BDOS functions (preventing bank switching during single stepping -
which usually causes a crash) and the facility to enter your own error traps.

These error traps are on by default unless you have reconfigured the monitor. However, it
is possible for you to disable any or all of the trap routines, but do so at your own peril!

Stack checking

The error trap you will most often need to disable is stack checking. Many programs
require the stack to be moved to a specific location, if that location is outside the
default stack area an error will be reported. Typing IC (Ignore stack checking) will allow
you to put your stack anywhere. But before you do so always ensure that the chosen area
does not overwrite any of the monitor's or CP/M's memory.

Warm boot

Most programs terminate execution with a warm boot by jumping to &0000. As mentioned
in the appendix on Programming Using CP/M Plus, program execution can also be
terminated by a BDOS call (function 0) or a RET to system. In all these cases the
monitor will trap the warm boot and return you to command mode in the main window.
The only form of program termination that is not trapped is a Chain to Program call.

Warm boots are trapped by storing &F7 (BRK) in location &0000. If you change this then
warm boot trapping will no longer occur. Normally location &0000 contains &C3 (JP).

42

Quick calls

The system variable TOP is set to the start of the BDOS routines by default, and BOT is
set to &0100. Any calls or jumps outside this area will be executed at full speed. In the
case of BDOS calis this is essential as many of the BDOS functions use bank switching to
access various parts of memory outside the TPA. However, if there is a routine you wish
to single step outside of these boundaries you can set TOP and BOT to any location.
Again beware, as it is very easy to cause a crash doing this.

Finally as an extra precaution, on start-up and reset all memory between LOMEM and
HIMEM is filled with &C9 (RET) so that should your code branch to an unexpected
address it will be caught, in the majority of cases, before any harm is done.

SINGLE STEPPING

Single stepping is a means by which you can follow the execution of a program step by
step with the contents of the flags, registers and memory being updated after each
instruction.

There are 3 modes of single stepping available in the monitor. These are:

SQ Step quickly. This mode 1is similar to making a
jump directly to your code. However, the monitor
retains control allowing you to press ESC or STOP
at any time to terminate execution. It also allows
you to use a previously defined conditional
breakpoint expression which will be evaluated
after each instruction. If the expression is
evaluated as true {non zero) then execution
terminates.

S8 Step slowly. Similar to the above but the contents
of the flags and registers and the next
instruction to be executed are displayed and
updated in the main window.

S Single step manually. This mode gives you even

more control over the execution of a program via
the addition of single key commands.

43

The extra commands available during manual single stepping are:

SPACE

TAB

RETURN

Execute the instruction shown at the program
counter and stop at the next one.

Skip the next instruction.

If the instruction to be executed 1is a call and
RETURN is pressed it will run at full speed and
return to the instruction following the call.
Also if you make a jump outside the top and
bottom limits set for fast calls by pressing
RETURN the monitor will assume you are returning
from a subroutine by jumping to some code outside
this area which has its own RET.

Note: TOP and BOT are monitor variables. They are
used to 1limit the area inside which single
stepping will show every instruction. Cutside
these limits execution is at full speed.

The usual case is where you would enter:

JP clearwindow

in place of:

CALL clearwindow
RET

44

CLR/DEL__ This command redraws the whole panel. It is
useful when your code has overwritten part or all
of the screen.

CTRL/ALT U Updates the memory window to display the contents
of memory around the program counter

CTRL/ALT W Execute next instruction, then wait for a key
press.

CTRL/ALT C Clear the screen, execute the next instruction
and then wait for a key press.

COPY Toggles between fast and slow manual single
stepping. In the slow mode all registers, flags,
contents of memory and current instruction are
displayed. In the fast mode only the contents of
the main window are updated.

Any other key returns you to command mode. There is further information on single
stepping in the section "Debugging a CP/M Plus Program'.

45

BREAKPOINTS

Breakpoints are one of the most powerful ways of debugging a program. The monitor
offers several types of breakpoints which can be used in different ways.

Hard breakpoints

First of all there are "hard" breakpoints. No matter how you are running a program,
execution will always stop when a hard breakpoint is reached. These can be set and
cleared using the SB and CB commands or, if in disassembly mode in the memory
window, you can set and clear breakpoints by pressing CTRL or ALT-B.

If you wish to test a piece of code without breakpoints taking effect you can disable
them using the IB (Ignore Breakpoints) command. This has the effect of keeping your
breakpoints intact for later use. When breakpoints are ignored they will appear in inverse
video at the bottom of the front panel.

Hard breakpoints can be re-enabled by typing EB.
Conditional breakpoints

Conditional breakpoints are only available in the large version of the monitor. They are
set using the SC (Set Condition) command. Conditional breakpoints are only tested for in
the single stepping modes. This is done by emulating each Z80 instruction then
evaluating the condition and stopping if it is true.

User conditional breakpoints

User conditional breakpoints are most useful in the small version of the monitor which
does not have normal conditional breakpoints. These work by setting a monitor variable
to point to the start of a user routine you have written which can be as long as
necessary. Your routine then does all the required checking and should return at the end
with the carry flag clear if execution is to stop, or with it set if execution is to
continue.

A user conditional breakpoint routine is passed the contents of all registers and flags,
including the alternate set. The registers can be corrupted by the routine but the carry
flag must return the correct condition.

To initialise a user routine enter UB <address> where address is the entry address. This
informs the monitor of the routine's presence. To use the routine you then have to
enable it by typing EU (Enable User). The routine can be disabled by the IU (Ignore
User) command.

46

JUMP and RESUME

It must be stressed that confusing JUMP and RESUME can cause major problems. This is
because JUMP always puts a return address on the stack so that control can return to
the monitor. If you have jumped to some code and hit a breakpoint the return address
will still be on the stack. In this case you must use RESUME in future to ensure that
another return address is not pushed on the stack.

The only time RESUME puts a return address on the stack is if it is empty. This is to
ensure that control returns to the monitor on program termination.

RR (Repeat RESUME) is useful when you have put a hard breakpoint inside a loop. Quite
often you will wish this loop to be executed a number of times until you have reached
the correct point in a program. To save having to type R RETURN several times you
can enter RR <number>. Execution will then resume the specified number of times only
stopping at a breakpoint after all resumes have occurred.

If you set a breakpoint which will only be used once, when you reach it you can clear

the breakpoint and resume execution using one command, RC (Resume and Clear
breakpoint).

47

MONITOR CONFIGURATION

The monitor can be configured to your individual requirements. The way to do this is to
simply set up any of the options below to the states or values required in the normal
way. Then type SF to save the configuration file. Thereafter, each time you run the
monitor, it will use the file to re-configure itself - assuming the configuration file is in
a drive at start-up.

If no configuration file is present at start up, the settings below will assume default
values.

1. Length of symbol table - set by the DSL command

2. Current editing address in memory window

3. Memory pointer expression

4, Bank selected

5. BOT

6. TOP

7. All flags, registers and alternate registers

8. Window size

9. Exec filename - set by the DX command Filename/Ignored
10. Edit mode Ascii/Hexadecimal
11. Disassembly mode in memory window Normal/Intelligent
12. Manual single stepping Fast/Slow
13. Breakpoints Enabled/Ignored
14. Wait at breakpoint On/Off
15. Stack checking On/Off
16. AF register pair Standard/Alternate
17. BC, DE and HL register pairs Standard/Alternate

You also have the option to save breakpoints and the filename of the program you are
currently debugging. To do this you type QS rather than Q when you quit. Then, the
next time you use the monitor, your breakpoints and the file being debugged will be
automatically loaded in at start-up.

If you type Q to quit then all breakpoints and your current program's filename are
wiped from the disc.

Neither Q nor QS affect the configuration file.

48

DEBUGGING A CP/M PLUS PROGRAM

At the beginning of the manual we had a brief look at writing and debugging a simple
CP/M Plus program. The example was necessarily simple as it was used as an overview of
the program development process. In this section we shall take an in-depth look at the
facilities offered by the monitor.

It is recommended that you type in each of the examples and try them out for yourself
to gain a clearer insight into the monitor's workings. The line numbers shown in the
listings should not be entered. They are there as a guide to explaining the programs.

A simple program

1 PRINT "Program I"

2

3 ORG &0100

4 RESET equ &0000

5 BDOS equ &0005

6 PRINTSTRING equ &0009

7 READCONSOLE equ &000a

8

9 start 1d c,printstring
10 1d de,m.name

11

12 call bdos

13

14 1d a,20

15 1d {buffer),a
16 sub a

17

18 1d (buffer+1),a
19 1d c,readconsole
20 1d de,buffer

21 call bdos

22

23 1d a,(buffer+1)
24 and a

25 Jjr Z,start

26

27 1d hl,buffer+2
28 1d c,a:1d b,0
29 add hl,bc

30 1d (hl}),"s$"

v e we we wm we we we

we we e we

Print string function

String to print. Must terminate
with "$"

Call BDOS

Maximum length of input

Poke it into (buffer+0)

Set A to zero; Characters already
in the buffer

Poke it into (buffer+1)

Read console function

Input buffer start

Call BDOS

Find the length of the input
Was it zero?
Yes, try again

No, find start of string
Put length in BC

Add offset to get the end
Poke the end with "$" to

49

31 s provide a terminator

32

33 1d c,printstring ;3 Print string function
34 1d de,m.hello s String to print

35 call bdos 3 Call BDOS

36

37 1d c,printstring 3 Print string function
38 1d de,buffer+2 ;s Re-print user's input
39 call bdos ; Call BDOS

40

41 Jjp reset ;5 Jump to warm boot

42

43 m.name text 13,10,"What is your name? $" ; First message
44 m,hello text 13,10,"Hello $" s Second message
45 buffer rmem 22 ; User's input buffer
46

47 END s+ End of program

Program [takes an input from the user and prints a message. The first line is a
command to the assembler to print "Program I" on the screen. This is usually helpful
when you write a program in several parts which are read in one at a time during
assembly.

Lines 4-7 set labels to certain values. This is not necessary but it makes programs more
legible for other people to read.

The label ‘start' on line 9 is there as we may need to jump back there later in the
program.

Lines 9-12 print out the message following 'm.name’ (line 43). Note that you must always
end a string which is to be printed using BDOS function 9 (print string) with a "$" to
mark the end of the string.

In lines 14-21 we meet BDOS function &0a (read console). This is an example of a
function which requires more than one parameter to be passed to it. Firstly DE must
point to a buffer in which the input will be stored and secondly, before you call BDOS,
you must set the first byte of this buffer to the maximum length of input allowed and
the second byte to the number of characters already input. In most cases this will be
zero. Entering a non zero number will have the effect of returning any characters already
in the buffer to the input line as if they had been typed into the keyboard. The string
entered in the buffer is stored from the third byte onwards.

50

On return from the call the second byte of the buffer contains the new length of the
string. This is checked in lines 23-24. If the length is zero then we return to 'start' at
line 25.

If a valid string was entered then in lines 28-29 we take the length of the string and add
it to the start to find the end. Immediately following the end we put a "$" as the end-
of-string identifier.

Having done this lines 33-35 print out the string following 'm.hello' (line 44) and lines 37-
39 reprint the user's input.

Finally line 41 jumps to location &0000 which causes a warm boot.
This is a fairly straight-forward program and (which we hope) has no bugs in it. We will
be using it as the basis for the next examples so you should save it now as "PROGI"
then type:

ASM PROG1
If all is well the program will successfully have assembled. Try it out by typing:

*PROG1
The message "What is your name ?" should appear on the screen. You can now type in up
to twenty characters. Try this by entering your name. The message "Hello <your name>"
should now appear on the screen followed by the CP/M prompt below it. If this does not
happen go back and check that you typed the program in exactly as it is prlnted (ignoring
the line numbers) and re-assemble it.
Re-enter the editor by typing:

APED
Improving on Program |
Assuming you now have a working program we'll go on to look at how we can on improve
it. The first thing that comes to mind is that if you are using a large number of BDOS

calls in a program a lot of memory will be used up simply setting up the parameters.
Also, poking a "$" at the end of each string to be printed is wasteful on memory.

51

Another thing to note with BDOS is that, apart from any registers which return
parameters, all other flags and registers should be assumed to be corrupt on return from
a BDOS call. That's not a problem with Program I but larger programs may wish to keep
register values. To solve these problems it's a simple matter to modify Program I and at
the same time make the main part of the program much shorter.

1 PRINT "Program II"

2

3 ORG &0100

4 RESET equ &0000

5 BDOS equ &0005

6 PRINTSTRING equ &0009

7 READCONSOLE equ &000a

8

9 start 1d hl,m.name s String to print

10 call print

11

12 1d a,20 s Maximum length of input

13 1d hl,buffer ;s Input buffer

14 call input 3 Get input

15

16 1d a,(buffer+1) ;5 Find the length of the input
17 and a ; Was it zero?

18 jr z,start 3 Yes, try again

19
20 1d hl,buffer+1 s+ No, find start of string
21 ' 14 c,a:1d b,0 s Put length in BC

22 add hl,bc 3 Add offset to get the end
23 set 7,(hl) ; Set the top bit of the last char
24 1d hil,m.hello s String to print
25 call print s Print it

26 1d hl,buffer+2 3 User's input
27 call print ;3 Print it

28

29 Jp reset s Jump to warm boot

30

31 .print push af:push bc:push de ; Push all flags and registers
32 push ix:push iy:push hl ; on the stack

33

34 1d bc,tempbuf ; Get ready to copy string
35

36 print1 1d a,(hl):1d (bc),a 3 Copy from string to tempbuf
37 bit 7,a ;5 Is the top bit set?

52

38 jr nz,print2

39 inc hl:inc bc:jr printi
40

41 print2 inc bc:ld a,"$"

42 1d (bc),a

43 1d c,printstring

44 1d de,tempbuf

45 call bdos

46

47 pop hl:pop iy:pop ix
48 pop de:pop bc:pop af
49 ret

50

51 input push af:push bc:push de
52 push ix:push iy:push hl
53

54 1d (hl),a:inc hl

55 1d (hl),0:dec hi

56 1d c,readconsole

57 ex de,hl

58 call bdos

59

60 pop hl:pop iy:pop ix

61 pop de:pop bc:pop af
62 ret

63

64 m.name byte 13,10

65 str "What is your name
66 m.hello byte 13,10

67 str "Hello "

68

69 buffer rmem 22

70 tempbuf rmem &100

71

72 END

If you take a look at Program II you'll see that the main program only takes up lines 9-
29 (compared with 9-%#1 in Program I). Perhaps the first thing you'll notice is the change
of parameters required in line 9. Here we simply load HL with the start of the string to
be printed and call 'print'. Looking at 'print' (line 31) you'll see that it is preceded by a
"M, This is because print is an assembler directive, but because its a sensible word to use

’

’

2n

Yes, carry on
No, copy next character

Get terminator

Poke terminator at end of string
Print string function

Get start of tempbuf

Call BDOS

Pop all flags and registers
off the stack
return

Push all flags and registers
on the stack

Put max length at start of buffer
Put start length next -

Read console function

Put start of buffer in DE

Call BDOS

s Pop all flags and registers

of f the stack

Return
; First message
3 Second message

; User's input buffer
Temporary buffer

;s End of program

in this case it has been turned into a label by adding the ".".

53

At line 31 the first thing we do is push all the flags and registers on the stack so that
they will be intact when we return from the subroutine. Then lines 36-39 copy the string
to be printed into a special buffer called 'tempbuf' (line 70). We do this so that we can
then add the "$" to the end of the string in the buffer, saving us from having to place it
at the end of every string in memory (a saving of many bytes). This also allows us to
process an output string in any way we want.

The way we determine the end of the string is by checking whether the top bit of a byte
is set. In the case of the string being printed from line 9 ('m.name') the top bit of the
last character has been set by using the command STR in line 67. STR simply places the
string following it in memory at the program counter and sets the top bit of the last
character.

So, having copied the string into 'tempbuf' and found the end of it, lines 41-42 place a
"$" after the last character. Finally lines 43-45 load register C with the required BDOS
function number, load DE with the start of the string and call BDOS. To return from the
routine lines 47-48 pop the stored contents of the flags and registers off the stack and
line 49 returns.

We're now back at line 12. Here we wish to input a string and again we use a subroutine.
First we load register A with the maximum length of the input string (this saves us
having to poke it anywhere in memory) then we set HL to the start of the input buffer
and call 'input' in line 14.

'Input’ is similar to 'print' in that it first stores the contents of the flags and registers.
It then stores the maximum length of the input string at the start of the buffer and
stores the number of characters already in the string (zero) in the second location in the
buffer. Having done this it sets itself up - for the BDOS «call, calls it, restores the
registers and returns.

It's now a simple matter at lines 16-18 to check whether a string was entered and jump
to 'start' if one wasn't.

Then lines 20-22 find the end of the string in the input buffer and line 23 sets its top
bit. Lines 24-25 now print the word "Hello " and lines 26-27 reprint the user's input.
Finally line 29 returns to the CP/M command mode via a warm start.

A good exercise to help you practise the editor's facilities would be to adapt Program I

turning it into Program II, or you may prefer to type the whole program in. Either way,
(again having ignored the line numbers) save Program II as PROG2 and assemble it.

54

When you run it you'll find it works in exactly the same way as Program | except that
the last character of each string is incorrect. Oh dear, a bug. However, it looks fairly
simple to fix. If you remember we were setting the top bit of the last character of each
string to be printed, so the problem is probably something to do with this. Looking at the
code it may not be obvious exactly where the error lies but it is probably somewhere
between lines 36-44.
Single stepping Program II
To debug Program Il go into the large version of the monitor by typing:

MM PROG?2
This loads in the monitor which then automatically loads in PROG2.COM for you.
Before single stepping we'll set up a few functions. First type:

ASC
to change the display in the memory window to disassembly format. Now type:

MP PC
This causes the memory window to always show the memory around the program counter.
And now, because we are fairly sure the problem is to do with setting the top bit of a
byte, type:

SC A>&7F

This sets a conditional breakpoint which tells the monitor that if the contents of register
A gets higher than &7F (its top bit gets set) to stop.

Finally, to get quickly to the problem, type:

SS
This means single step slowly. You will see lines of information scrolling by in the main
window. These show the contents of the flags, registers and the current instruction being

executed. After a few seconds the monitor should beep and the next instruction to be
executed, shown next to PC in the register window, should be LD (BC),A.

55

Looking in the memory window you'll see that the previous instruction was LD A,(HL)
from line 36 in Program Il Also, looking next to the register pair AF in the register
window you'll notice that the contents of A (shown in brackets) is a question mark with
the top bit set. So, we've found the last character in the string: "What is your name ?".

Right, let's follow execution through until the string is printed on the screen. Press ESC
or STOP and type:

S

This means single step manually. If the word at the top right of the main window (in
inverse video) is "FAST" press COPY once. During manual single stepping the COPY key
alternates between showing only the summary of information in the main window and
complete updates of all the windows. As you might think, the slow mode is a lot slower
but it provides you with much more information.

To single step press the space bar 8 times until CALL &0005 appears next to PC in the
register window, This is the BDOS call where the string will be printed. Press ALT or
CTRL C (This means clear screen, execute next instruction then wait for a key press) and
you should see the string printed on the screen with the question mark replaced by the
TM (Trademark) symbol. Now press any key, then ESC or STOP.

This is where the problem lies. Let's re-trace the above procedure. To do this press ESC
or STOP then type:

IN

This stands for initialise, it resets the program counter to &O0100 and sets all the
registers to their default values. Then go into slow single stepping. We should again reach
the instruction LD (BC),A. As the instruction prior to this loads register A with the
contents of the location pointed to by HL it means we've copied everything into
‘tempbuf', including the top bit set in the last character. Problem solved; before copying
characters into 'tempbuf' we must ensure that their top bits are not set.

56

Having discovered the problem, press ESC or STOP, type:
Q
to quit from the monitor and return to the editor by typing:
APED
All we need to do now is adapt the routine 'printl' at line 36.
The simplest way to do this is shown in Program Ila which shows the replacement lines

required.

;s Program Ila

36 print1 bit 7,(hl):push af ;5 Is the top bit set? Store result
37 1d a,(hl}:and &7f ; Clear top bit if set

38 1d (bcl,a 3 Copy from string to tempbuf

39 pop af:jr nz,print2 ; Restore result. Yes, carry on
40 inc hl:inc bc:jr printt ; No, copy next character

Line 36 checks the top bit of the character in the buffer pointed to by HL BEFORE
copying the character, and then pushes the result of the check on the stack. Line 37 then
loads the character into A and ANDs it with &7f (binary %01111111). This has the effect
of keeping any set bits between 0-6 and masking out the top bit if set.

Then line 38 copies the character with the unset top bit into the buffer and line 39 pops
the result of the check off the stack. It is only at this point that we should check if the
top bit had been set. If so, line 39 jumps to 'print2', otherwise line 40 increments the
two pointers and jumps back to 'printl' where the process repeats.

This is a genuine bug that crept in while writing the example. The debugging procedure
followed is the one that found the bug!

Turning program II into a Password routine
Before going any further correct the routine 'printl' in program II and save the result as

PROG2A. Try running it to make sure it works. We will be using the print and input
routines in the next example.

57

W O~N0WU &N -

NOLIST

PRINT "Program III"

RESET

BDOS
PRINTSTRING
READCONSOLE

start

passloop

wrong

.print

ORG &0100
equ &0000
equ &0005
equ &0009
equ &000a

1d hl,m.prompt
call print

1d a,20
1d hl,buffer
call input

1d a,(buffer+1)
and a
jr z,start

1d de,buffer+1
1d b, 7
1d hl,password

1d a,(de):set 5,a
cp (hl)

jr nz,wrong

djnz passloop

1d hl,m.welcome
call print

String to print

Maximum length of input
Input buffer
Get input

Find the length of the input
Was it zero?
Yes, try again

No, find start of string
Put length of password in B
Get start of password

Convert to upper case
Compare with password
Same? No, goto wrong
Yes, check next

Correct input so
print welcome message

;5 The rest of your program goes here

I
jp reset

1d hl,m.invalid
call print

jp reset

push af:push bc:push de
push ix:push iy:push hl

1d bc,tempbuf

H

’

Incorrect password so
tell the user and
jump to warm boot

Push all flags and registers

; on the stack

Get ready to copy string

58

54
55
56
57
58
59
60

65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79

80 m.invalid

81

82 m.welcome

88
89
90
91

print?

print2

input

m.prompt

password

buffer
tempbuf

bit 7,{(hl):push af

1d a,(hl):and &7f

1d {(bc},a

pop af:jr nz,print2
inc hl:inc bc: jr printi

inc bec:ld a,"$"
1d (bc),a

1d c,printstring
1d de,tempbuf
call bdos

pop hl:pop iy:pop ix
pop de:pop bc:pop af
ret

push af:push bc:push de
push ix:push iy:push hl

1d (hl),a:inc hl
1d (hl},0:dec hl
1d c,readconsole
ex de,hl
call bdos

pop hl:pop iy:pop ix
pop de:pop bc:pop af
ret

byte 13,10
str
byte
str
byte
str

13,10
"Invalid password"
13,10

str "TOLKIEN"

rmem 22
rmem &100

END

"Please enter password 2"

"Welcome to MegaProg etc..";

Is the top bit set? Store result
Clear top bit if set

Copy from string to tempbuf
Restore result. Yes, carry on
No, copy next character

Get terminator

Poke terminator at end of string
Print string function

Get start of tempbuf

Call BDOS

Pop all flags and registers
of f the stack
return

Push all flags and registers
on the stack

Put max length at start of buffer
Put start length next

Read console function

Put start of buffer in DE

Call BDOS

Pop all flags and registers
off the stack

Return

;3 First message

5 Incorrect input message
Welcome message

;s Password

; User's input buffer
Temporary buffer

3 End of program

59

Have a look at program IIl. The main differences between it and Program II are the new
routine 'passloop' starting at line 26, the new strings to be printed from line 78 and the
password in line 85. Also note the NOLIST at line 1. This is included because the program
is getting fairly long and the assembly process will take quite a bit longer if everything
is printed to the screen. Although listing is turned off any errors will still be reported.

Quickly going through 'passloop’, starting just before it at line 22, DE is set to point to
the start of the input string, register B is loaded with the length of the password and HL
is set to point to the start of the password.

The password checking loop starts at line 26 where A is loaded with each character in
turn from the input string and then has bit 5 set. This has-the effect of converting the
contents of A to upper case. This is done so that the case used in the input is not
important.

At line 27 we compare the result with the current character in the password pointed to
by HL. If it's not the same we branch to 'wrong' which displays an error message and
quits.

But if the character matches we continue the process until all characters have been
compared. If the input string matches successfully line 31 loads HL with the start of a
welcome message and line 32 prints it. After this you can enter the rest of your code,
but in this case we simply return to CP/M command mode.

As before, type in the program (or adapt PROG2A), save it as "PROG3", assemble it and
run it.

You will find that no matter what you type in reply to the prompt you always get the
message "Invalid password". So we have another bug.

Enter the large version of the monitor 'by typing:

MM PROG3
Again we'll set up the monitor ready for single stepping. Press ESC or STOP once. This
takes you into edit mode in the memory window. Now press COPY, this switches to an
Ascii disassembly. Now press the down cursor key until the instruction under the cursor is

LD A,(DE). To the left of the cursor you will see that you are at location &O0L1C. At
this point press CTRL or ALT B. This sets a breakpoint automatically at address &011C.

60

What we've done is set a hard breakpoint at which the monitor will always stop. The
breakpoint address is the start of the routine 'passloop', the most likely source of the
bug. Press ESC or STOP again to take you back into the main window and type:

J

This means jump to the code pointed to by the program counter, which in this case is the
start of the program (&0100). Enter the correct password "tolkien" and press return in
reply to the prompt.

The monitor's panel should return. Look at the characters on the far right hand side of
the register window next to the DE and HL register lines. You'll see that DE is pointing
one character before the start of the input string. Going back to the listing to see where
we loaded DE with the input line start you'll see that at line 22 we loaded DE with
buffer+1l. This must be wrong because that location contains the length of the string, and
going back to the register window, next to DE is the number 7, which is the length of
the string.

To fix the problem type:
DE DE+l

This increments DE. You should see that the memory shown next to DE and HL now
matches up.

To continue type:
S

to single step. Press the space bar twice. This loaded A with the first character of the
input string (t) and set bit 5. But looking next to the AF register pair in the register
window the character in A is still lower case. Of course, we should have RESET bit 5
because the Ascii value of "t" is 116 and the value of "T" is 84 - a difference of 32 -
which means masking OUT not SETTING is how we convert to upper case.

To fix this go back into the memory window by pressing ESC or STOP twice (once to
quit from single stepping) and move upwards a line with the up cursor key. The
instruction shown should be SET 5,A. Press RETURN. The whole line is now highlighted in
inverse video. Press CLR or DEL» 3 times to remove the SET and type:

RES

61

Then press return. You have now re-assembled the line correctly. Now to try again. Press
ESC or STOP, type:

IN
to re-initialise the registers and type:
J

to jump to the start of the program. Again answer the prompt and the monitor returns to
the main panel. Remembering that DE is pointing to the wrong address increment it again
in the same way as before. Now go into single stepping and press space a few times.

You will notice that the character shown next to AF in the register window alternates
between a "t" and "T". So we are correctly converting the case of the character but
somehow we're not moving onto the next character after each comparison. That's a
simple one. We forgot to increment HL and DE at line 29 before repeating the process.

That's 3 bugs so far, maybe a good point at which to update the source code as it looks
likely that we've found everything. Go back into the editor and change the following
lines:

22 1d de,buffer+2
26 passloop 1d a,{de):res 5,a
29 inc de:inc hl
30 djnz passloop

Re-save the program as "PROG3", assemble it and run it.

Again when you type "tolkien" you get the message "Invalid password". Oh well, another
bug. Go back into the monitor and follow the above process, setting the breakpoint and
jumping so that execution stops at the instruction LD A,(DE). Go into single stepping and
press space a few times. You'll see that each character in the input string is being
converted to upper case, checked and matched successfully with the password. Until, that
is, we reach the final "n". When we match it with the password it fails. Comparing the
two bytes in the register window we see that in the password "n" has its top bit set. Its
our old problem again. But how did it creep in this time?

62

Well, looking at where the password is defined in line 85 we find that we used the
command STR and that caused the top bit of the final character to be set. The problem
is now obvious, we should replace the STR with TEXT. Try it and re-assemble Program
il

Success, it works!
Program IIl was an example of how a number of bugs can occur causing similar problems.
Using the monitor however it is easy to trace program execution and spot exactly where

a bug occurs, and in most cases correct the bug from within the monitor. This allows you
to test for further bugs before returning to the editor.

63

9 WAYS TO CRASH THE MONITOR!

This may seem like a strange title but there are many ways in which you can crash the
monitor and it is well to be aware of them.

1.

2.

3.

4.

5.

FILL. Perhaps the easiest, and most obvious, is FILL. The fill routine does no
checking so if you overwrite any important memory the monitor will crash. The
same goes for MOVE and RELOCATE.

BLOAD loads a file into the currently selected bank. If that bank contains important
information the monitor will crash.

Quick calls. If you jump to a routine above TOP or below BOT which does not
return you will be lucky to get control back as the code will be running at full
speed with no checks being made.

EDIT. Be very careful which areas of memory you edit.

Breakpoints. 1f you set a breakpoint halfway through an instruction there may be
unexpected results.

. User breakpoints. Make sure any user conditional breakpoint routines are fully tested

before using them.

. JUMP. Don't jump when you mean resume as this puts a return address on the

stack. The monitor may not crash but strange things will happen to your code.

. JUMP. Be sure where you're jumping to. By default it will always be the program

counter.

. If you change system pointers such as HIMEM by changing location &0006 be sure

that you leave any chain of jumps undisturbed. HIMEM is in fact contained in the 2
bytes following the BDOS jump location at &0005. If this is changed the new value
must point to a jump which jumps to the previous location pointed at by &0006.
Also, if you change system pointers, ensure that the new jump is set up first.

64

MONITOR COMMANDS

In this section the monitor's commands are divided into groups. Many of these commands
can be abbreviated. Where this is the case the abbreviation follows the command name.
The commands are shown in alphabetical order within each section so that they can be
quickly found. Parameters may be entered in line, if they are omitted and a default value
is not assumed you will be prompted. See Appendix IV for commands which assume
default values.

Inline parameters must be separated by a comma and expressions are allowed in most
cases in the large version.

There are two versions of the monitor on the disc, large and a small, many of the
commands are only available in the large version and these are shown followed by a *.

MEMORY COMMANDS

ASC - Sets the display in the memory window to Ascii format
s0 that disassembly will be displayed.

ASSOCIATED COMMANDS: EDIT, HEX, MDIS, MEDIT, MP

BANK * - This allows you to select a bank configuration. On
the CPC 6128 you can select bank 0, 1 or 2. On a PCW
you can select further bank configurations up to the
capacity of memory available. These extra banks
resemble the TPA with the Dbottom 16k being replaced
by a 16k block from the Ram disc. selecting bank 3
places block 9 at the bottom of the TPA. On the PCW
8256 you can select up to bank 9 {block 15). On the
PCW 8512 you can have up to 25 bank configurations.

After a bank has been selected all further memory
operations such as edit or disassemble will take

place in this bank.

ASSOCIATED COMMANDS: BLOAD, BSAVE

BLOAD * BL Load a file into Ram in the currently selected bank.

ASSOCIATED COMMANDS: BANK, BSAVE

65

BSAVE ®

coMp *

-DIS

DUMP *

EDIT

FC *

FD *

FILL *

BS

CcP

DM

Save a file to disc from the currently selected bank.
ASSOCIATED COMMANDS: BANK, BLOAD

Compares two blocks of memory with each other byte by
byte displaying any differences.

ASSOCIATED COMMANDS: FC
Disassembles memory in the main window from the given
address.

ASSOCIATED COMMANDS: ASC, FD, MDIS, OD

Dump a file to screen in Hexadecimal format.
ASSOCIATED COMMANDS: TYPE

Puts you directly into Edit mode in the memory
window, using the default set by the last HEX or ASC
command. Pressing ESC or STOP on its own in command
mode has the same effect. However, EDIT allows you to
specify the address at which to edit. See "Editing
Memory".

ASSOCTATED COMMANDS: ASCII, HEX, MDIS, MEDIT, MP

Compare a file with contents of memory.

ASSOCIATED COMMANDS: COMP

Disassemble a file from disc using the given start
address.

ASSOCIATED COMMANDS: DIS

Fills an area of memory with a specified byte.

ASSOCIATED COMMANDS: MMOVE, RELOC

66

FIND

HEX

LIST

LS *

MDIS *

MD

This command allows you to find a sequence of up to 8
bytes of code or a string of wup to 20 characters or
assemble a block of code to match. This block is
entered an instruction at a time, when RETURN is
pressed on its own the search is initiated. The byte
or code find will both accept wildcards using "?".
The code option 1is only available in the large
version.

ASSOCIATED COMMANDS: (None)

Sets the display in the memory window to Hexadecimal.

ASSOCTATED COMMANDS: ASC, EDIT, MDIS, MEDIT, MP

Lists memory in the main window in Hexadecimal
between two given addresses.

ASSOCIATED COMMANDS: DM

Load a file into the TPA at the given address. If no
file extension is given then .COM is assumed.

ASSOCTATED COMMANDS: SAVE

Load a symbol table. The symbol table will have been
created using the assembler SYM directive.

ASSOCTIATED COMMANDS: PS

Takes you into Edit mode in the main window allowing
disassembly and one pass assembly. The small version
of the monitor allows full disassembly, but the one
pass assembly option 1is not included. See "Editing
Memory".

ASSOCIATED COMMANDS: ASC, EDIT, HEX, MEDIT, MP

67

MEDIT

MMOVE #*

oD

PRINT *

ME

MM

Takes you into Edit mode in the main window allowing
Hexadecimal or Ascii editing byte by byte. 3ee
"Editing Memory".

ASSOCIATED COMMANDS: ASC, EDIT, HEX, MDIS, MP

Moves a block of memory of a given length from one
address to another. The blocks may be overlapping.
ASSOCIATED COMMANDS: FILL, RELOC

MP stands for Memory Pointer. The memory pointer is
the address which is used for display and editing in
the memory window.

ASSOCIATED COMMANDS: ASC, EDIT, HEX, MDIS, MEDIT

Exactly the same as DIS except that you can specify
an offset from the start of disassembly. This allows
you to see what the code would 1look like if it were
relocated. If no start address is given then &0100 is
assumed.

ASSOCIATED COMMANDS: DIS, FD
Evaluates an expression allowing nested parentheses,
register names, system variables, and indirection.

PRINT (HL) prints the address pointed to by the
contents of HL.

PRINT [HL+BC]/2 prints the result of adding the
contents of HL to the contents of BC and then
dividing by 2

This evaluation is integer only and the result is
printed in both Hexadecimal and Decimal.

ASSOCIATED COMMANDS: (None)

68

PS" -

RELOC * REL

SAVE -

TAIL -

Print Symbols. Displays any symbols you have created
or loaded.

ASSOCIATED COMMANDS: LS

This is similar to MMOVE except that jump and call
addresses can be relocated to point to the correct
places. You are given an option between a simple and
an intelligent relocation. The simple option
relocates the whole block, whereas the intelligent
option allows you to specify areas of data which are
not to be relocated.

Note: Intelligent relocation does not move code but
relocates it on the spot.

ASSOCIATED COMMANDS: FILL, MMOVE

Save a file from the TPA to disc. No extensions are
assumed.

ASSOCIATED COMMANDS: LOAD

Store the specified command tail in memory at &80.

This 1is wuseful for testing programs that obtain
parameters from the CP/M command line.

69

BOT

CB

CLS

RUNNING AND DEBUGGING COMMANDS

This is the bottom range allowed when you make fast
calls while single stepping. It 1is included so that
if you are stepping through a program and do not wish
to follow certain subroutines below a certain
address, (perhaps because they are executed many
times) they will be executed at full speed if they
are below BOT.

Initially BOT is set to &0100 as this is the normal
start of a program.

ASSOCTATED COMMANDS: TOP

Clears breakpoints. A number of addresses can be
entered following the command, or if no address is
specified, the cursor moves to the breakpoint window
(if any breakpoints have been set). At this point you
can select the breakpoint to clear using the left and
right cursor keys and then clear that breakpoint by
pressing RETURN.

ASSOCTIATED COMMANDS: RC, SB

Clears the main window.

ASSOCIATED COMMANDS: (None)

If you have entered any breakpoints this command will
enable them. By default, breakpoints are enabled but
may be ignored using the command IB. This is useful
when you want to test your code without breakpoints
but may wish to use them again later.

ASSOCIATED COMMANDS: IB

70

1B

Ic

Enable stack checking. During single stepping, if the
stack pointer is changed to lie outside the allocated
area, and stack checking 1is enabled execution stops
and an error message is displayed.

ASSOCIATED COMMANDS: IC

Puts you into Edit mode in the register window where
you can change the contents of all registers, the PC
and flags.

ASSOCIATED COMMANDS: (None)

Enables a user breakpoint routine if one has been
initialised. See UB for how to initialise one.

ASSOCIATED COMMANDS: IU, UB

Exchanges BC, DE and HL with their alternate register
pairs.

ASSOCIATED COMMANDS: XAF

Once this command has been issued, any hard
breakpoints will be ignored. Conditional breakpoints
and user conditional breakpoints will still work.

ASSOCIATED COMMANDS: EB

Ignore stack checking. Normally your stack is located
in a &0100 byte block in common memory above &C000.
If your stack moves out of this area, execution will
terminate and an error will be reported. If for any
reason you wish to move your stack elsewhere you must
use this command so that execution can continue.

If you use this command and your stack overwrites
part. of the monitor's or CP/M Plus's memory then the
system will probably crash! You have been warned.

ASSOCIATED COMMANDS: EC

71

INIT

IU

QB

RC

IN

Initialises all registers and alternate registers to
0. Also resets the PC to &0100, SP to its default
value and MP to &0100.

ASSOCTATED COMMANDS: RESET, ZR

If a user breakpoint routine has been initialised
this command causes it to be ignored.

ASSOCIATED COMMANDS: EU, UB

Jumps to code at the given address. If no address is
specified, execution will commence at the program
counter. This command places a return address on the
stack to allow control to pass back to the monitor on
termination.

NOTE: To avoid corrupting the stack by placing return
addresses on it, this command should only be issued
on commencement of execution. Thereafter you should
use RESUME.

ASSOCIATED COMMANDS: RESUME, RC, RR

Quick breakpoints. If a breakpoint is met whilst code
is being executed from a JUMP or RESUME, control will
return immediately to the monitor in command mode.
ASSOCIATED COMMANDS: WB

Resume and clear breakpoint at the PC. If your code
has stopped execution at a breakpoint and you no
longer have need of that breakpoint, this command

removes it and continues execution.

ASSOCIATED COMMANDS: CB, JUMP, RESUME, SB

72

RESUME

RR

SB

Sc ®

Similar to JUMP except that no return address is
placed on the stack unless it 1is empty. In this case
it is necessary to do so to allow control to pass to
the monitor on completion.

ASSOCIATED COMMANDS: JUMP, RC, RR

Repeat RESUME. Causes a RESUME to be executed a
specified number of times. If no number is specified
RR does one RESUME only. RR 1is particularly useful
when debugging code with a breakpoint inside a loop.

ASSOCIATED COMMANDS: JUMP, RC, RESUME

Single step. This takes you into manual single
stepping in which you retain more control over your
program's execution with the ability to skip
instructions, make fast calls - which are not stepped
- to routines which you know work, update the
contents of all the windows 1in the panel and select
between fast and slow running. See "Single Stepping".

ASSOCIATED COMMANDS: SQ, SS

Set a breakpoint. You can enter a number of addresses
following this command. If no address is specified
you will be prompted for one.

ASSOCIATED COMMANDS: CB, RC

Set a conditional breakpoint expression. This command
enables you to specify a condition under which your
code is to stop execution without having to set an
address. Parentheses and indirection plus full
integer arithmetic are supported.

This facility is only available during single
stepping.

ASSOCIATED COMMANDS: (None)

73

Ss

UB

Step quickly. Similar to RESUME except that the
monitor retains control throughout allowing it to
keep track of the stack, user breakpoint routines,
and conditional breakpoints. Execution speed 1is
reduced due to the amount of work the monitor has to
do, but there is less chance of a crash and you can
terminate execution at any time by pressing ESC or
STOP. See "Single Stepping".

ASSOCIATED COMMANDS: SS, S

Step slowly. Identical to SQ except the contents of
the registers, stack, program counter and current
instruction are continuously displayed and updated in
the main window. See "Single Stepping".

ASSOCTIATED COMMANDS: SQ, S

Is similar to BOT, except that calls made above TOP
will execute at full speed.

ASSOCIATED COMMANDS: BOT

Although the monitor is supplied with a sophisticated

expression evaluator for setting conditional
breakpoints there may be times when you wish program
execution to stop under complicated conditions. For
example you may wish to check whether any memory
between &4000 & &4023 has been altered. In this case
you can write your own routine which will be called
each time an instruction is single stepped.

If your code returns with the carry flag set then no
action will be taken. However, 1f the carry flag is
clear the monitor will stop and wait for further
instructions as if it had encountered a normal
breakpoint.

A user conditional breakpoint can be disabled using
the IU command.

ASSOCIATED COMMANDS: EU, IU

T4

ZR

DE
HL
IX

SP
PC

WMo o o ok ke ke

Wait at breakpoint. Once this command has been
issued, 1if a breakpoint 1is met whilst code is
executing from a JUMP or RESUME, the monitor will
beep and wait for a key press, allowing you to study
the screen before returning to the monitor.

ASSOCTATED COMMANDS: QB

Exchanges the accumulator and flags with the
alternate accumulator and flags. Alternate registers
are shown with a ' following them in the register
window.

ASSOCIATED COMMANDS: EXX

Similar to INIT with the exception that the SP, PC
and MP are unaffected.

ASSOCIATED COMMANDS: INIT, RESET

Each of these commands sets the associated register
pair to a given value. If no value is specified the

register pair is set to 0, or in the case of the SP
and PC they are set to their default values.

ASSOCIATED COMMANDS: A=, F=, Bz, C=, Dz, E=, H=, L=

Similar to the above commands except the register
associated with each command is set to the given
value, and if no value 1is specified they will always
be set to O.

ASSOCIATED COMMANDS: AF, BC, DE, HL, IX, IY, SP, PC

75

CPM

DX

QUIT

Q

CONFIGURATION COMMANDS

Takes you straight into CP/M command mode no matter
where the monitor was called from.

ASSOCIATED COMMANDS: QUIT, QUITS

Set the default symbol table 1length. By default you
are allocated &0100 bytes of symbol table area for
defining your own symbols or loading in a small
symbol table. If you will not be using a symbol table
you can use this command to set a length of O,
thereby saving a page of memory.

Also, if you know the length of any symbol table you
will be using you can set the correct length.

This command is useful because, when you load in a
symbol table longer than the default &0100 without
having set a new length, the old table will be
discarded and a new one created, 1losing you &0100
bytes of memory.

ASSOCIATED COMMANDS: DX, SF

The monitor allows you to configure itself to your
specific requirements. This command allows you to
specify the name of a file which will be
automatically executed as soon as the monitor is
loaded.

The file can include any legal commands which will be
acted upon as 1if you had typed them 1in at the
keyboard.

For this command to be accepted by the monitor you
must use the command SF to -save the configuration
file.

ASSOCIATED COMMANDS: DS, SF

Quits to the calling program.

ASSOCIATED COMMANDS: QUITS

76

QUITS

RESET

SF

L)

Qs

Quits to the calling program saving the current
settings including any breakpoints set, window size
and register contents.

ASSOCIATED COMMANDS: QUIT

This command resets the monitor to its startup state.
However if your program has altered system variables
such as HIMEM or you have loaded a symbol table these
remain unchanged.

ASSOCIATED COMMANDS: INIT, ZR

Save a configuration file. This command saves the
complete configuration of the monitor including
contents of registers, window status, Himem, Lomem
and so on. It also saves any default Exec file name
and default symbol table length.

ASSOCIATED COMMANDS: DSL, DX

Enables you to change the size of the main window.
On a CPC 6128 this can be a value between O and 8, on
a PCW it can be between 0 and 15. A value of O
removes the memory and register windows replacing
them with a large main window. Any other value sets
the height of the main window.

ASSOCIATED COMMANDS: (None)

7

THE EDITOR

The Arnor Program Editor is a full implementation of the program mode of the PROTEXT
word processor. It operates in two modes. A summary of the conventions used in these
modes follows: .

Edit mode commands

ALT-[means the key marked 'ALT' and the key marked '['.
Wherever a hyphen is used between them, it means that
the first key should be held down whilst the second
key is pressed. Most of the editing commands take this
form.

ALT-V T means that the 'ALT' and 'V' keys should be used as
described above, then released and the 'T' key
pressed. Note that there is no hyphen between the 'V
and the 'T'.

ALT-SHIFT-H means that all three keys should be pressed at the
same time. This sort of command that requires more
than two keys to be pressed at a time is rarely used
and at least two of the keys are always adjacent to
each other.

ALT-(means that the 'ALT' key and the key which has the '(!'
on it are pressed together. It does NOT mean that
SHIFT is required as well. The '(' is merely being
used for ease of remembering its function.
AFED - Progran No Flle 3} or comand node iL-H for Help
Chi1 Linel (ol 28 No markers set Insert
org 4108 1 $tart
conin equ 1 ; BDOS console input function

bdos equ B i BDOS call entry point
return equ &8d ; Carriage return

1d hl,buffer ; Start of input buffer
loop 14 ¢,conin ; BDOS function number

call hios 1 Get a character

¢p return i Is it return?

¢ z,done ; Yes, go to done

f hl),a ; Mo, sgore it in the huffer

in¢ hl i Increment pointer into huffer
Jr loop Get another character

ram Editor v2.05 (o) 1387

—

Printer: SIMPLE

Pro

78

Command mode commands

Command mode commands-are always shown in upper case, though when they are being
entered into the computer, they may equally well be entered in upper or lower case.
Similarly, when entering filenames to LOAD or SAVE a file, even though they may be
shown in upper case, lower case is acceptabls

them to upper case if required. ’

Key variations for the CPC6128

There are a number of differences between the keyboards of the PCW computer and the
CPC computer. Throughout this section of the manual PCW key names are the ones which
are used, rather than cause confusion by listing both keys on all occasions.

The following keys are direct equivalents:

PCW key CPC key
STOP ESC
EXIT ESC
ALT CONTROL
DEL» CLR
<DEL DEL

There is no direct equivalent to the EXTRA key, but for most purposes, CTRL-0 (zero)
serves the same purpose.

Any other variations, where, for example, there is no directly equivalent key on the
CPC6128, are noted at the appropriate point in this section

Full advantage is made of the cursor keys and when used in conjunction with SHIFT, or
ALT, the effect becomes increasingly greater. For example: Using the right cursor key on
its own will move the cursor one character at a time. Using it with the SHIFT key will
move a word at a time, whilst with ALT, it will move to the end of the line.

Similarly, the commands to delete make use of the two DEL keys, which on their own

will delete one character, but when used with SHIFT will delete a word and with ALT
will delete to the beginning or end of the line,

79

Command mode

Command mode can be recognised by a broad inverse band about two thirds of the way
down the screen and immediately beneath this is the command mode prompt 'a>', followed
by the block cursor. Whenever the prompt and the cursor are visible, the editor is waiting
for a command. Commands are words which are typed in as instructions and may be
followed by one or more parameters, depending on the command.

There are a considerable number of commands, which are covered in detail in the
'Command mode' section, but a few of the most commonly used ones will be mentioned
here. Commands and parameters may all be entered on the same line, with the
parameters being separated from the command by a space. If more than one parameter is
specified, they may be separated either by a space, an equals sign (=) or a comma (,).

Any commands which NEED further parameters can be used just by typing the command
and the editor will prompt for the parameters. There are, however a number of commands
which optionally may have parameters specified, in which case the parameter should
follow the command, separated by a space.

Once the command has been specified, the RETURN key should be pressed and the
command will be carried out and when completed, the command mode prompt will return.

Drives may be changed by just typing the drive letter, or alternatively, the DRIVE
command may be used (DRIVE B). When a drive is changed, the command mode prompt
letter will change to suit the new drive. Drives may be catalogued at any time by
entering CAT, optionally with the drive letter as a parameter (CAT B will catalogue the
contents of drive B).

Documents may be saved and loaded by use of the SAVE and LOAD commands, with the
name specified as the parameter (see section on command mode for details of simple
methods and current filenames).

Printing is carried out from command mode. There are two printing commands which
enable documents or parts of documents to be printed.

In addition, there is a range of commands which allow 'housekeeping' of disc files, such

as renaming, moving and copying of files, as well as formatting and copying of discs and
these are all covered in detail in the relevant sections.

80

EDIT MODE

Throughout this part of the manual, the standard editor command keys are described. The
PCW computers have a number of 'special' keys on the right hand side of the keyboard
and these have been configured to correspond to their originally intended uses as far as
possible, which in most cases is merely a duplication of the equivalent editor command. It
should, however, be noted that due to the different methods used by the editor for
moving, copying and deleting blocks of text, there is some variation in the way that the
CUT, CAN and COPY keys are used.

Editing

Once the editor has been loaded, two lines containing information about the state of the
program will be seen at the top of the screen. These are the 'Status lines', the contents
of which will be explained later. There is also a thin horizontal line, which always marks
the end of the text and about two thirds of the way down the screen is another, broader,
line containing further information.

At this stage the program is still in Command Mode, which is described in detail in the
next chapter, but pressing the STOP key will put the program into Edit Mode, which is
the mode used for all entry and correction of text. The line two thirds of the way down
the screen will disappear, leaving the lower part of the screen clear. Pressing the STOP
key at any time will return to command mode.

Entering text

Once in edit mode a flashing cursor is positioned beneath the status lines and anything
that is typed at the keyboard will appear on the screen at this position and the cursor
will be moved forward one position.

Any mistakes made whilst typing, which are noticed at the time, may be corrected by
pressing the «DEL key, which will cancel the last key pressed.

The cursor can be moved around the screen by pressing the four cursor keys. By using
these keys, text may be entered at any position. The cursor moves one line or column for
each press of a cursor key. Holding a cursor key down will make the cursor move
continuously - release the key and the cursor will stop.

81

The cursor cannot be moved past the end of text (the thin horizontal line on the screen).
To position the cursor further down, the end of text must be moved down by positioning
the cursor at the end of the text and pressing RETURN as many times as required.

Upper and lower case

Initially the letter keys produce lower case letters, unless SHIFT is pressed at the same
time. If SHIFT LOCK or CAPS LOCK is pressed, upper case letters are always produced,
and this is indicated on the status line.

Note: The Amstrad PCW computers are slightly unusual in having a SHIFT LOCK and no
CAPS LOCK key. When SHIFT LOCK is on, all the characters on the upper part of those
keys which have more than one character on them will also be selected. Caps lock is
selected by pressing ALT-ENTER.

The editor has two commands which change the case of a letter. To make a letter upper
case, press ALT-/ when the cursor is on the letter. This command only affects letters, so
the cursor can be moved quickly over a line to convert all letters to upper case by
holding down ALT-/. Similarly, ALT-. (point) will convert upper case letters into lower
case.

(CPC6128 equivalent: CTRL-\).

Deleting and inserting

The ability to move the cursor around, permits the correction or alteration of text
anywhere on the screen. The cursor should be positioned on the letter to be changed and
the DEL»™ key pressed. This will remove the letter at the cursor position, and move the
rest of the line to the left. As many letters as required can be deleted in this way. If
the new letter is now entered it will appear on the screen and the rest of the line will
move back to the right. Alternatively, pressing «DEL will remove the character to the
left of the cursor and the text will again move to the left to fill the gap. Repeated
pressing of either DEL key will cause further charagters to be deleted.

If extra text is to be inserted, the cursor should be positioned where the first new
character is to be added and the new text entered.

To insert a new blank line into the text, ALT-I should be used. The cursor will remain

where it is and all text from the current line to the end of the document will be moved
down a line.

82

Just as a character can be deleted, so can a word. Pressing SHIFT and DEL» when the
cursor is at the start of a word will make the word disappear. If this is done when the
cursor is in the middle of a word, only that part of the word at and to the right of the
cursor position will be deleted.

Similarly, pressing SHIFT and «DEL will remove the word to the left of the cursor, or if
positioned in the middle of a word, the characters to the start of the word.

ALT-«DEL will delete all text from the character on the left of the cursor to the start
of the line and ALT-DEL» will delete all text from the cursor to the end of the line.
ALT-E also deletes everything from the cursor position to the end of the line. (CPC6128
users: only CTRL-E is available).

ALT-CAN will delete the whole line. The line is removed from the document and the
remainder of the text moved up a line. (CPC6128 equivalent: CTRL-CLR).

Note: Pressing ALT-«DEL followed by ALT-DEL» will delete all the text from a line, but
will not remove the empty line from the text, unlike ALT-CAN, which will remove the
blank line as well.

Swapping two characters

A common typing mistake, especially when typing quickly, is to type two letters the
wrong way round, e.g. 'wrod' instead of 'word. The ALT-A (Alternate characters)
command will put this right. The cursor should be positioned on the first of the two
offending characters (on the 'r', in the above example) and ALT-A pressed. The two
characters will then be exchanged.

Un-deleting all or part of a line

The editor maintains a buffer which always contains the most recently deleted section of
“text. If a line or part of a line, more than three characters long, is deleted, the deleted
text will be saved in the buffer. If a section of text has been accidentally deleted, it
may be restored by pressing ALT-U.

This command can also be put to good use for moving lines or parts of a line to a
different position in the text, though this is not the purpose for which it is really
intended. The text to be moved should be deleted using one of the word or line delete
commands and the cursor moved to the position in the text where the deleted text is to
be placed. Pressing ALT-U will then restore the text at the new location.

83

Note: Only the text removed by the last delete command will be stored in the buffer and
any previous contents of the buffer will be lost. It is therefore only possible to un-delete
a section of text until such time as any other section of text is deleted.

Insert and Overwrite mode

Initially the editor, by default, is in insert mode and the word 'Insert' is displayed on the
status line at the top of the screen to indicate this. This means that when text is typed,
the rest of the text on the line is moved along to the right to make room. This is the
mode that is preferred by most people for text entry.

Pressing ALT-TAB will change the status line to 'Overwrite'. Selecting overwrite mode
can make certain editing jobs easier. The effect of using it is that if the cursor is
positioned over an existing piece of text and new text typed in, the existing text will be
replaced by the new text, unlike insert mode, where the existing text would be moved to
the right.

If an extra character needs to be inserted whilst in overwrite mode (for example if
replacing a word by a longer word), this can be done by pressing ALT and the space bar
which will move the text to the right to make room.

Moving the cursor more rapidly

So far the cursor has been moved by a character at a time, but there are also various
ways to move the cursor more quickly. These are as follows:

(a) Pressing SHIFT-»or SHIFT-=will make the cursor Jump a word to
the start of the next (or last) word. This feature is useful for
moving more quickly to a word which needs correction.

(b) Pressing ALT-»or ALT-«. This moves the cursor to the beginning or
end of the line.

(c) Pressing SHIFT-RETURN or ALT-RETURN. This moves the cursor to the
beginning of the next line, without causing a new line to be
inserted, which would happen if the RETURN key was used on its
own.

o

Pressing ALT-A or ALT-¥. This moves the cursor up or down rapidly.
By holding down ALT-A or ALT-Y the text can be rapidly scanned.
The text will scroll by nearly a screenful at a time, but with a
few lines overlap so that the context may more easily be followed.
Similar functions are performed by ALT-Q and ALT-Z, except that a
full screen is scrolled each time, with no overlap of text.

84

(e) Pressing ALT-[or ALT-] moves the cursor to the beginning or end
of the text resident in memory at that time. Pressing the same key
a second time will move the cursor to the beginning or end of the
complete document.

(f) Pressing ALT-@ [or ALT-@] will move to the opening or closing
block markers, if set.

(g) Pressing ALT-[+] or ALT-[-] will go to the next or previous marker
in the document. See 'Place markers'.

(h) Pressing ALT-L moves the cursor back to the last position. This is
particularly useful if the cursor has accidentally been moved to
another part of the text by using an incorrect command. ALT-L will
return the cursor to the position where it was before the
incorrect move was made. It will only have any effect if the
cursor has been moved with one of the 'jump' commands. Moving the
cursor a single space at a time will not affect the use of ALT-L
and it can still be used to vreturn to the original position from
which the last jump was made.

With care, this facility can be put to good use, by permitting a jump to another part of

the text, where one or two alterations or additions may be made, before pressing ALT-L
to return to the original place in the text.

85

Moving to a specified line or column number

Pressing ALT-G will result in a message appearing on the status line, requesting a line or
column number. If just a number is entered the cursor will move to that line. If C is
followed by a number it will move to that column.

Place markers

A place marker can be put anywhere in the text and is similar in use to a book marker.
Ten place markers can be set, numbered 0 to 9. A place marker is set by pressing
ALT-@ followed by the number. When a marker has been set, it will appear in the text
as the number in inverse and will be shown on the status line, so that by looking at the
status line it is easy to see which markers are available. Once a place marker has been
set, it can easily be returned to at any time by repeating the ALT-@ command with the
same number.

In addition to using ALT-@ and the number to find a place marker, it is possible to jump
from one to the next in the document by using ALT-[+] to move on through the
document, or ALT-[-] to move backwards. Using these commands will find the next or
last marker in the text. All types of markers (place, and block) will be found. They are
not treated numerically, but are found in the order in which they occur in the document.
(CPC6128 equivalents: CTRL-@ + moves to next marker, CTRL-@ - moves to previous
marker).

As an example of the use of a place marker, suppose a long file is being edited and
something needs to be added at the top of the text. A place marker can be set and
ALT-[typed, to move to the top of the text, and after making the addition, ALT-@ and
the place marker number used to move back to the place marker.

Note: Place markers are saved with the text and will be restored when the file is
reloaded.

Scrolling

When the text fills the entire depth of the screen, typing further text will cause the
screen to scroll up. That is, the top line will disappear and the rest of the screen will
move up one line to make room for a new line at the bottom of the screen.

In the same way the text will scroll if the cursor reaches the bottom of the screen but
there is more text to come, or reaches the top of the screen when the text has
previously scrolled. This is known as vertical scrolling, and is essential for editing text
that is longer than a few lines.

86

The editor has commands to force the screen to scroll either up or down at any time.
This is done by pressing SHIFT-A or SHIFT-Y. The cursor will stay on the same line, but
the whole text will scroll by one line. This feature is useful if a line is to be edited and
it is desirable to see the text beneath or above.

There is another form of scrolling, called horizontal scrolling, which happens automatically
when the cursor is moved beyond the right hand limit of the screen. If this is done the
text will scroll to the left. This means that the text on the left of the screen will start
to disappear as the cursor is moved further to the right of the screen. Horizontal
scrolling allows text to be entered in lines that are longer than the screen width. This
can be confusing at first and so is best avoided initially. If horizontal scrolling occurs,
any of the commands which move the cursor to the left may be used to scroll the text
back, or SHIFT and RETURN may be pressed together, which will return the cursor to
the start of the next line.

Splitting and joining lines

Lines will often require splitting, or joining together. This is very easy in the editor.
There are two different methods of doing this, depending on whether ‘'Insert' or
'Overwrite' mode is in operation.

To split a line whilst in Insert mode, the cursor should be moved to the character which
is to be the first on the new line and RETURN pressed. To join two lines, either move to
the end of the first line and press DEL», or move to the start of the second line and
press «DEL. The text on the second line will then move up and join onto the end of the
text on the first line.

If in overwrite mode, ALT-* will split the line at the cursor and ALT-+ will join the
next line to the end of the current line.

Block commands

The editor allows any section of text to be moved or copied to any other part of the
text. This is often called 'cut and paste' editing.

This section will describe the ways to use block editing. A block of text is any continuous
section of text. It may be of any length and may start at any position in the document
and finish at any position. When in block editing mode, all text between these two points
will be manipulated in whatever way is chosen.

87

Defining a block

The first requirement is that the block of text is marked with block markers. The cursor
should be moved to the start of the section of text and SHIFT-COPY pressed
(alternatively SHIFT-[+] can be used and may be found more convenient). This will set a
block marker. The marker will be indicated on the screen by an inverse video square
bracket. The cursor should then be moved to the end of the section and SHIFT-COPY
pressed again, to set a second marker. The block has now been defined. An opening
square bracket is the start marker, a closing square bracket the end marker. When
markers are defined, this will be indicated on the status line, where the message 'No
markers set' will be replaced by 'Markers []', showing that both the start and end
markers are set.

The markers can be set in either order, and can be at any position in the text. The first
marker set will be displayed as an opening bracket, but if the second marker is positioned
earlier in the text than the first marker, this will change to a closing bracket. If the
marker is put in the wrong place, pressing SHIFT-COPY again while the cursor is still on
the marker will remove it. Either or both block markers can be cleared at any time, by
pressing ALT-K or CAN. Often a block will consist of a number of complete lines. To
define a block like this, the first marker should be positioned at the start of the first
line, and the second marker at the start of the line following the last line of the block.

If an attempt is made to set a marker when both are already set, a beep will sound and
an error message will be displayed on the status line. Pressing STOP will resume editing
and ALT-K can be used to clear the markers.

Moving or copying a block

Once a block has been defined, it can be moved to any point in the text simply by
moving the cursor to the required position and pressing ALT-M or alternatively on the
PCW, the PASTE key. The markers will move with the jext. The cursor must not be
within the block at the time; if it is an error message will ba displayed on the status
line. Pressing STOP will return to edit mode and the cursor can be moved to the correct
position.

The block can also be copied, leaving the original text intact. This is done by pressing
ALT-COPY or just COPY (PCW only). The markers will be moved with the block, which
makes it easy to see clearly where the new copy of the block is and also to copy the
block again if required. The cursor must not be within the block. (CPC6128 equivalent:
CTRL-COPY).

88

Deleting a block

The section of text to be deleted must be defined in the usual way. Pressing the CUT
key will delete the block. If the block is larger than a certain size (see below) a beep
will sound and a warning message will be displayed on the status line, requesting
confirmation that the block is to be deleted. The block will only be deleted if 'Y' is
selected. (CPC6128 equivalent: CTRL-DEL).

Un-deleting a block
If a block of text is accidentally deleted, it may often be recovered by use of the ALT-U
command. When text is deleted, the editor retains the deleted block in a buffer and

ALT-U will restore it to the document.

Note: A block can only be restored until such time as further text is deleted, after which
time the buffer will contain only the most recently deleted text.

89

FIND AND REPLACE

Note: CPC6128 users should note that there is some variation in the use of keys in this
chapter, as the CPC6128 does not have the special [+] and [-] keys. The COPY key
serves the same purpose as the [+] key and CTRL-@ @ is the substitute for [-].
SHIFT-f2 and CTRL-f2 generate REPLACE and FIND respectively instead of the PCW
EXCH and FIND keys.

Two functions, FIND and REPLACE are provided, which permit searching through text for
any string of characters and, if specified, replacing them with a second string.

Pressing FIND or EXCH whilst in edit mode will cause the editor to enter command
mode, with a request for the 'String to find'. Alternatively, typing FIND or REPLACE
from command mode will have the same result.

The string to find is requested first, followed by the replacement string (if the REPLACE
option was selected). After entering the string or strings, one or more of a number of
options may be selected by typing the appropriate letters one after another (in any order).
Each option is either a single letter abbreviation or a number (these are listed on the
screen). Pressing RETURN on its own will cause no options to be selected.

The options available are as follows:

G Global search. If selected the whole text is searched from the
start, otherwise only the text from the current cursor position
to the end of the text.

C Case specific search. If selected all letters will only match
letters that are the same case, otherwise either capitals or
lower case letters will be treated as being the same.

W Find string only if it appears as a complete word. For example to
find occurrences of the word 'and' without finding ‘'hand',
'England' etc.

B Search backwards. Searches from the end of the document to the
beginning.

A Find or replace all strings automatically. REPLACE will change
all occurrences of the string with the new one, without
requesting confirmation and return a figure of the total number
of replacements made. In the case of FIND being used, it will
simply return the total number of occurrences of the string.

90

n Find or replace the nth occurrence. n should be a number between
1 and 255. This option has a number of uses, but a simple example
might be to check that every set of quotation marks has a
matching closing set, in which case FIND would be used to find
'"1 and '2G* would be specified as options, to search globally
for every second occurrence.

If no options are selected the search will be forwards, from the current cursor position to
the first occurrence of the string, ignoring the case of letters, finding the string even if
it occurs as part of a longer word, and asking for confirmation before replacing a string.

Any number of wildcards are allowed in the string. A wildcard is a character that
matches any character in the text, except the return character. It is entered in the string
by typing a question mark (?).

A tab character may be entered simply by pressing the TAB key. It is displayed as a
right pointing arrow.)

There are various characters that cannot be entered directly, but that it may be useful to
include in a search string. Provision has been made for including these in a string, by
means of an 'escape character'. The 'escape character' (!) should be typed in, followed by
a symbol, number or letter, as appropriate.

The full list of characters that are entered by this means is:

question mark 1?

exclamation mark !

return '.

search for code 1 <number>
Using FIND

Once the string and any options have been selected, edit mode is entered and the cursor
placed on the first character of the first occurrence of the string. To find the next
occurrence of the string, the [+] key, positioned to the left of the space bar, should be
pressed. This need not be done immediately. Editing can be carried out first and when
complete, the search may be continued by pressing [+]. At any stage, [-] can be used to
search back towards the beginning, if necessary.

91

As with other commands, FIND can be used by typing the string on the same line as the
command name, followed by any options. Thus the command 'FIND word GWC' will
search for the string 'word' from the start of the document, selecting only those
occurrences where it is a complete word with all letters in the same case as specified. If
no options are specified, the default options will be used.

If the A option is selected, the editor will return the total number of occurrences found,
when the search is complete.

Using REPLACE

The cursor will be positioned on the first character of the string and a message,
'Replace (y/n)?',will be displayed on the status line. Pressing 'Y' will replace the string
with the new one and the cursor will move to the next occurrence. Pressing 'N' will
leave the string untouched and move the cursor to the next occurrence. Alternatively
STOP may be pressed and normal editing resumed. At a later time, [+] may be pressed
to resume the find and replace operation. Alternatively [-] may be used to resume the
search in the reverse direction, which may be found useful if an occurrence of the string
is passed over by pressing 'N' in error.

If option A is selected then all occurrences of the string are replaced without prompting
and the program will remain in command mode. When complete a count of the total
number of changes made will be displayed.

Examples

1. To find all occurrences of the word 'text' in lower case only,
starting at the cursor position.

FIND string: text
Options: CW

2. To convert all occurrences of 'rom' or 'Rom' to 'ROM', asking
for confirmation of each replacement.

FIND string: rom
REPLACE with: ROM
Options: GW

3. To insert a blank line after each line.

REPLACE !. !'.!. AG

92

COMMAND MODE

All entry of text is carried out in Edit mode, but in order to carry out operations such
as saving, loading or printing, 'command' mode must be entered. This can be done at any
stage of editing simply by pressing STOP. Pressing STOP a second time will return to edit
mode.

When STOP is pressed, the bottom part of the screen will be cleared and the command
mode banner line will appear, displaying the editor version number. The cursor will be
positioned next to a '>' symbol. This symbol is the 'command prompt' and indicates that
commands may be entered. The currently selected drive is indicated by the letter
prefixing the > and if any 'group' other than group 0 is selected, this number will also be
indicated.

The output of all commands will be displayed in this window at the bottomn of the screen.
Many commands produce more output than will fit in the window in which case the
screen will automatically scroll as necessary.

General information

Before studying the individual commands in detail, there are a number of points connected
with the entry of commands which are of general interest and are listed below.

Command entry

The editor has a special feature which permits the entry of commands in a simplified
fashion. For example, to save a text file it is only necessary to type 'SAVE' and the
editor will prompt with 'SAVE filename:' and wait for entry of a name for the text file.

Alternatively, the parameters of a command may be entered on the same line as the
command name, e.g. 'LOAD source', 'SAVE prog'. In this way the commands may be used
without the prompts for the parameters appearing, which is often more convenient when
familiar with the syntax of the commands.

Note: All commands which require a parameter will prompt for them if the command is

used on its own. Commands which have optional parameters require these to be entered
at the same time as the command.

93

The editor provides a sophisticated line editing facility which is in operation whenever
commands are being typed in. If a mistake is made the cursor can be moved back and
the mistake corrected in the same way as in edit mode. The following editing commands
are available in command mode:

PCW8256/8512 CPC6128

- - Move cursor left one character.
» - Move cursor right one character.
ALT-= CTRL-w Move to start of line.
ALT-» CTRL-» Move to end of line.
DEL» CLR Delete at cursor.
-«DEL DEL Delete before cursor.
ALT-A CTRL-A Alternate characters.
ALT—«DEL Delete to beginning of line.
ALT-DEL» CTRL-E Delete to end of 1line.
ALT-TAB CTRL-TAB Switch between insert and
overwrite modes.
CAN CLR Clear screen
(if cursor at the start of a line)
STCP ESC Abandon entry of current command.

Pressing COPY or [+] when the cursor is at the start of a line recalls the last command
line used that was 4 or more characters in length, and positions the cursor at the end of
the command. This has a number of uses, such as carrying out multiple saves of the same
file, or repeating a load command which failed because the wrong disc had been inserted.
Short commands such as 'A', 'CAT', 'SW' do not affect the command recalled.

Abbreviations
Many of the commands can be abbreviated. For example, there is no need to type 'LOAD'
in full, typing 'L' will serve the same purpose. Similarly 'S' for 'SAVE' and 'P' for

'PRINT'. A {full list of the commands, abbreviations and their parameter syntax, is given
later in this chapter.

94

The current filemame

After a file has been loaded, or once a piece of text has been saved, the name of the
file will be displayed on the status line. This becomes the 'current filename' and is
remembered by the editor until changed, either by saving with another name, by use of
the NAME command, or by loading a new file. Once a file possesses a current filename
the name may be omitted when saving a file. Entering the SAVE command, and just
pressing RETURN when the prompt 'SAVE filename:' appears, will save the file with the
current filename. Care must be taken to ensure that it is indeed the correct name, to
avoid accidentally erasing something else. If SAVE is typed and the name displayed is
incorrect it can be edited as described above ('Command entry').

95

This section gives full details of the commands available in command mode. Details of
the syntax used and what the command does are given together with any optional

EDITOR COMMANDS

extensions to the basic command.

Many of the commands allow the use of ambiguous filenames. An ambiguous filename is
one which contains 'wildcards'. The editor has two types of wildcards, which may be used

in the same way as with CP/M commands.

?
*

For example:

may be used to mean ‘'any single character!'.
may be used to indicate 'any number of characters®.

DATA?.TXT Any filename beginning with 'DATA' and having one further

B¥ *

_

character (which may be blank), with the suffix 'TXT'.

Any filename beginning with 'B', of any length and any
suffix.

Any file.

Note: Only one '¥' may be used in each part of the filename and

suffix.
LOAD (L)
Syntax:

Description:

Note:

LOAD <filename>

A document will be loaded into memory from a disc file
of the specified name. A warning message will be given
if the text currently in memory has not been saved.
Press 'Y' to confirm that this text 1is to be
discarded.

If only the command name is entered, the editor will

prompt for a filename. Once loaded, the specified
filename will become the 'current filename'

96

MERGE (MER)

Syntax:

Description:

Note:

Note:
NAME (N)

Syntax:

Description:

SAVE (S8)

Syntax:

Description:

Note:

SAVEB (SB)

Syntax:

Description:

Note:

MERGE <filename>

This is similar to LOAD but whereas LOAD clears any
existing text from memory and then loads the file in,
MERGE inserts the new file into the existing text at
the current cursor position.

Care should be taken to ensure that the cursor is in
the required position before using this command.

The current filename is NOT changed.

NAME <filename>

Permits the name of the document in memory to be
changed. The new name becomes the 'current filename'.

SAVE <filename>

The complete document in memory will be saved to a
disc file with the name specified.

If only the command name is entered, the editor will
prompt for a filename. If the file already has a
‘current filename', then pressing RETURN will result
in the file being saved with the same name.
Alternatively, a new name may be specified, which will
then become the current filename.

SB <filename>

This is the same as SAVE except that only the text
within the block defined by the block markers is
saved.

The current filename is NOT changed.

97

SWAP (SW)

Description: Swaps between two documents in memory. All settings of
the files and cursor, block markers etc are retained.
See 'Two file editing' for full details.

Printing options

The following commands determine the form that printing will take.

BM

Syntax: BM <number>

Description: Bottom Margin. Specifies the number of lines to be
left blank at the bottom of each page.

PL

Syntax: PL <length>

Description: Sets the length of each page in lines.

PRINT (P)

Syntax: PRINT {(num)

Description: This command prints the document in memory.

PRINTB (PB)

Description: Only the section of text defined by the block markers
will be printed.

PRINTER (PR)
Syntax: PRINTER (name)

Selects the printer driver you will be using.

98

TAB
Syntax:

Description:

TAB <column(s)>

Sets a tab stop at the specified column or columns.
The last number in the list may be preceded by '¥'.
This causes tabs to be set at equal intervals up to
column 128,

Example:

TAB 8,15,%5 gets tabs at 8 15,20,25,30,.....

TAB without any parameters sets default tabs at every
8th column.

99

CLEAR

Description:

CPM
Description:
FIND (F)
Syntax:

Description:

GOTO (G)
Syntax:

Description:

NUMBER (NUM)

Description:

MISCELLANEOUS COMMANDS

Clears the text currently in memory. A request for
confirmation is made before this is done. On the PCW
computer the same effect 1is achieved by typing ALT-
SHIFT-CAN in edit mode.

Quits straight to CP/M.

FIND <text> (<parameters>)

The document will be searched for the first occurrence
of the specified text, according to any parameters
specified and the cursor positioned on the first
character.

See chapter on Find and Replace for full details.

GOTO <line number>/<column number>

Moves the editing cursor to the specified line or
cclumn, eg. GOTO L125 or GOTO C70.

The purpose of this command is to add line numbers to,
or remove line numbers from, the beginning of every
line of text. This command will prompt for whether
numbers are to be added or removed from the document.
If the choice to .add line numbers is selected, a
starting line number and the value by which each
subsequent number is to be incremented will be
requested.

This provides a convenient method of writing Basic
programs, amongst other uses, using the editor's full
screen editing facilities and finally adding 1line
numbers prior to saving a program.

100

NUMBERB (NUMB)

QUIT (Q)

Description:

REPLACE (R)
Syntax:

Description:

This command is similar to NUMBER but only adds or
removes numbers within a marked block.

Quits the editor and returns to CP/M command mode. If
a document is in memory and any changes have been made
to it since it was loaded or last saved, a caution
will be issued, warning that the document has not been
saved and asking for confirmation of the desire to
continue.

R <text> <newtext> (<parameters>)

The document will be searched for the first occurrence
of the specified text, according to any parameters
specified, and the cursor positioned on the first
character.

External commands

External commands call other utility programs from disc. The program files specified must
be available at the time the command is used. They may be on any disc drive - the
editor will search all drives to find the file. The following utility programs are designed
so that on completion of their task, a return is made to the editor with any text that
was in memory at the time the command was called still intact.

Note: It is possible to call other programs from within the editor command mode and
they should be prefixed with an asterisk (*). When this is done, the text in memory will
be saved to a temporary file and the name passed as a parameter to the program being
called. For -example, typing '"*BCPL' will call the compiler called BCPL (i.e. the program
file BCPL.COM), which will then compile the source code which was in memory. Unless
these programs have been written specifically for the purpose, they will not return to the
editor automatically and this must be done by typing 'APED' from CP/M command mode.
The temporary file will automatically be loaded back into the editor.

102

AC

RUNC

PROGRAMMING COMMANDS
Assembles the file in memory, or the file specifed as
a parameter.

As above, except if no filename is given, the assembler
prompts for a filename.

Runs which ever version of the monitor it finds first,
passing the name of the file being edited. If this file
has been assembled the object code 1is automatically
loaded in to the monitor.

As above but runs the large version of the monitor.

As above but runs the small version of the monitor.

(The last two commands will not attempt to load in the
object code of the program being edited.)

Compiles links and rups a C program. If there are any
compilation errors the program is not run.

Enters the C run time system.

Runs a specified CP/M Plus program. For example ¥BCPL
will run the BCPL compiler.

103

LARGE FILES

The editor is capable of handling large files very efficiently and the only limit on the
size of the files which can be edited is the capacity of the disc drives. It must be
remembered that under CP/M, large files cannot be totally loaded into memory at one
time, and as editing continues and progress is made through a long document, the editor
will automatically save parts of the document as temporary files.

As a result, it is preferable to start editing a large file with as empty a disc as possible.
With the PCW computers, drive M is normally used as the drive on which these temporary
files are stored. On the CPC6128, which does not have a memory drive, the temporary
files are saved onto the text file disc. This would normally be drive B on a two drive
system.

In the event that the document becomes so large that there is no room left for the
temporary files to fit, a warning will be issued with the option to delete the original file.
If 'Y' is selected, then editing will continue as before. If 'N' is selected, then it will
usually be possible to delete one or two files from the disc to make room, before
continuing. For example the disc might have copies of the help files on it, in which case
deleting these would give more space.

Note: If the decision to delete the original file is made, it should be borne in mind that
if an accident happens to the file which is being edited, the original will no longer be
available. The solution to this is to make sure that a back up copy of the file is saved
on another disc before editing commences.

Other than the points mentioned above, editing of large documents is exactly the same as
editing any other document. It should also be remembered that the ALT-[and ALT-]
commands move to the start and end of the text in memory, not the start and end of
the whole document. With a small document this will be the same thing, but if the start
or end of a long document is required, then ALT-[or ALT-] should be pressed & second
time.

Important notes on large file editing.
1. It is important to ensure that a disc 1is present in the

selected drive at all times and that it 1is not changed for
another disc during the course of editing the document.

The editor saves temporary files with various names commencing
with '"APED' Under NO circumstances must any of these files be
deleted. When the document is completed and saved, the editor
will automatically delete the temporary files which are no
longer required.

Are large files necessary?

Even though the editor can handle 'unlimited size' files, this is perhaps a suitable place
to consider whether it might be more convenient and efficient to work with a number of
smaller files. Rarely is there any NEED for a long document to be in one piece. For
example: A long program can be broken down into a number of sections or subroutines.

Whilst it may appear that there are advantages
so that it can all be viewed and edited at the same time, there are a number of points

which should be considered.

In the event of a catastrophe, such as a power failure, or
accidentally deleting a file from a disc, if the text is in
one long file, the complete file may be lost.

Due to the limited amount of memory available under CP/M, it
is not possible to have the whole of a large file in memory at
the same time and as progress is made forwards and backwards
through the file, parts of it have to be saved to temporary
files and other parts loaded. The editor has specially written
routines which do this more efficiently than other programs,
but it can still take a short time to jump from one part of a
file to another, whereas with a smaller file this will to all
intents and purposes be instantaneous.

It is usually easier to locate specific sections of text in a
smaller file.

Usually only a relatively small part of a file will actually

be worked on at a time and it is considerably quicker to load,
and save smaller files.

105

to being able to work on one long file

TWO FILE EDITING

The editor provides the facility to work on two files at the same time. These files are
maintained quite separately and are loaded and saved individually. Any operation can be
carried out on one file without affecting the other, the cursor location and all markers
being maintained for each file. Blocks of text can be copied between one file and the
other.

This is an extremely powerful function and is controlled by only three commands, one of
which is used from command mode and the other two from edit mode.

SWAP (SW) : Command mode - Swap between two files in memory
ALT-0 : Edit mode - Copy block over from the other file
ALT-Y : Edit mode - same function as SWAP

To load a second file, 'SW' should be entered from command mode and the current file
will be switched, leaving an empty file. The second file should be loaded in the normal
way. Switching between the two f{files will cause the information on the status lines to
change to suit the current file, enabling easy recognition of which file is being worked
on.

In edit mode, ALT-Y performs exactly the same purpose as 'SW', enabling quick switching
between files.

The ALT-O (letter o) command is extremely useful, as it enables any part of the text of
either file to be copied over to the other.

106

Before a block of text can be copied over, the block should be marked out using the
markers in the normal fashion. Typing ALT-Y will swap files and the cursor should then
be positioned where the text is required. If ALT-O is then pressed, the block will be
copied across.

If the original text is no longer required, ALT-Y should be pressed again, to return to the
original file, followed by CUT, to delete the original text.

Two file editing is also very convenient as a means of keeping notes, for later attention,
during the course of editing a file. Press ALT-Y, make the note'and ALT-Y again, to
return to the original file.

Another use for ALT-O is for transferring text from one file to another - load the first
file, type SWAP, load the second file and use ALT-O to copy the blocks required into the
first file, before re-saving it. This is quicker than using SB (save block), loading the other
file and merging the saved block of text into the file and finally resaving it.

107

SPECIAL CHARACTERS

The editor is capable of being used with most non-English languages and fully supports the
use of accents and characters such as c-cedilla.

Characters containing accents may be typed in during the course of editing and will
appear correctly on screen.

There are seven main accents which are required to cover the usual range of European
languages and these may be obtained in the following way.

The base character should be entered first and then immediately followed by EXTRA and
the number key which contains the required accent (the accents and their keys are listed
below). The accent will then be positioned over the character. Accents may be used with
any character, which permits the use of the editor with a number of languages which
normally are not catered for. Welsh and many of the Eastern European languages are
covered.

Note: CPC6128 users should note that CTRL-1 to CTRL-7 are used to obtain accents,
instead of the EXTRA key and a number key. The special characters are obtained by
pressing CTRL-0, followed by the appropriate letter key, or by pressing one of the
function keys with either SHIFT or CONTROL (see below).

If an accent is required by itself, press space followed by the accent key. Should any of
the accent characters be required frequently it is possible to re-define the keys to give
just the accent.

Accents supported

PCW key CPC key Accent

EXTRA-2 CTRL-3 Umlaut

EXTRA-5 CTRL-5 Ring

EXTRA-6 CTRL-7 Acute accent
EXTRA-T7 CTRL-6 Circumflex

EXTRA-8 CTRL-1 Grave accent
EXTRA-0O CTRL-4 Inverted circumflex
EXTRA-hyphen CTRL-2 Tilde

Note: The keys used on the PCW are the same ones used under CP/M, with the exception
that EXTRA-0, the 'Inverted circumflex’, which is used by a number of Eastern European
languages, is an additional accent.

108

In addition to these accents, which may be used on any character, a number of phrases
are initially defined as special 'non-English' characters and in the case of the PCW, these
are the same keys as are used in CP/M. A list of the keys to be pressed is given below.

Note: The phrases may be redefined and care should be taken when selecting phrases, if
any of these characters are required.

Summary of special characters available from the keyboard

The command LPHRASES displays all the characters available using the EXTRA key (or
function keys on a CPC 6128).

PCW key CPC key Character

3 CTRL-f1 Lower case o slash
5 CTRL-f4 Lower case diphthong
£7 CTRL-f7 Lower case c cedilla
SHIFT-f3 SHIFT-£1 Upper case O slash
SHIFT-f5 SHIFT-f4 Upper case diphthong
SHIFT-f7 SHIFT-f7 Upper case C cedilla
EXTRA-A SHIFT-£5 Superscript a
EXTRA-C CTRL-f0 Copyright

EXTRA-O SHIFT-f6 Superscript o
EXTRA-P CTRL-£8 Paragraph symbol
EXTRA-S SHIFT-f0 Eszett

EXTRA-Y SHIFT-f3 Yen sign

EXTRA-? CTRL-f5 inverted ?

EXTRA-! CTRL-f6 inverted !

EXTRA-< SHIFT-f8 French open quotes
EXTRA-> SHIFT-f9 French close quotes
SHIFT-ALT-= CTRL-V= Left arrow
SHIFT-ALT-» CTRL-V» Right arrow
SHIFT-ALT- A CTRL-V A Up arrow

SHIFT-ALT- ¥ CTRL-V ¥ Down arrow

109

SETPRINT AND CONFIG

These two utilities were originally written for PROTEXT. To retain compatibility between
the editor (APED) and PROTEXT they are included on the disc. This means that many of
the functions are not relevant to the program editor.

SETPRINT allows you to create or modify a printer driver. This is done by simple
selection of choices from menus. Default and previous settings are always shown. Printer
drivers have the extension .PTR.

CONFIG enables you to change such things as the temporary text drive to configure the
editor to your own requirements. As with SETPRINT this is easy to do as you are guided
through the program with menus and default and previous options are shown. Config files
have the filename PROTEXT.CFG.

It is recommended that you get used to using the editor before attempting to change its
configuration. If you create a configuration you don't like you can either delete
PROTEXT.CFG or re-enter CONFIG to adapt it.

It may be found useful to change the following options with CONFIG:

Temporary text drive - the drive used to store temporary files. On a PCW computer this
should be M, on a CPC 6128 A or B may be used.

Key translations - the keyboard may be fully re-defined.

Default printer driver - the printer driver loaded automatically. Set this to EPSON.PTR if
using an Epson or compatible printer such as the DMP 2000.

Autoexec file - an EXEC file that is loaded automatically when the editor is started. This
may usefully contain configuration commands such as TAB, PL and BM.

110

COMMANDS COMMON TO THE EDITOR, MAXAM II MONITOR AND C

The following commands can be used within the Maxam II monitor the editor and the C
Run Time System. In some cases their applications will be slightly different. A note is
made where these differences occur. Those commands which are only available in the
large version of the monitor are shown followed by a *. All these commands are available
in the editor and C.

Note: To save room in the small version of the monitor, many commands such as DRIVE
or GROUP will not prompt you for input. Parameters should be entered in-line, i.e.
following the command.

ACCESS (ACC)

. Syntax: ACCESS <ambiguous filename>

Description: Sets the status of a file or files to 'Read-write'.
Wildcards are permitted. See PROTECT for details of
the reverse operation.

CAT (DIR}

Description: Performs a catalogue of the files on a disc. By
default, with no parameters, it will catalogue all the
files on the currently selected group of the currently
selected drive.

Extensions: Filenames, drive letters and group numbers.

Syntax: CAT <ambiguous filename>
CAT <drive letter>
CAT <group/user number>

Description: Either another group OR another drive may be
specified. Alternatively a filename may be specified
using wildcards, optionally with a drive letter
prefix.

Example: CAT B:¥.LTR will catalogue all the files with a LTR

suffix on drive B and group 0.

Note:
COPY #*

Syntax:

Description:

Examples:

Note:

Note:

DCOPY

Description:

Note:

The files are listed in alphabetical order with the
size of each file shown. The amount of free disc space
is also shown. If this last figure becomes too small
it will be often be necessary to erase backup files in
order to save a file. The catalogue also displays a
symbol by certain files:

* indicates a protected file (see PROTECT, below)

COPY <oldname> <newname>
COPY <ambiguous filename> (<group>) (<drive>)

There are two variations of this command, the first of
which will copy a file giving it a new name. The
filenames may be prefixed with the drive letter to
copy a file from one drive to another with a different
name.

The second variation permits the use of 'wildcards',
but the names cannot be changed. This allows the
transfer of one or a number of files with some common
feature, from the current group on any drive to any
group on any drive. Either <group> or <drive> or both
may be specified.

COPY B:OLDNAME NEWNAME

COPY *.TXT 1

Copies all files with suffix 'TXT' into group 1.

COPY B:*.* 2M '

Copies all files on drive B (current group) to drive M
group 2.

Any existing file with the same name, in the
destination drive/group, will be renamed with a '.BAK!
suffix.

Copying does not erase the original files, so if they
are no longer required, ERASE must be used after the
copying process.

Calls an Arnor utility program which copies the
contents of one disc onto another. This command will
copy single sided single density {(CF2) discs only. See
'Utility Programs' for full description.

The original contents of the disc to which the files
are being copied will be erased.

112

Note:

Note:

DFORM *

Description:

Note:

DFORMD *

Description:

Note:

DRIVE (DR)

Syntax:

Description:

Note:

In order to copy CF2DD double sided discs, as used in
drive B on the PCW8512, it 1is necessary to leave the
editor and use the DISCKIT program which is on the
System Utilities disc supplied with the computer.

DCOPY can not be run from within the monitor. To use
it you will have to go into CP/M or the editor.

Formats a disc to either CF2 or CF2DD format,
depending on which drive 1is selected. On the PCW
computer a disc in drive B will be formatted to CF2DD
format and a disc in drive A to CF2 format. On the
CPC6128 data format is always used.

Both sides of a CF2DD disc are formatted at the same
time, but when formatting a disc in 4 to CF2 format,
it is necessary to format each side separately.

This command will format a disc as CPC6128 Data
format.

PCW users should use this command 1if the disc will
also be used on a CPC6128. On the CPC6128 this command
has exactly the same effect as DFORM.

DRIVE <drive letter>

Selects the specified drive. This command will accept
drives between A and P, and an error message will be
given if the requested drive does not exist, or if it
does exist but there is no disc in the drive.

If any special drives are installed, such as a hard
disc, which use a drive letter other than A, B, C, D,
or M, then this command may be used to select the
drive.

13

ERACOPY (ECOPY) ®

Syntax:

Description:

Example:
ERASE (ERA)
Syntax:

Description:

Note:

EXEC (X) ®
Syntax:

Description:

GROUP (USER)
Syntax:

Description:

HELP (H)

Description:

ECOPY <oldname> <newname>
ECOPY <ambiguous filename> (<group>) (<drive>)

This is the same as COPY in every respect but one - if
a file already exists with the same name as the file
being copied, this file is erased before copying,
whereas COPY renames this file as a backup file.

ECOPY B:¥*.¥* A

ERA <ambiguous filename>

All files which meet the criteria of the filename will
be erased. Wildcards are permitted and the drive
letter may be specified as a prefix to the filename.

This is a potentially destructive command and should
be used only with care. One very useful version is to
use ERASE *.BAK to erase all back up files from the

disc in the current drive. ALT-f7 on the PCW (and
CTRL-f9 on the CPC) will perform 'ERA *,BAK'.

EXEC <filename>
This command causes the contents of the specified file

to be treated as if they were being typed in at the
keyboard (See Chapter on EXEC Files for full details).

GROUP <number>

Selects the specified group number as the one which
will be used by CAT, LOAD, SAVE etc.

Provides a summary of the available commands.

114

INFO
Syntax:

Description:

INTERNAL (INT) *

Description:

PARALLEL (PAR) ¥

Description:

PAUSE
Syntax:

Description:

PRINTON (PRON) *

Description:

PRINTOFF (PROFF)

Description:

INFO <filename>

The info command provides information about files. The
filename used can include wildcards, so INFQ *.SRC
will give you information on all files with the
extension .SRC. The information displayed is the file
length, file type (ie. document, program, system..)
and its read or write state. RW means Read and Write.
RO means Read Only.

Resets the printer output to the normal printer
supplied with the PCW range.

Selects the parallel (Centronics) printer port for the
output of all printing.

PAUSE

This command is primarily intended for use in an EXEC
file. See section "EXEC files".

All output to the screen will also be echoed to the
printer, after this command has been used, until
PRINTOFF is used to cancel it. One particular use is
to provide a printed copy of a disc catalogue. Or, in
the monitor to disassemble or 1list code on the
printer.

Cancels the echoing of screen output to the printer,
which has previously been initiated by use of the
PRINTON command.

115

PROTECT (PROT)
Syntax:

Description:

Note:

RENAME (REN)
Syntax:

Description:

Note:

SERIAL (SER)

Description:

SPOOL (SPON) #*
Syntax:

Description:

PROTECT <ambiguous filename>

Sets the status of a file or files to 'Read-only’.
Wildcards are permitted. Files which have read only
status can not be overwritten by subsequent files of
the same name. An error message will be given if an
attempt 1is made to do so. Protected files are
indicated in the catalogue by an asterisk following
the filename. See ACCESS for details of the reverse
operation.

PROTECT cannot stop files being erased if the disc is
reformatted, or a complete disc is copied onto the
disc, either with DISCKIT or the DCOPY command.

RENAME <newname> <oldname>

This command renames files on a disc. It does not move
or change the file, merely renames it.

If a file requires moving to another disc and
renaming, the COPY command should be used and then the
original file erased with ERASE.

Redirects all printed output to the serial interface,
for use with a serial interfaced printer.

SPOOL <filename>

All output to the screen will also be sent to a file
on disc with the specified name until the file is
closed with the SPOOLOFF command.

SPOOLOFF (SPOFF) *

Description:

Cancels the echoing of all screen output to a file,

having first closed the file.

116

SYMBOL (SYM)
Syntax:

Description:

TYPE (T) *
Syntax:

Description:

A: (4)

Description:

B: (B)
C: (C)
D: (D)

Description:

M: (M)

Description:

SYMBOL <char>,<n1,n2,n3,n4,n5,n6,n7,n8>

The SYMBOL command allows you to redefine a character
as it will appear on the screen. The first number
following the command is the character to be
redefined. Thre eight numbers following are the bytes
making up the character. See your Basic manual for
more information on SYMBOL as this command is
identical.

TYPE <filename>

Used to 'type' the contents of an editor or ASCII file
to the screen. The file 1is not 1loaded into memory,
merely the contents displayed on the screen, This can
provide a convenient means of viewing the contents of
a file without loading it into memory. Whilst the file
is being typed pressing STOP will pause the display.
Pressing STOP a second time will cancel the command
and any other key will resume.

Select drive A as the currently selected drive.

Optionally, the colon may be omitted.

Note: D: only in the monitor

Select drive B, C, or D as the currently selected
drive. Optionally, the colon may be omitted. Only
valid on machines with the requested drive fitted.

Select drive M as the
Optionally, the colon may be
the PCW computers.

currently selected drive.
omitted. Only valid on

17

PHRASES AND FUNCTION KEYS

Phrases are pieces of text which can be stored and used at any time with a single key
press. The keys used to recall phrases are the keys marked 'A to Z' on the main
keyboard when used in conjunction with the EXTRA key. Function keys are essentially the
same, but use the special function keys on their own and in conjunction with the ALT,
SHIFT and EXTRA keys.

There are 31 expansion tokens which by default are allocated to the keys EXTRA-A to
EXTRA-Z and a number of other keys. Several of these tokens are also allocated to the
function keys, duplicating a number of the letters. Some of these tokens are already
defined and cannot be changed, leaving 26 tokens which may be defined by the user. By
default, many of these tokens are pre-defined to give a variety of European characters,
such as 'C, cedilla' and 'AE diphthong', but may be redefined by the user if not required
for that purpose.

Each of these tokens can be allocated a string of text or codes up to 200 characters
long.

Predefined tokens

The following tokens are predefined by the editor and may not be changed. Each of these
selects command mode and executes a command.

PCW 6128 Definition
1 CTRL-f3 CAT

ALT-f7 CTRL-f9 ERA *.BAK
FIND CTRL-f2 FIND

EXCH SHIFT-f2 REPLACE

EXTRA-ENTER CTRL-ENTER EXEC EXFILE
Phrases and function key definitions

As far as the editor is concerned, there is no difference between phrases and function
key definitions. They are both merely strings (of text or codes) and any difference would
be in the use to which they were put, rather than their format. For example, function
keys would probably be used to carry out tasks or functions, whereas phrases would be
used to store text to be incorporated into documents, though there is no reason why they
should not be used for other purposes.

118

A string has a maximum length of 255 characters, subject to the total buffer size and
the free space remaining in it. It may contain any characters and control codes. Any
normal text may be typed in from the keyboard as usual, but in order to be able to enter
control codes, an escape code must be used to inform the editor that the characters
which follow constitute a control code. The escape code used by the editor is the upwards
pointing arrow (}). This is obtained by pressing EXTRA-: (colon) on the PCW. It is used to
allow entry of the following:

f‘<number'>_f Inserts the code specified by the number. The code
may be entered in decimal, eg. f13f_, or hexadecimal,
in which case it must be prefixed by &, e.g. $&0D%.

t<letter> is translated as a control code between 1 and 26 e.g.
44 would be translated as Ascii code 1, #B as 2, etc.
44 is translated by PROTEXT as a single up arrow. This

must be used if an arrow is required in the string.

Note: When specifying a code as a number, it must be both prefixed and suffixed with
the escape code character (4), but in other cases, it is only necessary to prefix the
character with the escape code. This is because a number could consist of from one to

three characters.

As an example of how one would use a control code, if a key was to be defined so that
when it was pressed it automatically did a catalogue of drive A followed by a catalogue
of drive B, the following string would be used:

CAT A}I3tCAT B}134

'13' is the code for a carriage return, which would normally be given when the RETURN
key is pressed. As CAT requires the RETURN key to be pressed, the codes are inserted
into the string. Alternatively M could be used instead of $13¢.

Details of the most useful codes are given in an appendix at the end of the manual, but

in the unlikely event that a full key translation list is required, this is available from
Arnor on request.

119

Phrase commands

There are two commands which are directly connected with phrases and are used from
command mode:

PHRASE (KEY) *

Syntax: PHRASE <letter> <string>
KEY <letter> <string>

Description: PHRASE and KEY are alternative names for the same
command. This command allows temporary strings to be
created at any time. The command is used from command
mode and the letter must be a letter between A and Z,
followed by the string of text or codes, which should
be wrapped in quotation marks.

Note: If it is required to cancel a key definition, this can
be done by using a null string ("") following the key
letter in the parameters. This may prove useful when a
number of phrases have been defined and the buffer is
too full to take any further definitions. Any phrases
which are no longer required can be discarded in this
way.

LPHRASES {(LP) *

Description: Use of this command will list the contents of all the
defined phrases between A and Z. Where a phrase
contains a code between 0 and 31 or between 192 and
255 this will be displayed 1in escape code form.

Storing phrases for regular use

The command PHRASE, which enables temporary phrases to be defined has already been
described and is very useful for quickly defining a phrase during the course of editing a
document, but once the program is left, these phrases will be lost and would require re-
entering the next time that the editor was used.

The editor has another method of defining phrases and function key definitions, which

enables users to keep one or more files of definitions on disc and to load them as and
when required. This is done through the use of an EXEC file.

120

A set of phrases should be saved with an appropriate name. Only those keys required and
their definitions need to be in the phrase file and any existing phrases will not be
changed or deleted unless redefined by the new ones. When they are required, it is only
necessary to go into command mode and use the following command:

EXEC <filename>

where <filename> is the name of the file containing the phrases. This will automatically
allocate them to the specified keys.

Using phrases and function keys

Once a phrase or function key has been defined by either of the above processes it may
be used within the monitor or editor at any time by pressing the appropriate key. Any of
them may be used either when in edit mode, or command mode. The most convenient
arrangement would probably be to use the function keys for commands which would be
used in command mode and the keys 'A' to 'Z' for strings of text to be used in
documents.

Phrases are called by pressing EXTRA and one of the letter keys between 'A' and 'Z',
which gives 26 different possibilities. The function keys may be used either on their own,
or in conjunction with SHIFT, ALT, EXTRA and SHIFT-ALT, which gives 20 possible
combinations on the PCW.

When a phrase key or function key is pressed, the contents of the string will be entered
into the document (if in edit mode), or the command line (if in command mode), as if it
had been typed in at the keyboard, and any control codes will be acted upon.

On the CPC6128 the 10 function keys f0 to {9 may be used either with SHIFT or with
CONTROL. The phrases are obtained in edit mode by typing CTRL-0 (zero) followed by a
letter. Only the function keys may be used in command mode, but these are set up to
provide the various European symbols.

Note: Most of the function keys are allocated the same tokens as the keys A to Z and
redefining one will also change its equivalent. It is not possible to have different contents
in each of them. To set up a function key the KEY command is used with the
corresponding letter. A table listing the function keys and the corresponding letters is
given as an appendix.

121

EXEC FILES
What is an EXEC file?

An EXEC file is a file which may contain text, commands and codes and which, when
called with the EXEC command, will be read by PROTEXT and the contents treated and
acted on, as if they had been entered at the keyboard.

They are created in just the same way as any other text file, but what makes them
different is the content of the file and the way it is used later.

Creating an EXEC file

Creating an EXEC file is extremely simple and is done by just typing the required text
in, as would be done with any document, but there are a number of special features
which permit codes to be inserted into the text, which the editor will understand to be
instructions to do certain things.

In addition to ordinary text, any of the editor's command mode commands may be used as
well as any valid code between 0 and 255.

Codes must be entered in a special way, otherwise the editor will consider them to be
ordinary text. A special 'Escape character' is used to tell the editor that the following
character(s) is/are a code and the escape character used is the vertical bar. This is
obtained by pressing EXTRA-. (full stop) on the PCW. The escape codes are exactly the
same as used in phrase definitions except that the bar is used instead of the arrow.

The easiest way to describe the sort of uses to which an EXEC file might be put, is to
give one or two examples. The examples given are intended to show the sort of things
that can be done, rather than be particularly useful:

Example to change every occurrence of a certain word to another word in a number of
files.

L filel

R "buffer" "BUFFER" GA
s|13]

L file2

R "buffer" "BUFFER" GA
S|13]

L file2

R "buffer" "BUFFER" GA
S|13]|

L file2

122

Note: When a new line is used, the editor will take this to mean that a carriage return
character (CR) is required, as would normally be given by pressing RETURN after
entering the command. In the case of the lines concerned with saving, escape characters
have been used to insert an extra CR code into the file. The reason for this is that if a
file is to be saved with the same name, then RETURN is pressed once after entering the
'S' and again to confirm the same filename.

When complete, the file should be saved with an appropriate name. Entering
'EXEC <filename>', from command mode will automatically execute the file of that name
whenever required.

Creating a phrase file

This is easily done by using the PHRASE (KEY) command in an EXEC file. This is an
example of a phrase file, to be used to define phrases and function keys in the editor:

KEY C "

KEY G "r

KEY B "This is a remark which can be inserted into the text"

KEY D "The EXTRA key and the appropriate letter should be pressed"
KEY A "CAT A fIBfCAT Blef”

In the above brief example, keys B and D are straightforward examples of text to be
inserted when the appropriate key is pressed.

Keys G and C are defined as null strings. This will have the effect of removing any
existing definition from keys C and G. This may be desirable if a second phrase file is
being loaded, when a number of keys are already defined, otherwise the phrase buffer
may become full before all the new definitions are loaded.

Key A is an example of the sort of definition which would be used for a function key

and in this case would perform a catalogue of drive A, followed by drive B when
SHIFT-f1/2 was pressed.

123

It should also be noted that up arrow has been used, rather than the vertical bar, as
these commands are simulating entry of the phrases at the keyboard.

Note: Because the EXEC file is executing a command to define a string, it is necessary
to specify the CR at the end of the command if one is required when the function key is
pressed, as the CR which is implied at the end of each line of an EXEC file will serve
only to execute the KEY command.

It is recommended that phrase files should be saved with a suitable suffix to identify
them, say '.PHR'.

Commands related to EXEC files

EXEC (X) Execute a file
Syntax: X <filename>
Description: The file specified will be opened for reading and the

contents read will be treated as 1if they were input
from the keyboard, until the end of the file is
reached, at which time normal operation will continue.

PAUSE Cause the editor to go into a 'waiting' condition.
Syntax: PAUSE
Description: When this command is read by an EXEC file, the program

will halt until a key is pressed. Opticnally a message
will be displayed. This is useful during the course of
an EXEC file being executed, as 1t will permit discs
to be changed and messages to be displayed before
continuing execution.

124

Using EXEC files

EXEC files may be used at any time by typing EXEC from command mode, followed by
the name of the file to be executed. If a file called 'EXFILE' is present on the currently
selected drive, it may be executed at any time by pressing EXTRA-ENTER (CTRL-ENTER
on the CPC6128). ‘

There is one further feature which can be very useful. If the 'less than' symbol is used to
prefix an EXEC filename when the editor or monitor is called, it will be taken to mean
that all input should be taken from the specified file, until the end of the file is reached.
For example, 'APED textfile <exfile' would load a text file into memory and then execute
the EXEC file, which if required could then carry out operations on the text file, such as
replacing text.

125

APPENDIX 1

Bibliography
Programming the Z80 Rodnay Zaks (Sybex)
CP/M Plus Handbook Digital Research/Amstrad (Heinemann)

The Amstrad CP/M Plus Andrew Clarke and David Powys-Lybbe (MML)
The Lord of the Rings J.R.R. Tolkien (George Allen and Unwin)

Acknowledgement

We thank George Allen and Unwin for permission to quote the extract
from "The Lord of the Rings".

126

APPENDIX H

a) Assembler Directives

BYTE put byte string in object code

CODE cancel NOCODE

DB same as BYTE

DEFB same as BYTE

DEFL same as LET

DEFM same as BYTE

DEFS same as RMEM

DEFW same as WORD

DRW define relocatable word

DS same as RMEM

DW same as WORD

ELSE assemble otherwise

END end assembly

ENDIF end IF block

EQU equate

EXTERN declare symbols as external

IF assemble if

IFNOT assemble unless

IF1 assemble if pass 1

IF2 assemble if pass 2

LET define symbol

LINK link in an object file

MACRO define a macro

MEND end of defined macro

NOCODE suppress writing of code

ORG define code origin

PUBLIC declare symbols as public

READ define source file

REPEAT assemble the following code until
expression following UNTIL is true

RMEM reserve block of memory

STOP abandon read file

STR define a string

SYM save a symbol table

‘TEXT same as BYTE

UNTIL terminate REPEAT loop if expression
true

w8080 report non-8080 instructions

WORD put. 2-byte numbers in object code

WRITE define object filename

127

b) Assembler Commands

BEEP sound a beep

DUMP dump symbol table

INKEY wait for .a key press and return value to
a variable

LIST enable listing to selected output devices

MLOFF disable macro listing

MLON enable macro listing

NOLIST disable listing

OUTPUT select output listing devices

PAGE start new page

PAUSE wait for key press

PLEN set printer page length

PRINT display string on screen

TITLE define title

WIDTH set printer page width

c) Assembler Fatal Errors

1. An ORG directive with an undefined expression.

2. An EQU directive with an undefined expression.

3. An RMEM directive with an undefined expression.

4, An IF or IFNOT directive with an undefined expression.

5. A badly nested IF block.

6. A line longer than 255 characters.

7. The assembler runs out of memory for the symbol table or file
buffer.

8. A disc I/0 error occurs, e.g. 'disc full', 'file not found'.

9. Stack overflow during symbol dump.

10. Too many nested READs (more than 14).

11. Attempt to nest REPEAT/UNTIL loops.

12. UNTIL without REPEAT.

128

APPENDIX III

Z30 Instructions

mnemonic

ADC
ADD

AND
BIT
BRK
CALL
CCF
cp
CPD
CPDR
CPI
CPIR
CPL
DAA

LDD

name

add with carry

add
and with A
test bit

MAXAM breakpoint

call subroutine

complement carry flag

compare to A

compare & decrement

block compare & decrement
compare & increment

block compare & increment
complement A

decimal adjust A

decrement

disable interrupts

decrement B & jump if not zero
enable interrupts

exchange registers

exchange alternate registers
halt CPU

set interrupt mode {(do not use)
input (do not use A,{(n) form)
increment

input & decrement (do not use)

block input & decrement (do not use)

input & increment (do not use)

block input & increment (do not use)

Jump
Jjump relative
load

load & decrement

129

operand formats

A,n
A,n
IX,rx
A,n
b,r

nn

A, (nn)
(nn) ,A
rr,nn
a,1
1,4

A,r HL,rh
A,r’ HL,rh
IY,ry

A,r

cc,nn

rr

DE,HL (SP},ra

1 2

A, (n)

rr

cc,nn (ra)
c,e

r,s S,r

A, (BC) A, (DE)

(BC),A (DE),A

rr,(nn}) (nn),rr
A,R

R,A

LDDR block load & decrement -

LDI load & increment -

LDIR block load & increment -

NEG negate A -

NOP no operation -

OR or with A A,r

OTDR block output & decrement (do not use) -

OTIR block output & increment (do not use) -

OUT output (do not use (n),A form) (Clyr (n),A
OUTD output & decrement (do not use) -

0oUTI output & increment (do not use) -

POP’ pop register pair rp

PUSH push register pair rp

RES reset bit b,r

RET return from subroutine - cc
RETI return from interrupt -

RETN return from NMI (do not use) -

RL rotate left r

RLA rotate A left -

RLC rotate left with branch carry r

RLCA rotate A left with branch carry -

RLD rotate left decimal -

RR rotate right r

RRA rotate A right -

RRC rotate right with branch carry r

RRCA rotate A right with branch carry -

RRD rotate right decimal -

RST restart {see below)
SBC subtract with carry A,r HL,rh
SCF set carry flag -

SET set bit b,r

SLA shift left arithmetic r

SRA shift right arithmetic r

SRL shift right logical r

SUB subtract from A A,r

XOR exclusive or with A A,r

Key: r means one of A, B, C, D, E, H, L, (HL), (IX+d), (I¥+d)
s means one of 4, B, C, D, E, H, L
d means an integer in the range (-128,127)
rr means one of BC, DE, HL, SP, IX, IY
rh means one of BC, DE, HL, SP
rx means one of BC, DE, IX, SP
ry means one of BC, DE, IY, SP
rp means one of BC, DE, HL, AF, IX, IY

130

Note:

ra means one of HL, IX, IY

n means a single byte constant

nn means an address or two byte constant

b means a bit number between 0 and 7

e means an address within the range ($-126,%$+129) where $
is the address of the current instruction

cc means one of C, NC, Z, NZ, M, P, PE, PO

¢ means one of C, NC, Z, NZ
means no operands (implicit addressing mode)

with the following instructions the first parameter may be

omitted if it is A: ADC ADD AND CP OR SBC SUB XOR
e.g. '"OR B' is equivalent to 'CR A,B’

131

APPENDIX IV

Monitor commands and syntax

All the monitor's commands can be typed on -their own and, unless a default value is
assumed, you will then be prompted for further input. You can also type all parameters
in-line - that is to say following the command.

Where a default value will be assumed that value is shown following the command
concerned. Those commands shown followed by a * are only available in the large version
of the monitor.

COMMAND SYNT AX DEFAULT

ASC - - -

BANK * - <number> 1

BLOAD * BL <f'ilename>,<address> -

BOT - <address> &0100

BSAVE * BS <filename>,<address> -

CB - <number> Use cursor, RETURN & ESC/STOP
CLS - - -

COMP *# CP <start>,<end>,<2nd> -

CPM - - -

DX - <f'ilename> -

DIS D <start>,<end> -

DSL - <length> 0

DUMP * DM <f'ilename> -

EB - - -

EDIT E/ESC/STOP <address> Address in memory window
EC - - -

ER - - -

EU - - -

EXX - - -

FC * - <filename>,<start>,<end> Default start = &0100
FD * - <filename>,<start> Default start = &0100
FILL * - <{start>,<end> -

FIND F <{start>,<end> You will be prompted for

Ascii, Hex or Code, then asked
for string, bytes or mnemonics

HEX - - -

1B - - -
INIT IN - -

132

IC

IU
JUMP
L3 *
LIST
LOAD
MDIS ¥
MEDIT
MP
MMOVE *
oD

PRINT *
PS *
QB
QUIT
QUITS
RC
RELOC *

RESET

jonl
[
* K Kk Kk ok %k

<address>
<start>,<end>
<f'ilename> ,<address>
<address>

<address>

<address>
<{start>,<end>,<to>
<start>,<end>

<expression>
Lfirst>,<last>

<address>

<address>
<number of times>
<address>
<address>

<filename>,<{start>,<end>

<addri1>,<addr2>,etc..
<expression>
<address>

<string>

<address>

<address>

<size>

<number>
<number>
<number>
<number>
<number>
<number>
<address>

133

Program counter

Default address = &0100
Address in memory window
Address in memory window
Previous address

You will be prompted for
the offset

A-2

Program counter

You will be prompted for
Simple,
Program counter

Once

Program counter
Program counter
Default start & end =
&0100-LOMEM

Program counter

Start of BDOS

6 on CPC6128, 13 on PCW

0
0
0
0
0
D

efault top of stack

start, end and data

¥k o k ok K Kk ok Kk Kk

<address>
<number>
<number>
<number>
<number>
<number>
<number>
<number>
<number>

Program counter

[oNeoNeoNoNeNoNoNo]

134

Useful BDOS functions

APPENDIX V

Note: (...) indicates the address of.

Funct ion number/name

152

System Reset
Console Input
Console Output
Auxiliary Input
Auxiliary Output
List Output

Direct Console I/0

Auxiliary Input Status
Auxiliary Output Status

Print String
Read Console Buffer
Get Console Status

Return Version Number

Reset Disc System
Select Disc

Open File

Close File
Search for First
Search for Next
Delete File

Read Sequential
Write Sequential
Make File

Rename File
Return Current Disc
Set DMA Address
Set/Get User Code
Read Random

Write Random
Compute File Size
Reset Drive

Set Multi-sector count

Parse Filename

Input parameters

E=char
E=char
E=char
E=&FF/&FE/&FD/char

DE= (string)
DE={buffer)

E=Disc Number
DE= (FCB)
DE=(FCB)
DE=(FCB)

DE= (FCB)
DE= (FCB)
DE= (FCB)
DE= (FCB)
DE= (FCB)
DE=(DMA)

E=&FF/User number
DE=(FCB)

DE= (FCB)

DE= (FCB)

DE=Drive vector
E=Number of sectors
DE= (PFCB)

Returned values

A=Char

A=&00

A=Char

A=&00

A=&00
A=Char/Status/-
A=&00/&FF

A=&00/&FF

A=&00

Characters in buffer
A=&00/&01

HL=Version (&31 for CP/M+)
£=&00

AzError flag

A=Dir code

A=Dir code

A=Dir code

A=Dir code

A=Dir code

A=Dir code

A=Dir code

A=Dir code

A=Dir code

A=Current disc number
A=&00

A=Current user/&00
A=Error code

A=Error code
ro,ri,r2 A=zError flag
A=&00

A=Return code

See definition below

Note: The DMA is the Direct Memory Address which is set to &80 by default.

135

FCB stands for File Control Block. An FCB must be set up for each file operation. There
are two ways of doing this the first is by using BDOS function 152 (Parse Filename).

Function 152 requires DE to be pointing to a 4 byte block of memory. The first two
bytes should point to a string containing the filename, extension and any drive prefix. The
string must be terminated by a zero byte. The second two bytes should point to the
address at which you wish the FCB to be put. The FCB area should be 36 bytes long.

Example:
PFCB WORD filename
WORD FCB
filename TEXT "b:myprog.com",0
FCB RMEM 36

The second way you can create an FCB is to do it yourself following
this format:

BYTE 0 Drive field. O=default, 1=A, 2=B etc...

BYTES 1-8 Specified filename.

BYTES 9-11 Specified filetype.

BYTES 12-15 All zero.

BYTES 16-23 Password field. If not required set the first byte to
Zero.

BYTES 24-31 Reserved. Do not use.

If an error occurs function 152 returns &FFFF in HL.

136

APPENDIX VI
PROGRAMMING WITH CP/M PLUS

Bank organisation
Under CP/M Plus the CPC 6128 or PCW's memory is divided into three separate banks:

Bank 0 is the BDOS bank which contains the banked portions of the BIOS (Basic
Input/Output System) and BDOS (Basic Disc Operating System). It also contains the screen
memory, the extended BIOS jump block and some disc buffers.

Bank 1 is the TPA (Transient Program Area) bank in which all application programs are
run.

Bank 2 contains a copy of the CCP {(Console Command Processor), disc hash tables and
data buffers. On the PCW it also contains parts of the BIOS. These are not included on
the CPC 6128 because many of the routines already exist in its Operating System Rom.

On the PCW there is also the screen environment which is similar to bank 0 with parts
of the BIOS and BDOS being replaced by further screen Ram.

The top 16k of each bank is called Common memory as it remains the same in all banks.
As well as containing the top part of the TPA it holds the resident portions of the BIOS
and BDOS.

The 16k blocks allocated to each bank are shown in figures la and lb.

The CCP is a transient program that the BIOS loads into the TPA at System Cold and
Warm start. For further information on transient programs see the section on transient
programs a little further on. The Loader program is used by the CCP to handie program
loading. This is loaded in at the same time.

Bank 0 - BDOS Bank 1 - TPA Bank 2 - Extra Bank 0 - BDOS Bank i - TPA Bank 2 - Extra
block 7 block 7 block 7 block 7 block 7 block 7
common common common common common common
Co C000
block 3 block 6 block 2 block 6
BIOS. BDOS BIOS, BDOS
SUHK) firmwarce jumpblock
block 1 block 5 block 8 K000
screen CCP, hash tables block | block 5 block 3
00 data buffers screen CCP, hash tables
data buffers
block block 4 4000
BIOS block 0 / lower ROM | {block 4
extended jumpblock| more BIOS
0000 low kernel jumpblock
0000
Figure 1a PCW 8256,/8512 Figure 1b CPC B128

137

Cold start

A Cold start is executed immediately the PCW is turned on or CP/M is selected on the
CPC 6128. On the CPC 6128 the first sector of a system disc is loaded in and given
control. This function is performed by a bootstrap Rom on PCWs.

The bootstrap loads the directory and searches for the first file with the extension .EMS.
If such a file is found it is loaded and given control. The .EMS file contains CPM3.5YS,
CCP.COM, the Loader and the BIOS.

If the .EMS f{ile is not present on the CPC 6128 the message "Cannot find EMS file" is
displayed. On a PCW the machine beeps. In either case you must press a key to restart.

Console Command Processor

The CCP provides access to CP/M Plus facilities when transient programs are not running.’
It reads command lines typed in and acts on them, loading in transient utilities where
required or calling built-in routines.

On selection of a transient program, control is passed first to the Loader and then to the
program. On termination of a program the CCP is then reloaded into the TPA and the
process repeats.

Transient Program Area

A transient program, as the name suggests, is one that is not system resident, ie. it is
loaded from disc each time you need to use it. PIP, DISCKIT and RENAME are transient
programs as are word processors, databases and the Maxam Il Assembler and Monitor.
(Although the Monitor relocates itself to the top of the TPA to allow you to load your
own programs at &0100.)

Transient programs generally communicate with the operating system through BDOS

function calls. This is done by loading the Z80's registers with the appropriate parameters
and calling location &0005.

138

There are three main ways in which a transient program can terminate execution. These
are:

a) A jump to location &0000 causing a warm boot
b) A BDOS system reset call
c) Making a BDOS Chain To Program call

It can also RET to the system if the stack is still intact.

The first two methods pass control to the BIOS warm start entry point which loads the
CCP into the TPA and calls it. Chain To Program allows a program to specify the next
command to be executed before terminating its own execution by passing this command
directly to the CCP immediately after the warm boot.

Resident System Extensions

RSXs (Resident System Extensions) are programs which can be attached to the operating
system to modify or extend the BDOS functions. You may rarely need to use them but
this short introduction will help you understand what is going on when other programs use
them.

When a program is loaded into the TPA any attached RSXs are also loaded. When RSXs
are resident the Loader resides directly below the BDOS and and the RSX modules stack
downwards from it. The most recently loaded RSX has precedence over any others.

When the CCP regains control after a Warm start it removes all RSXs from memory that
have their remove flags set to &FF.

As an example, the GET utility has an attached RSX. When GET.COM is loaded GET.RSX
is also loaded with it. GET then performs a number of operations including opening the
Ascii file specified in the GET command line. It then makes a BDOS call function 60 to
initialise the RSX and then terminates execution. After this, GET.RSX intercepts all
console input calls and returns characters from the file specified in the GET command
line until it reaches the end of the file. Having done this it sets the remove flag and
stops intercepting console input. On the following Warm boot the CCP removes the RSX
from memory.

139

BDOS
As previously mentioned BDOS calls are made through location &0005. The following

program is an example of using BDOS calls. It reads characters continuously until it
encounters an asterisk and then terminates execution by returning to the system.

BDOS equ &0005

org &100 3 Start of program
loop 1d c,1 s BDOS console input function
call bdos s Return character in A
cp "¥v ;s Is it a star?
Jr nz,loop ;5 No, try again
ret ; Yes, return
end s End of program

Command tails

After the CCP has loaded a transient program into the TPA any parameters passed to
this program in the command tail are placed at location &0080. So, when you type M2
MYPROG to assemble a program, M2 is loaded into the TPA and the string MYPROG is
stored at &0081 with the length of the string at &0080. The character following the last
in the command tail is set to 0. Command line characters are preceded by a leading
blank and are translated to Ascii upper case.

This allows the assembler to decide what action to take with the command tale. In this
case it will assemble MYPROG.

You can include as many parameters as you wish in the command tail up to 128
characters in length. However, if each parameter is a new program it is up to you to
update the command tail for each program.

Page zero

Page Zero contains a number of CP/M Plus calls and information for transient programs.
The following is a breakdown of the more useful locations in Page Zero.

LOCATION CONTENTS
From To

&0000 &0002 Contains a jump instruction to the BIOS Warm start entry
point. The address at location &0001 can also be used to
make direct BIOS calls to the BIOS console status,
console input, console output and list output primitive
functions.

&0005 &0007 Contains a Jump instruction to the BDOS, the Loader or
the most recently added RSX. It serves two purposes.
Firstly, JP &0005 provides the primary entry point to
the BDOS and LD HL,(&0006) places the address field of
the Jump instruction into the HL register pair. This
value -1 is the highest address in memory available to
the TPA.

&0050 - Identifies the drive from which the transient program
was loaded. A value of 1 to 16 identifies drives A& - P.

&005C &007B Default file control block, FCB, area 1 initialised by
the CCP from the first command tail operation of the
command line - if it exists.

&006C &007B As locations &005C - &007B except for this memory
contains the FCB area 2. Note that this area overlays
the last 16 bytes of FCB area 1. To use the information
in this area a transient program must copy it to another
location before using FCB area 1.

&0080 &OOFF Default 128 byte disc buffer. This buffer is also filled

with the command tail when the CCP 1loads a transient
program.

141

APPENDIX VII
THE EXPRESSION EVALUATOR

The expression evaluator is a powerful program used by both the Assembler and Monitor.
It allows nested parentheses and indirection as well as logical operators and operator
precedence. Numbers can be entered in 3 bases - Binary, Decimal and Hexadecimal.
Binary numbers must be prefaced by "%" and Hexadecimal numbers by "&" or "#". During
assembly a "$" represents the current program counter.

All expressions are evaluated as a 16 bit number.
The operators provided are, in order of precedence:

1 1 Brackets for nested expressions
() Brackets for indirection

2 * Multiply
/ Divide
MOD Mod
3 + Plus
- Minus
4 = Equals
<O Not equal to
< Less than
<=z Less than or equal to
> Greater than
>= Greater than or equal to
5 << Logical shift left
>> Logical shift right
6 NOT Not
7 AND And
8 OR Or
9 XOR Exclusive or

Unless nested in parentheses the expression with an operator of the highest precedence
(1=high 9=low) will be evaluated first. So, 5-2%3 is -1 (ot &FFFF) not 9 but [5-2]*3 is 9.

The round brackets are used for indirection. For example in the monitor you might want
to determine the memory address pointed to by the contents of HL plus the contents of
A. To do this you would type PRINT (HL+A).

The reason square brackets have been used for precedence and the round brackets for
indirection is to retain the syntax of round brackets used for indirection in Z80 assembly
language.

All labels and symbols defined within a program can be included in an expression. This is
also the case within the monitor where you can load in a symbol table or define new
symbols.

In the monitor you can also use system variable names such as HIMEM and LOMEM and
all register names in expressions. The conditional breakpoint routine included in the large
version of the monitor makes full use of the expression evaluator to assess a program's
state and determine’ whether to terminate execution or continue. For full information on
using the expression evaluator in the monitor see the section "The Expression Evaluator
And The Monitor".

143

APPENDIX VHI
KEY TRANSLATIONS

These are the codes which must be used in a phrase definition to string command
sequences together.

PCW CPC code PCW CPC code
ALT-@ CTRL-@ 0 ALT-[CTRL-[27
ALT-A CTRL-A 1 ALT-. CTRL-Q 28
ALT-B CTRL-B 2 ALT-] CTRL-] 29
ALT-C CTRL-C 3 -- CTRL-£ 30
ALT-D CTRL-D 4 -~ CTRL-0 31
ALT-E CTRL-E 5 ALT-< CTRL-< 218
ALT-F CTRL-F 6 ALT-> CTRL-> 219
ALT-G CTRL-G 7 ALT-(CTRL-) 220
ALT-H CTRL-H 8 ALT-) CTRL-(221
ALT-I CTRL-I 237 ALT-* CTRL-* 222
ALT-J CTRL-J 10 ALT-+ CTRL-+ 223
ALT-K CTRL-K 1 ALT-/ CTRL-/ 231
ALT-L CTRL-L 12 ALT-hyphen CTRL-hyphen 227
ALT-M CTRL-M 238 ALT-space CTRL-space 235
ALT-N CTRL-N 14

ALT-0 CTRL-0 15 up up 240
ALT-P CTRL-P 226 down down 241
ALT-Q CTRL-Q 17 left left 242
ALT-R CTRL-R 18 right right 243
ALT-S CTRL-S 19 SHIFT-up SHIFT-up 244
ALT-T CTRL-T 20 SHIFT-down SHIFT-down 245
ALT-U CTRL-U 21 SHIFT-left SHIFT-1left 246
ALT-V CTRL-V 22 SHIFT-right SHIFT-right 247
ALT-W CTRL-W 23 ALT-up CTRL-up 248
ALT-X CTRL-X 24 ALT-down CTRL-down 249
ALT-Y CTRL-Y 25 ALT-1left CTRL-1eft 250
ALT-Z CTRL-Z 26 ALT-right CTRL-right 251
TAB TAB 9 RETURN RETURN 13
SHIFT-TAB SHIFT-TAB 228 SHIFT-RETURN SHIFT-RETURN 236
ALT-TAB CTRL-TAB 225 ALT-RETURN CTRL-RETURN 236
DELr CLR 16 ALT-CAN CTRL-CLR 230
SHIFT-DELr SHIFT-CLR 229 ALT-CUT CTRL-DEL 232
ALT-DELr 5 ALT-COPY CTRL-COPY 234
1DEL DEL 127 [+] COPY 224
SHIFT-1DEL -- 211 STOP/EXIT ESC 252
ALT-1DEL -= 212 Enter edit mode 253
SHIFT-COPY SHIFT-COPY 233 Enter command mode 254

144

145

APPENDIX IX
SYSTEM ERROR MESSAGES

This section lists error messages relating mainly to disc operation. These are termed
system error messages because they do not relate to any particular program or command,
and may occur at any time.

Disc missing or read fail - Retry Ignore or Cancel?

(i) The disc being used has been taken out of the drive. Insert
the disc and press R.

(ii) The disc is not formatted.
Press C to cancel the operation. The disc must be formatted

using DFORM before it can be used.

(iii) PCW only. This error is given if a CF2DD disc is put into
drive A, or the wrong way round in drive B.

(iv) The disc may be faulty or corrupted. Press R to retry. If the
error persists try re-formatting the disc.

Drive not ready - Retry Ignore or Cancel?

The disc being used has been taken out of the drive. Insert
the disc and press R.

Disc error - Retry Ignore or Cancel?

Seek fail - Retry Ignore or Cancel?

Data error - Retry Ignore or Cancel?

No data - Retry Ignore or Cancel?

Missing address mark - Retry Ignore or Cancel?
Media changed - Retry Ignore or Cancel?

Media change occurred - Retry Ignore or Cancel?

If any of these errors occur the disc may be faulty or

corrupted. Press R to retry. If the error persists try re-
formatting the disc.

146

Write protected - Retry Ignore or Cancel?
The write protect tab is pushed in. Remove the disc, slide the
tab out, and press R.

Disc unsuitable for drive - Retry Ignore or Cancel?
PCW only. The disc in drive B is formatted as a CF2 disc, and
50 may only be written to in drive A.

Bad format - Retry Ignore or Cancel?

The disc is not formatted, or is of a non-Amstrad format, or
the disc may be faulty.

File is read only
The chosen file camnot be written to because it has been
protected. Use ACCESS to unprotect the file.

Directory full
The maximum number of files allowed on a disc has been
reached. There may still be room on the disc, so any unwanted
files should be deleted.

Disc full
The storage capacity of the disc has been reached. Often this

can be remedied by erasing backup files. Type ERASE *.BAK or
press ALT-f7 (PCW) or CTRL-f9 (CPC6128).

File not found
File does not exist
There is no file of the chosen name on the disc. Check that

the name was typed correctly, that the correct disc is in the
drive, and that the correct drive is selected.

147

Bad filename

Maximum

The combination of characters chosen as a filename is not
allowed. Valid names consists of up to 8 characters, followed
optionally by a full stop and an extension of up to 3
characters. Certain characters are not allowed.

number of files open

There is a limit to the number of files that can be open at
the same time. In normal use this limit will never be reached.

Insufficient memory for program

The program has used all the available computer memory. This
error will not occur in normal use.

EXEC file read error

A disc error occurred when reading commands from an exec file.
This could be caused by removing the disc containing the exec
file, or by a faulty disc.

This program will only run under Amstrad CP/M Plus

Arnor CP/M Plus programs will only work on Amstrad computers
with CP/M Plus. In particular they will not run gn other CP/M
systems. This 1is because special use 1is made of Amstrad
specific features to attain the best performance.

If this message occurs when using an Amstrad computer, which

is possible if some other software 1is installed, all may not
be lost. Contact Arnor for help.

148

GLOSSARY OF TERMS

ADDRESS
A number representing the position of a byte in memory.

ARNOR
"The land of the King". In the Third Age of Middle Earth Arnor was known as the
"lost realm of the North". The kingdom was re-established by Elessar after the

War of the Ring.

ASCIL (American Standard Code for Information Interchange)
1. punctuation symbols, etc.
2. The form of representation of a program using no special tokens, only ASCII codes.

ASSEMBLER
1. A program which converts assembly language mnemonics into binary machine code.
2. Another name for assembly language.

ASSEMBLY LANGUAGE
The set of mnemonics which correspond to the operations the Z80 processor is capable
of performing.

BANKED MEMORY
The CPC 6128's and PCW's memory is divided into blocks of 16ék. Under CP/M
Plus these blocks are switched in 4 at a time for each of the 3 bank configurations.

BINARY
The base 2 number system, in which all numbers are represented using just 2 digits,
0 and 1.

BIT
A binary digit, 0 or 1.

BREAKPOINT
A debugging aid. A program stops at a breakpoint allowing you to see whether it is
working correctly.

BYTE
8 bits. The unit of memory usually used for data transfer.

149

CODE ORIGIN
The address of the start of the object code.

CODE LOCATION
While assembling, the address where the next byte of code is to be assembled.

COMMAND
l. An instruction to the assembler which affects the listing in some way.
2. An instruction to the assembler or monitor to do something.

COMPILER
A program which converts a high level language such as C or BCPL into binary
machine code.

CONDITIONAL ASSEMBLY
A feature of the assembler which allows code to be assembled differently
depending on the setting of variables.

CONDITIONAL BREAKPOINT
A breakpoint which only occurs when a certain condition is true, eg. the contents of
A is greater than 48.

CP/M
The operating system used on Amstrad Z80 computers.

DELIMITER
A special character which tells the computer where a string starts and ends.

DIRECTIVE
A instruction to the assembler which affects the object code in some way.

DISASSEMBLE
Convert binary machine code to assembly language mnemonics.

ENTRY POINT
The address to begin execution of a machine code program.

FIRMWARE
1. The operating system.
2. Any program contained in ROM.

HEXADECIMAL (HEX.)
The base 16 number system, where letters A to F represent 10 to 15.

150

IDENTIFIER
A string of characters which is the name of a symbol.

INSTRUCTION
In the assembler, a Z80 mnemonic or a directive or a command.

LABEL
A symbol which represents a position within a program.

LINK
The operation of joining two separately compiled or assembled programs to form

one program.

LISTING
The output produced by the assembler on the screen or printer, showing the source
code, object code, and addresses at which the code has been assembled.

MACHINE CODE
A sequence of binary numbers which the Z80 processor interprets as simple

operations.

MACRO
A sequence of instructions (for example to an assembler) represented by a single
name.

MARKER
In the editor, a pointer to a particular location in the text.

MNEMONIC
A string of characters which represents a Z80 operation.

MONITOR
A program used to help with program debugging.

OBJECT CODE
The machine code program produced by the assembler.

OPCODE
The binary number representing a Z80 operation.

OPERAND
The data which an operation acts on, often a memory address.

151

OPERATING SYSTEM
The machine code program which accesses the hardware directly and is called by
user programs.

RAM (Random Access Memory)
The main memory of the computer which can be written to and read from.

REGISTER)
A 1 or 2 byte memory location within the Z80 processor which is accessed very
quickly, and is used by Z80 operations.

RELOCATE
Take a machine code program and change the address references throughout it so it
will run at a different memory address.

ROM (Read Only Memory)
Memory which can only be read from.

SINGLE STEPPING
A means of tracing the execution of a program step by step showing the
contents of memory, flags and registers after each instruction.

SOURCE CODE
The assembly language program, consisting of mnemonics, directives, and commands.

STORAGE LOCATION
While assembling, the address where the next byte of code is to be stored.

STRING
A sequence of characters.

SYMBOL
A variable used when assembling.

SYMBOL TABLE
The list of symbols maintained by the assembler.

Z80
The central processor (CPU) of the Amstrad CPC 6128 PCW 8256 and PCW 8512.

INDEX

* 103 C 29-30,103
8080 14 CAT 11
CB 46,70
AC 103 CLEAR 100
ACCESS 111 Clearing the text 100
Address 149,15 CLS 70
AF 75 CODE 13
Alternate registers 48 Command 26,80,93
AND 18,19 Comment 12,23
APED 78-125 COMP 66
Argument 33 Comparing
ASC 65 memory 66
Ascii 22,35 file 66
ASM 12,103 Compiler 29,103,150
Assembler 12-33,127-131 Conditional assembly 18,150
Conditional breakpoints 40,46
BANK 65 CONFIG 110
Banked memory 36,65,137, 149 Configuration
BC 75 of editor 110
BCPL 103 of monitor 48,76
BDOS 135,137-141 Convert case of letter 82
BEEP 22 COPY 112
Binary 149 Copying
BIOS 137-141 block 88
Bit 149 disc 112
BLOAD 65 file 112,114
Block 87 CPM 76,100
defining 88 CP/M Plus 137-141
deleting 89 Cursor
moving 88 in editor 84
BM 98 in monitor 36-37,39
Boot 139
BOT 43-44,64,70 Data 16
Brackets 142 DB 17
Breakpoint 149 DCOPY 112
conditional 40,46 DE 75
setting and clearing 46 Debugging 9,49,70
user defined 46 Decimal 22
window 35 DEFB 17
BRK 42,129 DEFL 16
BSAVE 66 DEFM 17
Byte 149 DEFS 17
BYTE 16 DEFW 17

153

Deleting 82,84,89

block 89
character 82
file 114
text 100
word 83
Delimiter 150
DFORM 113
DFORMD 113
DIR 111

Directives 12,14,127,150

DIS 66

Disassembling 150
a file 66
intelligent/simple 37-38
memory 37-38,66-67
with offset 68

Disc
copying 112
loading text from 96
saving text to 97
start of day 7

Disckit 113,116,138

DRIVE 113

DRW 30

DS 17

DSL 48,76

DUMP
assembler 23
monitor 66

DW 17

DX 48

EB 46,70
EC 71
ECOPY 114
EDIT 66
Editor 78-125
ELSE 18-20
END 14,24
ENDIF 18-20
Entry point 150
EQU 15,24
ER 39,71
ERACOPY 114
ERASE 112,114,116
Error 13,42
system error messages 146
EU 46,71
Exchanging characters 83

EXEC 114,124
Exec files 48,110,122-125
Executing code 43,47,64,72
Expression evaluator 142
use in assembler 14
use in monitor 40
EXTERN 29
External commands 26, 102
EXX 71

FALSE 18

Fatal errors 13,128

FC 66

FD 66

Field 12,23

Filename 12,48
current 95,97

FILL 66

FIND
in editor 90-92, 100
in monitor 100

Firmware 150

Flags 18,39,48

Formatting a disc 113

Global 90
GOTO 100
GROUP 114

HELP 114

HEX 67
Hexadecimal 22
HL 75

IB 46,71

Ic 42,71
Identifier 15,151
IF 18,24

IF1 19

IF2 19

IFNOT 19,24

INFO 115

INIT 72

INKEY 22

INPUT 137

Insert mode 84
Inserting text 82
Instruction 12,23,151
Integers 14
INTERNAL 115

154

IU 46,72
IX 75
IY 75

JUMP 47,64,72

KEY 120
Key translations 144

Labels 12,33,38,151
Languages 108
LD 69
LET 16,18,20,24
Link 151
LINK 28
Linking 21,27,29
LIST
in assembler 14,22
in monitor 67
Listing 23-24,151
to file or printer 23
LOAD
editor 96
monitor 67
Loading new text 96
Local labels 32,33
Logical operators 142
LPHRASES 109,120
LS 67

MA 103
Machine code 151
Macro 31-33,151

MACRO 31-33
Marker 85,151
block 88
place 86
MDIS 67
MEDIT 68

Memory

banked 65,137
commands 65-69
editing 36-38
pointer 36-37,68

MEND 31-33

MERGE 97

Merging text 97

MLOFF 32

MLON 32

MM 103

MMOVE 68

Mnemonic 14,151

MON 103

Monitor 34-77,111-125
comnand summary 132-134

MP 68,72

MSM 103

NAME 97
Nesting 19,143
NOCODE 13,21

NOLIST 22
NUMBER 100
NUMBERB 101

Object code 21,23,151

Object file 12,21

oD 68

Opcode 151

Operand 14,23,151

Operators 142,151
precedence 142

OR 18,19, 131

ORG 13,29

Origin 15,150

OUTPUT 23

Overwrite mode 84

PAGE 25
Page length
in assembler 25
in editor 98
Page width 25
PARALLEL 115
Parameters for macro 33
Parentheses 142
Passes 15
PAUSE
assembler command 22

EXEC file command 115,124

PC 75

PHRASE 120
Phrases 118-121
PL 98

PLEN 25
Positive 19

Precedence of operators 142

155

PRINT
in assembler 21,22
in editor 98
in monitor 40,68
PRINTER 98
Printer drivers 110
Printing the text 98
PRINTOFF 115
PRINTON 115
Program 12
PROTECT 116
PS 69
PUBLIC 29

QB 72

QUIT 48,76,101

QUITS 76

Quitting
from editor 100,101
from monitor 76,77

RAM 137,152
RC 72
READ 21

Reading from source file 20

Registers 39,48,152
editing 39,75

RELOC 69

Relocating 29-30,69,152

RENAME 116

Renaming a file 116

REPEAT 20

REPLACE 90-92,101

RESET 77

Restoring deleted text 83,89

RESUME 47,73

RMEM 17,24
ROM 137,152
RR 47,73
RSX 139,141
RUNC 103

S 43,73
SAVE

editor 95,97
monitor 69

SAVEB 97

Saving the text 97

SB 46,73

SC 40-41,46,73

Scrolling 84,86

Searching 90,91,100,101

SERIAL 116

SETPRINT 110

SF 48,77

Single stepping 34,43,152

Source code 12,20,152

Source file 12,20

SP 75

SPOOL 116

SPOOLOFF 116

SQ 43,74

SS 43,74

Stack 39,42,47

Start of day disc 7

Status window 35

STOP 21

STR 17

String 17,90,152

Substitution
macro parameters 33
text in editor 90

SWAP 98, 106-107

Swapping between text files

SYM 27,67

Symbol 152

SYMBOL 117

Symbol table
listing in assembler 23
listing in monitor 69
loading into monitor 67
saving from assembler 27

Symbols 15

TAB 99

TAIL 69

TEXT 16

TITLE 25

Tolkien, J.R.R. 3,126
TOP 43-44,64,T4

TYPE 117

156

106

UB 46,74
UNTIL 20,24
USER 114

Variable 15

W8080 14

WB 175

WIDTH 25
Window size 77
WORD 16

WRITE 21,23,29
Ws 77

XAF 75

Z80 instructions
ZR 75

129

157

	pag 001
	pag 002
	pag 003
	pag 004
	pag 005
	pag 006
	pag 007
	pag 008
	pag 009
	pag 010
	pag 011
	pag 012
	pag 013
	pag 014
	pag 015
	pag 016
	pag 017
	pag 018
	pag 019
	pag 020
	pag 021
	pag 022
	pag 023
	pag 024
	pag 025
	pag 026
	pag 027
	pag 028
	pag 029
	pag 030
	pag 031
	pag 032
	pag 033
	pag 034
	pag 035
	pag 036
	pag 037
	pag 038
	pag 039
	pag 040
	pag 041
	pag 042
	pag 043
	pag 044
	pag 045
	pag 046
	pag 047
	pag 048
	pag 049
	pag 050
	pag 051
	pag 052
	pag 053
	pag 054
	pag 055
	pag 056
	pag 057
	pag 058
	pag 059
	pag 060
	pag 061
	pag 062
	pag 063
	pag 064
	pag 065
	pag 066
	pag 067
	pag 068
	pag 069
	pag 070
	pag 071
	pag 072
	pag 073
	pag 074
	pag 075
	pag 076
	pag 077
	pag 078
	pag 079
	pag 080
	pag 081
	pag 082
	pag 083
	pag 084
	pag 085
	pag 086
	pag 087
	pag 088
	pag 089
	pag 090
	pag 091
	pag 092
	pag 093
	pag 094
	pag 095
	pag 096
	pag 097
	pag 098
	pag 099
	pag 100
	pag 101
	pag 102
	pag 103
	pag 104
	pag 105
	pag 106
	pag 107
	pag 108
	pag 109
	pag 110
	pag 111
	pag 112
	pag 113
	pag 114
	pag 115
	pag 116
	pag 117
	pag 118
	pag 119
	pag 120
	pag 121
	pag 122
	pag 123
	pag 124
	pag 125
	pag 126
	pag 127
	pag 128
	pag 129
	pag 130
	pag 131
	pag 132
	pag 133
	pag 134
	pag 135
	pag 136
	pag 137
	pag 138
	pag 139
	pag 140
	pag 141
	pag 142
	pag 143
	pag 144
	pag 145
	pag 146
	pag 147
	pag 148
	pag 149
	pag 150
	pag 151
	pag 152
	pag 153
	pag 154
	pag 155
	pag 156
	pag 157

