= = = e

USERMANUAL

Section 1.

PYRADEV

Section 2.
EDITOR

Section 3.
ASSEMBLER

000000 olojojolololololololelolelele) O0000

0000000000000

TABLE OF CONTENTS

Introductionccooeeiiiii
Getting Startedoooiin
New Users ...
Working Discscoooviiiinnnnnnis

System Restrictions

File Selectioncocovvviiiiiiniee 5
Edit Mode Displaycccooeeiiieinniiiiinnniinnnn. 6
ESCAPEHelp Pageoivieiiiiiniiinn.e. 7
ABORT Edit Sessionccccooeeeiiiiiiiiiinnn. 7
EXITand SaveFilec 7
Cursor Movementool 7
Screen Scrolling ... 7
Character Insert/Deletecccooovneiii. 7
Line. Insert/Deletecoiii. 8
Block Copy,Deleteccccooeiiiiiiiiine 8
Setting Tabsccivvvviniii, 8
Append Files ... 9
Search, Stop, Replacell 9
Keystroke Memoriescccciiieenens 10
Printing ..., 10
Directory Displaycooooiiiiiinn. 11
Rename Delete Filesccccoeeeil 11
Compression Mode 11
Changing Ink Coloursccooenn.n. 11
Environment Save/Load 1
ZAPbackupfiles ... 12
Start Run Options ..., 12
Assembly Control

Error Handling e
Language Definition 15
EXpressionsccoooviiiiiini. 16
Directives ... 16
Conditional Assembly 20
Macro Definitions 21
EXTRA Op-Codesccooovvviiiiiiiiinni, 22
FREE Formatccoooin, 23
Memory Managementcce 24
Assembly Statistics ... 25
Summary of Directivesc......... 25

Section 4.
MONITOR

Section 5.

DISC-NURSE

Section 6.
UTILITIES

Section 7.
SELF-TEACH

Section 8.

00000000000 OOOOOOOOO

CO000000OO000O

0000

© 000

Screen Displaycccooooiiiiiiiiiiiniiii 27
Relocation
Load Test Codeccooeviminiiiniiiiinininnnnn, 28
Dis-Assembly Displayccccciiiiiiiiinnnn. 28
Changing Code, Memoryccceeees 28
Setting Traps
GOTO address
Single Stepping
Double Steppingcccooeeemiiiiniiiiiiiiiiin,
Changing Registersl
Screen Refresh

Query/Search Mode

ROM switch & display
Write Binary to Disc

Dis-Assemble to Sourcecoceeeiiiiiiinnn. 30
Copy Memoryooeviiriivinniniiiiinniiieeeins
Screen Printing

Paper & Pen Colours
Stack Allocation

External ACcesscooovviiiiiiiiiniiiiiiniiiinn.,

DiscLOGINooiiiiinieiiiieiicecccneiinniieas
Drive Selectovvviieeiiiiiii e
Track Selectccooviviiiiniiiiiiieecn
Sector Select
Read Sector
Modify Sector
Wirite Sector
Un-Erase File
File Selection
Query Search Mode
Screen Printing
Paper & Pen Colours

Deleting Filesccoooooiiiiiiiiiiiinnninnenns
Renaming Files
Copying Files
Copy Restrictions

Demonstration Program
Assembler Test Program
General Informationccooooiiiiiiii,

Control Keys Summaryccooooeeiiiiinn., 35

1.0 INTRODUCTION.

PYRADEYV is a set of five programs which collectively provide a secure and
comfortable environment for the development of AMSDOS and CPM software
on the AMSTRAD 464, 664 and 6128 micro computers using the DD1 disc
system. The system is AMSDOS based and does not require extra ROM or RAM.
It will support large programming projects on single or double drive systems
and consists of the following programs:—

O A very fast full screen SOURCE FILE EDITOR.

O A multi-file Z80 MACRO ASSEMBLER/Linker.

O A powerful debug MONITOR and DIS-ASSEMBLER.
O A friendly and easy to use DISC-NURSE.

O A comprehensive FILE MANAGEMENT utility.

The EDITOR uses its own special disc read and write routines enabling large files
(up to 32,300 bytes) to be quickly accessed and edited. Code can be searched,
replaced, entered, deleted, moved, copied, merged (across files). In addition,
files can be erased, renamed, deleted and so on. Space compression is used
throughout to make the best use of the AMSTRAD memory and disc capacity.

The ASSEMBLER allows up to 32 files to be selected in a single assembly. They
can be on different discs (if two drives are used) allowing upto 992K of source
code (about 5 discs) to be processed into a single binary file. Video or Print
output can be toggled on/off as required. Symbol and Cross-Reference maps
may also be produced. The Assembler is very fast, processing up to 40,000
source code characters a minute on 64K systems. On larger systems, the
additional RAM is fully utilised for increased performance.

The self-relocating MONITOR will load, trap, single step, double step, modify
and write code back to disc. In addition, ROMS can be selected and studied.
During debug mode registers can be modified, and screen prints can be taken at
any time. Code dis-assembly can be output to a printer or ASCII files.

The DISC-NURSE handles system, data and IBM style discs. File sectors can be
searched, viewed, printed, modified and re-written. The search can be extended
to the whole disc if required. Whenever a sector is read the file-owner is
displayed. Previously deleted files can be re-claimed if subsequent sector
allocation has not corrupted data. An extended Directory feature enables the
disc directory to be printed with a header message, in a detailed format suitable
for disc housekeeping lists.

The UTILITY (file-manager) program provides directory display, erase, rename,
copy to/from discs and tape all in a single and easy to use program. Input file

headers are always displayed, and protection can be inserted or removed in all
copy operations. This is the easy way to manage ALL standard AMSDOS files.

1.1 SETTING UP.
PYRADEYV is supplied on a MASTER DISC which must never be written to. It
should only be used to make WORKING DISC copies with the CPM utility
DISCCOPY or DISCKIT3. Refer to the appropriate manual and use the :
PYRADEV MASTER DISC as the Source Disc to create a WORKING (destination)
" Disc.
3

After the copy is complete, remove the PYRADEV MASTER DISC and store it
away somewhere safe.

1.2 GETTING STARTED.

Place the WORKING DISC in drive A and clear the machine by pressing
CTRL-SHIFT-ESCAPE. Enter RUN”"PYRADEYV and press the large enter key.
The SYSTEM-MENU will appear. The amount of memory present is displayed
on the bottom right of the screen.

ACASSENMBLER L EDITOR
DUDESCNURSE MOANMONTTOR
Lo.UTIIrm S /. /AN BAK

Soheledt Dise o

Figure 1.0 System-Menu

The system programs are selected by pressing the appropriate single key «A, E,
D, M, U». They all return to the above menu upon Exit.

The «Z» option will delete all backup files (*.BAK) on the current Default Disc.
Use it with care.

The «5» option allows you to change the default disc drive setting for Data/
Source files to (A) or (B). The PYRADEV disc must always be in drive (A) as it
expects to find its programs there, regardless of the disc default. The «5» option
should NOT be used on single drive systems.

1.3 NEW USERS.

When the SYSTEM MENU appears, press «E» to select the Editor. Enter the
name PROGRAM.001 as your input file and press the space bar twice. The file
will be read into memory. Browse through the file with the UP and DOWN
arrow keys. The file is a small program with lots of comments and examples
about using the Editor and Assembler.

1.4 NEW DISCS.

When a WORKING DISC is created there may be system files on it which are not

required. Press «U» to select the Utilities program, then press «A» or «B» to see
the disc directory. The «D»elete command can be used to remove files. This list
describes the system files.

PYRADEV.BIN SYSTEM-MENU, required on ALL Working Discs.
PYRAMED.BIN Full Screen Editor for Source Program Editing,.
PYRAMAS.BIN Z80 Multi-File Macro Assembler.

PYRAMON.BIN Test Monitor and Dis-Assembler.

4

PYRADSC.BIN Disc Nurse for Modifying Sectors.

PYRAUTL.BIN File Utilities for General Copying.
PROGRAM.001 Self-Teach Demonstration Source Program.
PROGRAM. 002 Assembler Code Examples and Test Files.
PROGRAM.003 Simple ASCII file copier program.

After deleting non-essential files, the new Working Disc is Ready for use. File
deletion is also possible within the Editor.

SYSTEM RESTRICTIONS.

PYRADEYV uses locations 40 hex through to 4F hex to pass variables amongst its
programs. Please avoid using these areas during program development and
testing.

When started, PYRADEV will initialise all background ROMS by calling the
KL.ROM.WALK routine. It then sets its own HIMEM value based on the
returned HL value. Ideally, only the DISC.ROM should be connected, however,
other ADD-ONS should not cause problems, unless they use large areas of
RAM. The Editor work area is normally about 32,300 bytes.

When using the MONITOR, be aware that all background ROMS connected to
the AMSTRAD have been initialised. Initialising a ROM twice may cause
un-desirable effects.

2.0 SOURCE FILE EDITOR.

The Editor is designed for very fast program development and editing. Itis
selected from the System Menu by pressing (E). Once loaded it will display the
default disc directory, and then wait for Input and Output file names to be
entered. The Editor always returns to the Idle Screen after the edit session is
complete.

TANMSTRAD SOURCE FILF FDITOR™

Input
Output File:

DrivetAr Eserin

PROGRANM DOY bRPYRADIV.BIN TRPYRAMED.BIN 10K
PROGRAM. 02 ISKRPYRADSC.BIN TORPYRANMON BIN 13K
PROGRANM 003 2RPYRANASBIN FoRPYRALTE.BIN 2K
100K tree

CIRL-Nto FXIT PYRAMED

Figure 2.00 Idle Screen
5

O ToVIEW afile; Just enter an INPUT-FILE name.

O ToCREATE afile; Justenter an OUTPUT-FILE name.

O ToMODIFY afile; Enter INPUT and OUTPUT file names.
O ToDISPLAY directory; Press SPACE SPACE (ie no names).

The Input file name can be prefixed with A: or B: to set a new disc drive default.

2.1 EDIT-MODE.
After the file names have been entered, the INPUT file will be read and the first
24 records will be displayed. If CREATE mode is selected the screen will be blank.

Use of the ESCAPE key or CONTROL-Z key will alternate the Edit Session
between Edit-Mode, the Help-Page and Command Mode.

IDLE-SCREEN _>_|
Enter File Names
|\— Esc —l EDIT-MODE Ctrl.Z 9{COMMAND

MODE
(HELP)
(SCREEN) Esc—— File
Management

CTRL-A :r CTRL-X

THIS SECHION OF CODI
CONTROLSTHEFDITOR
INFHEATISATION PROCESS

1D AATOPAEND o GETIEAG

AND A ;o LERST TIME THRLU?

iR N7 WARM NOLJUST HIDY
YESOINTTIALISE

COEDSTARE RESTT AND
CHEAREVERY THING

COrD: ib HI (TOP-MEAD CAITCUDATER
1D DYEBASE-NITAD WORKAREA
NOR A SIZt
SBC HI DI
PLSH HI SEEr
ror 18 BCHI
ULSH Dl ;O ANDDLTOR
rope Hi 1R

PROG.001 « PROG.O0T Recd:01K Cob:A2 bree: 13224, 0 ESC tor HELP

Line 25 of the Edit Screen always displays status information:— The current Input
and (probable) Output file names, current record number and cursor column,
Free-Bytes and default Disc Drive are shown.

ESCAPE KEY.

When used in Edit-Mode, the escape key will cause the Help-Page screen to be
displayed. Thisis justan ‘aide memoire’ and describes very briefly the functions
below. Pressing the escape key a second time returns the screen to Edit-Mode.

ABORT & EXIT:

The (CTRL-A) key may be used to ABORT the Edit-Session. when used all files
are abandoned and no disc changes take place. The character (Y) must be
entered to confirm the Abort Request. The Editor returns to the Idle Screen and
displays the Disc Directory.

SAVE & EXIT:

The (CTRL-X) key is the normal exit. The output file name will be displayed and
can be overtyped as required. The file will be written to disc and control will
return to the Idle Screen. If the File-Write fails, the message ** FILE SAVE
FAILED ** will be shown and Command Mode will be selected so you “action’
the disc (ie delete non-required files) or use another disc. After a successful save
the Editor returns to the Idle Screen.

The Output file name can be prefixed with A: or B: to set a new disc drive default.

CURSOR-MOVEMENT.

This is controlled by using the UP, DOWN, LEFT and RIGHT ARROW keys or
by entering text. Forward asnd Reverse scrolling is automatic as row-1 or row-24
are reached. Text is ALWAYS overkeyed at the cursor position. Records are
added to the front or back of the file if the cursor is taken past the first or last
records using the up and down arrow keys. The ENTER key always goes to the
nextline, column one. The TAB and CTRL-TAB keys move the cursor to the next
tab or previous tab stop respectively.

CURSOR-SPEED.

The cursor speed can be toggled between fast and slow by using the (CTRL-Y)
key. Each time itis changed, the prompt (Flash?) will appear. Answer (Y) if you
require a flashing cursor, or (N) for a non-flashing cursor.

SCREEN-SCROLLING:

The SHIFT-DOWN-ARROW and SHIFT-UP-ARROW will scroll the screen one
line up or down respectively whilst maintaining the cursor position. The
CTRL-DOWN-ARROW and CTRL-UP-ARROW will scroll forwards and
backwards 24 lines at a time. These four functions will not scroll past the
beginning or end of the file.

CHARACTER-INSERT-DELETE:

The SHIFT-RIGHT-ARROW and SHIFT-LEFT-ARROW provide these functions.
Note that the insert function places a single blank in the text which can then be
overtyped. The Insert and Delete actions both occur at the cursor position. The
(CLR) and (DEL) keys also provide character delete and reverse delete
capabilities (as they do in BASIC).

LINE-INSERT-DELETE:

The CTRL-RIGHT-ARROW and CTRL-LEFT-ARROW provide these functions,
and they both operate on the currentline, indicated by the cursor. The line insert
action places a blank line into the text which can be overtyped. As text is typed
of the end of the line another blank line is inserted. The same occurs if the
ENTER key is pressed. Line Insert Mode is cancelled by the use of CTRL-LEFT-
ARROW (to delete a newly created blank line) or by scrolling down past row 24.

OPEN SPACE.

The (CTRL-O) key can be used to open or split a line at the cursor position into
two new lines. The first will contain text up to the cursor position. The second
line will contain text from the cursor position. This is useful when inserted new
code at a line which already has a label.

BLOCK COPY:

To copy a block of code, move the cursor to the first line of the code and press
(CTRL-B) to set the BEGIN marker. Move the cursor to the last line of the code
and press (CTRL-E) to set the END marker. The message ‘Block Saved’ will be
displayed. Position the cursor where the block is to be copied to and press the
(COPY) key. The block will be COPIED-INSERTED at the following line. The
saved block will stay in memory until another Block is marked. It can be copied
repeatedly anywhere in the file, or to another file or to another disc.

BLOCK-DELETE:

Mark the Block with the (CTRL-B) and (CTRL-E) keys as for the Block Copy
function. When the ‘Block Saved’ message appears, press the (CTRL-D) key.
This will display the marked block in reverse INKS. Press (Y) to permit the delete
operation. Note after the delete, the block is still saved and can be copied back if
required with the (COPY) key.

BLOCK MOVE:
This is the BLOCK-DELETE function followed by use of the (COPY) key as

described above.

TAB STOPS:

Pressing (CTRL-T) will display the current tab settings as small triangles on line
24. Tabs are set or cleared by positioning the cursor and pressing the (TAB) key
until the triangle symbol appears or disappears. Pressing «CTRL-TAB» will clear
all tab stops. When the new tab stops are ready, press the large Enter key to
record them. Tab marks can be saved for future use, see Command Mode.

MARK-FIND-LINE:

A single LINE can be marked by using the CTRL-L key. The line can be brought
back to the screen with the CTRL-F key (FIND). These two operations are useful
in that they allow a rapid return to code being entered after studying code
elsewhere in the file.

VIEW-BEGIN-END:
Press CTRL-V to select ‘View’ then press (B) to see the beginning of the file
(record-1) or (E) to see the end of file (last record).

8

GO TO RECORD:

Pressing CTRL-G allows a record number to be entered. The Editor will go to the
record immediately. Use of zero or numbers greater than the last record will
cause the Beginning or End of File to be displayed respectively. The CTRL-G
function is helpful in locating program code from the Assembler Listing.

NEW-INPUT:

Use of the CTRL-N function allows another INPUT file to be appended to the
current memory workspace file. In this way it is possible to build up new
programs or documents from previous code or text. Once the new file has been
added into the memory, the Block Delete and Move functions can quickly bring
code or text to where it is required.

This function may only be used if at least 1028 bytes are still free.

SEARCH SYSTEM:
CTRL-S selects the search system and two types of operation are provided.

Search and Stop.

Enter a search string in single or double quotes then press the enter key twice,
leaving the replace string empty. The search will start. Each time the string is
found, the record containing it will be displayed together with the preceeding
and following record in its own small ‘window’. The following options can then
be used:—

O EnterKey Ignore this match and continue searching.

O EscapeKey Terminate, and return to original text.

O (G)Key Goto the record where the match was found.
O Up/Down Scroll the records where the match was found.

Search and stop enables rapid positioning to program code using source code
labels which are (usually) unique.

Search and Replace.

Enter a search string in single or double quotes. Then enter a replace string in
single or double quotes. Be sure to use upper or lower case as required for the
replace string. After the replace string is entered, answer the question to select
Automatic or Conditional replacement and the search will start.

Ifthe Auto-Replace option is chosen, the process will run to completion without
further action. If the Conditional option is used, each time the string is found it
will be shown with the preceeding and following records. Press (R) to do the
REPLACE, or press (C) to CONTINUE with no action.

All search functions operate from the current line to end-of-file. Use CTRL-V B
to select record 1 if you intend to search the whole file. A good keystroke
memory sequence to use prior to using the search function is CTRL-L CTRL-V
B. This marks the current line and goes to the beginning of the file. After using
the search function CTRL-F will return to the marked line.

Any search can be cancelled with the ESCAPE key.

Note: Truncation will occur if a replace string is longer than the source string and
characters are forced past column 80.

KEYSTROKE-MEMORIES:

The editor contains nine keystroke memories which can each record 32
keystrokes. Each of them may be used to record text or control keys. These can
then be ‘replayed’ as required.

Display:

To view the contents of the keystroke memories press the numeric island key 0
{f0). The memories will be displayed. Press the ESCAPE key to return to
Edit-Mode.

Record:

Press the SMALL-ENTER key then select a memory using the island keys 1 thru
9. Once selected the message ‘Keystroke Recording ON” will be displayed. To
terminate the recording press the small enter key again. If a recording exceeds
the 32 keys limit, the next memory will be attached and used. If the end of
keystroke-memory nine is reached, recording will be turned off, and the
KS-sequence-saved message will be displayed.

Replay:

Tgp replay any recorded sequence press the numeric island key 1 thru 9 which
was used to make the recording. The keys will be taken and used as though they
had just been entered at the keyboard. The replay can be stopped by pressing the
ESCAPE key. :

Erase:
Press CTRL-SMALL-ENTER and select a memory with the numeric island keys
1 thru 9. The memory will be cleared ready for use once again.

NOTE. 1: Memory functions may only be recorded or initiated for playback in
normal Edit-Mode. Recorded sequences may for example select the Search
system and start a search for a character string then revert to Edit-Mode.
However it is not possible to start a recording or keystroke memory playback if
the Search system has already been selected manually.

NOTE. 2: The keystroke memories can be saved. See Command Mode.

PRINTING:

Pressing the decimal point key on the numeric island will cause printing to start
from the current line. Pressing the key twice will stop line-feeds being sent with
carriage-returns. Printing will continue until End Of File. Pressing the ESCAPE
key once pauses the print which can be continued with any key. Pressing the
ESCAPE key twice cancels the print activity.

Special print codes may be embedded in the text being printed in order to control
the printer as follows:—

During printing, the up-arrow symbol (on the pound sign key) indicates that the
following character is a control symbol. The value 33 is subtracted from ASCII
value of the character. If itis minus, the characteris ignored, elseitis sent to the
printer. An up-arrow symbol at the end of a line causes the invisible CR character
to be skipped, allowing two screen lines to make one long line of printing.

Examples.

o«E represents ESCAPE-E, o«S represents ESCAPE-S,
o represents code 15, «/represents code 14.

o@ represents code 15.

10

COMMAND MODE.

Command mode is selected with the CTRL-Z key whilst in Edit Mode. The Edit
Session is temporarily suspended while the File Management and Option
routines become available. Exit from Command Mode with the Escape Key.

A small menu is displayed at the bottom of the screen and Functions can be
selected by pressing the appropriate key as follows:-

A,B: Select Disk C: Compression
D,R: Delete, Rename Z: Zap BAKups
L,S: Load Options S: Save Options
J.K: Paper PenInks

A,B: Select Disc A or B.
Pressing (A) or (B) changes the default disc drive and displays the new disc
directory, file-names and free space.

C: Compression ON/OFF.

If you are Editing and Assembling code within the PYRADEYV system, you
should leave this option ON. The Editor and Assembler will use data
compression to keep your files as small as possible. If you use the Editor to edit
BASIC files, before using CTRL-X to write the file back to the disc you should
turn compression OFF. The file will be expanded to normal and can then be used
by the BASIC system.

D: Delete File.

This is similar to the BASIC/CPM directive ‘ERA’. It can be used to delete a single
file or group of files. A specific disc drive can be selected by using an A: or B:
prefix.

Examples: TEMPFILE.001 - Delete the file.
TEMP.* - delete all TEMP files.
TEMP?22?.* — delete file names starting with TEMP.
B:TEMP.FIL - delete TEMP.FIL on drive B.

R: Rename File.
Any existing OLD file can be renamed to a NEW file if the new file does not
already exist.

J: Jump PAPER Ink.
Each time the (J) key is pressed the Paper Ink will be advanced to its next value.
Pressing (CTRL-J) does the opposite.

K: Jump PEN Ink.
Each time the (K) key is pressed the Pen Ink will be advanced to its next value.
Pressing (CTRL-K) does the opposite.

S: Save User Options.

Pressing (S) causes the current Tabs, Paper and Pen Ink Values, and Keystroke
Memories to be written to a disc file for future use. A file-name must be entered
and can be any name. Suggested file extension (suffix) is -OPT. Several different
Option Files can be used to define different ‘environments’.

11

L: Load User Options.

Use of the (L) key allows an ‘option file’ created with the (S)ave command to be
re-instated for the current Edit Session. After the file is read, the new Tabs, Inks,
and Keystroke Memories will be in operation.

Z: Zap*.BAK files.
Removes all backup files from the default disc directory. It is the same as using
the (D)elete function with the file name *.BAK.

3.0 MACRO ASSEMBLER.

The PYRADEV Macro Assembler supports the ZILOG Z80 programming
language (with a few alterations and extensions) and will process one or more
source program files to create a binary load file, directly on disc. It is selected
from the SYSTEM MENU by pressing (A). Once loaded it displays the default
disc directory and waits as the various RUN OPTIONS are entered....

TUUUANMSTRAD Z80 MACRO ASSEUNIBLER

Inputtile: PROGRANLOOT DEEALIL oYy PRENG ENESYAMBOL o\
Binary File: TENMPEH BIN (P M INESELECT N N-REE o\
VIDEO INFERROR Ny

Drive tAY Ler ty

PROGRAN 001 ok PYRADEN BIN TR PYRAMED.BIN 10K
PROGRAMO0Z 18k PYRADSC.BIN 10K PYRAMONBIN 13K
PROGRANM.O03 2K PYRAMASBIN 1ok PYRAUTL.BIN 2K

100K free

CIRI-X to Enit PYRANAS

Figure 3.0 Assembler Run Options

INPUT-FILE.

This names the first source file for the input stream. It may be a complete
program or the first of many which are to be assembled together to make up the
binary load program. SELECT statements embedded in the source code files can
be used to append other files to the input stream. One way of using the SELECT
systemis for the first file to contain nothing but SELECT statements. A good file
suffix for these files is .CTL as it represents a CONTROL file. A default binary
file name with a .BIN suffix is created from the input file name. An END
statement in the input stream is optional, but if present will end the input stream
immediately, even if there are more files.

12

BINARY-FILE.

This is the name which is to be used when the binary code file is catalogued on
disc. It is built from the input file name (by adding a .BIN suffix) and may be
overkeyed. Pressing the ENTER key leaves it as it is. If nobinary fileis required,
this field should be set to blanks.

DEFAULTS.

If the Enter key is pressed or (Y) is pressed the Assembler will use the displayed
defaults and start the assembly process. If any of the run options are to be
altered, press (N) for this first option.

CP/M-OUTPUT.

If setto (Y), the binary file is written to disc without a file header, suitable for use
as a CP/M transient program. No other checks are made to ensure that the
program conforms to CP/M standards.

VIDEO-DISPLAY.
If set to (Y), the source record being processed will be displayed in pass 1. During
pass 2, the object code and source record will be displayed.

PRINT-OUTPUT.

Setting the PRINT option to (Y)es instructs the Assembler to produce an
assembly listing during pass 2 object code generation. This option works
together with the SELECT option....

SELECTIVE PRINT.

The SELECT option can be set to (Y)es or (N)o and instructs the Assembler to
honour (YES) or ignore (NO) the LIST and NOLIST directives contained in the
source code.

LIST ERRORS.

When setto (Y)es, this option forces ERROR messages to be listed on the printer
for subsequent use when correcting coding mistakes with the EDITOR. It works
independently of the PRINT and SELECT options described above, however,
errors are always listed if the PRINT option is (Y)es.

PRINT SELECTIVE ERRORS Printed Code Printed Errors
NO NO NO NONE NONE
NO NO YES NONE ALL
NO YES NO NONE NONE
NO YES YES NONE ALL
YES NO NO ALL ALL
YES NO YES ALL ALL
YES YES NO SELECTIVE ALL
YES YES YES SELECTIVE ALL

Figure 3.1 Print Options

WARNING: The use of the VIDEQO or PRINT options will SIGNIFICANTLY slow
the Assembly Process down. For fastest results reply (Y) to defaults. An
exception is to list ERRORS which you will find very useful during the first few
Assemblies of large programs.

13

SYMBOL-TABLE.

If set to (Y), a list of the symbols (labels) used in the source program(s) will be
output with their values. Output will be to VIDEO or PRINTER depending on
the options chosen above. Each symbol may be preceeded by a (U), (D) or (N)
denoting Undefined, Doubly-Defined or Not-Referenced.

CROSS-REFERENCE.

If set to (Y) a cross reference map will be output to the Video Display or Printer
after the assembly process is complete. The listing will display all source files
read, numbering them as files 1,2,3 and so on. The symbol table is printed,
together with all file numbers and line numbers of statements that reference
them.

Please note that if they are used, the SYMBOL or X-REF options will wait for the
VIDEO or PRINT options to be set to ON before the assembly process can output
the information requested.

ASSEMBLER RUN TIME KEYS.

Once started, the Assembly process can be controlled by ‘toggling’ the RUN
OPTIONS described above. This is done by pressing single keys. The screen run
options display will change as the keys are used.

The following keys may be used:—
P) Reverse the PRINT option. (E) Reverse the ERRORS option.
S) Reverse the SELECT option. (V) Reverse the VIDEO option.

In addition the Escape key may be used to PAUSE the Assembly. This is useful
in order to study object code being displayed on the screen. Press any key to
resume the assembly process.

Pressing the CTRL-A key will abort the assembly process. All files will be
abandoned and no disc changes will take place. The Assembler will ask for any
key to be pressed so that it can return control to the System Menu....

STUTANSTRAD Z80 MACRO ASSEMBLER ™™

CEIRL-Ato Ybort” PYRANIAS

Figure 3.1 Run Time (VIDEO-ON)
14

ASSEMBLY ERROR HANDLING.

The detection of errors by the assembly process will be handled in one of three
ways according to the output options set above.

a) Ifany of the PRINT options or ERROR options are set to (Y)es, the Assembler

will assume a printer device is attached. The error code and description will be
printed. The assembly process will NOT pause.

b) Ifthe VIDEO optionis setto (Y)es, the error code and the description will be
displayed. The assembly process will pause, and can be resumed by pressing
any key.

¢) If the PRINT, ERROR and VIDEO options are all set to (N)o, the assembly
process will be running at its fastest setting. Errors will be sent to the Video
Screen, but the assembly process will only pause after ten error messages have
been displayed. If this occurs, press any key to resume the assembly process.

Error Codes.

B - Branch/Jump Error N - Numeric Expression
C - Conditional Error OE - Operand(s) Error

D - Doubly Defined OM - Operand Missing

F - FileError SF - Toomany SELECTs
G - OrgUsageError U - Undefined Label

L - Label(syntax) X - ExtraOpcode Invalid.
MP - Macro Parameter FW -~ ForwardRef. Invalid.

ASSEMBLER LANGUAGE DEFINITION.

The Assembler Language is the Z80 language and the programs are written as
one or more Source Files which are assembled to machine code by the
Assembler.

etc
2
1

Source 0 —3p ASSEMBLER —3p| MACHINE CODE
File

Each source file consists of source statements, one per line (screen row). The
PYRADEYV EDITOR is the ideal program to create and edit these source files.
Each source file statement consists of an optional label, an opcode, optional
operands and optional comments.

LABEL OPCODE OPERANDS COMMENTS
LABEL-1: LD HL,(VALUE) ; load HL

LD (OLD-VALUE),HL ; saveHL

JP LABEL-X ; jump...
IVALUE: DEFW 00 ; current values
OLD-VALUE: DEFW 00 ; old value

LABELS: These must start in column one and may be any length although it is
usual to keep them down to less than 10 characters. The use of a colon after the
label is optional.

15

OPCODES: These may be anywhere on aline and must be preceeded by at least
one space.

OPERANDS: An opcode must be followed by at least one space before the
operand can be entered. The operand field must not contain embedded blanks.

COMMENTS: Operands must be followed by aleast one space before acomment
can be entered. The use of a semi-colon before the comment is optional except
on RET statements. A semi-colon must be used if the comment starts at column
one.

EXPRESSIONS.

An expression is an OPERAND which consists of one or more variables, labels
and constants which the Assembler must evaluate into a 16 bit integer value. An

expression is evaluated from LEFT to RIGHT and parenthesis may not be used.
The following operators may be used...

+—*/.MOD. .SHR. SHL. .AND. .OR. .XOR. .EQ. .GT. .LT. .UGT. .ULT.

They represent plus, minus, multiply, divide, shift-right, shift-left, AND, OR,
exclusive-OR, Equates, greater-than, less-than, unsigned-greater, unsigned-
less-than.

The dollar ($) symbol may be used to represent the value of the program counter
during assembly. For example JP$+3 would generate a branch to the next
instruction (a JP is 3-bytes).

The Assembler will accept numeric notation for binary, octal, decimal and
hex-decimal expressions in the following formats...

Binary 1011100B or %1011100

Octal: 134Q or @134 (or 1340)
Decimal: 134D or #5C (must start numeric)
(ie OFFH for 255D)
ASSEMBLER DIRECTIVES.

These are written like instructions (opcodes and operands) but are commands to
the Assembler and are ‘executed’ at assembly time. They control assembly
listing options, code generation, and the construction of the binary (machine
code) file.

DEFINING VARIABLES and STORAGE.
Bytes, Words and Character Strings may be defined using the directives shown
in the following example.

DBXON ; DB Expansion
LABEL1: DB “Thisis a string” ; These are 16 byte strings.
LABEL2: DEFB “Thisis a string” ;
BYTE: DB “B” ; Singlebyte
MIXTURE: DB 1,”A”,2,"b” ; Mixed string
SSTRING: DB “SPECIAL”+80H ; Lhasbit7on.
LABEL3: DW 256*2 ; Awordcanhold a
LABEL4: DEFW 512 ; 16bitinteger.

16

LABEL5: DB 255 ; Maxvalue single byte

LABEL6: DEFB OFFH ; 18255 decimal.

VALUE?7: EQU 1000 ; VALUE7 equals 1000

LABELS: DW VALUE7?7 ; LABELS contains 1000

VALUE?7: DEFL 1001 ; VALUE7 redefined to 1001

LABEL9: DEFW VALUE7 ; LABEL9 contains 1001
DBXOFF

The DBXON and DBXOFF cause the DB strings to be listed in long form or short
form (1st four bytes) respectively.

The Source Files PROGRAM.001, PROGRAM.002 and PROGRAM.003 on the
MASTER-DISC contain more examples of the assembler directives. The files can
be viewed and/or printed using the PYRADEYV Editor.

EJECT

This instructs the assembly print process to feed to next top of form. Normally a
page width of 80 characters and form depth of 70 lines are assumed. This is
standard A4 size. These parameters may be altered via the PRINTR directive,
shown below.

END

This statement signals the END OF INPUT. The Assembler treats this as a hard
end of file, even if source code follows the statement. Use of an END statement
is optional.

ENDBIN

Ends binary code generation. Generally used at the end of a program before the
DEFS or DS statements to keep a file size small, but can be used anywhere. Its
opposite is the ORG statement which resumes code generation or the LOAD
statement which ‘pads’ and resumes code generation.

This coding example showshow an This coding example shows

; areaisreserved at the front of ; how endbin is used at the
; ofaprogram. ; end of a program.
ORG 50H POP BC
ENDBIN POP DE
; RET
BUFF-1: DEFS 2048 ;
BUFF-2: DEFS 2048 ENDBIN
TRUE-START: ORG $ BUFF-1: DS 2048
LD (SAVE),SP BUFF2: DS 2048
CALL INIT-PGM ;
JP GO-GAME ;
; END
ETC.......

17

EQU
This is the EQUATES directive. It equates a LABEL to an expression, for
instance, MINUS1 EQU —1

EXEC

This directive defines the address to be used in the binary file header. When the
assembled program is RUN, it will be loaded according to the LOAD (or ORG)
statement. AMSDOS will then pass control to the EXEC address. If this directive
is not supplied, the EXEC address is set to the first (true) ORG or LOAD address.

EXTRA
Enables the Assembler to process the additional NON-STANDARD Zilog
Instructions. See page 14.

FREE
Enables the Assembler to process ‘Free Format’ expressions. Allows mixing of
different types of storage expressions. See page 15.

LIST and NOLIST
Turn Selective Printing On and Off.

LOAD

This statement tells the Assembler to generate binary zeros code until the
Program Counter reaches the LOAD value expression. Normal code generation
is then resumed. Its purpose is to force sections of code to their proper positions
in the binary file so that when the file is loaded, the code is at its correct address.

If it is not supplied, the LOAD address defaults to the first true ORG address.
One of the two must be supplied (it is usually ORG) before any code generation
can occur. The first occurence of an ORG or LOAD directive is used in the binary
file header (unless it is immediately followed by an ENDBIN statement).
Subsequent ones are only used to control code generation and binary file
structure.

ORG

This statement tells the Assembler to SET the Program Counter to the operand
expression. Unlike the Load statement no filler code is generated. Use of the
ORG statement allows sections of code which will be widely apart in memory to
be squeezed together in the disc file being generated. It is the programmer’s
responsibility to ensure that such sections of code are moved to their correct
locations before being executed. It is NORMAL practice for the first statement in
a set of programs being assembled to be an ORG directive.

ORG 100H . This Section locates
code . correctly in memory
code . from location 100 hex
LOAD200H . upwards.

code

code

code

18

ORG $+100 . This block will need

code . tobe moved toits true
code . address as no filler

; . codeis generated.
END

PAUSE

This statement causes the assembly process to ‘Pause and Display’ the message.
This occurs when the END of the current input file is reached. Its use is to allow
multiple discs to be used when assembling multiple source files. It should only
be used on TWIN drive systems as the BINARY file must be written continuously
to one disc. After changing the disc, press the space bar to continue.

PAUSE ‘MOUNT NEXT SOURCE DISC IN DRIVE B’ (assumes output drive
A).

PRINTR

This statement can be used to define Paper-Width, Lines per Page (form-depth),
Page-Pause and Line-Feed suppress. The Page-Pause option causes printing to
pause at each top of form to allow paper adjustment. This isa REAL requirement
on some friction feed printers which ‘slew’ the paper and make Assembler
Listings difficult to produce. Line-Feed suppress stops line feeds being sent with
each carriage return as some printers do this automatically.

PRINTR W80,D70 Width 80 chars, Depth 70 lines, P-Pause Off, L-Feeds.
PRINTRW132,D66,P Width 132 chars. Depth 66 lines, Page-Pause On, LF’s

PRINTRN Use the defaults (W80,D70) and suppress line-feeds.
PRINTRP Use the defaults (W80, D70) and use Page-Pause.
SELECT

This is a very powerful directive. When used, the named Source File is ADDED
(not INCLUDED) to the END of the current input stream. Upto 32 files can be
CHAINED in this manner, and the SELECT statements may appear anywhere.
When assembling large programs, it is possible to start the assembly process
with a small control file which does nothing more than SELECT files for the
INPUT stream....

ORG 100H ; Program Origin
SELECT PROGLASM ;
SELECT PROG2.ASM ; Drive AFiles
SELECT PROG3.ASM ;
SELECT B:PROGI1.ASM ;
SELECT B:PROGI.ASM ;

SELECT B:PROGI1.ASM

. DriveBFiles

’

On large programming projects, the following information may be useful,
assuming you are using twin disc drives.

19

DRIVE-A DRIVE-B

Disc1 PYRADEV SYSTEM Disc2 SOURCE CODE-178K,
Side A + BinaryFiles Side A accessed by Editor
+ SourceFiles. and Assembly System
Disc1 Spare, suggest you Disc2 SOURCE CODE 178K,
Side B use PYRA-WORD to Side B accessed by Editor
document project and Assembly System
Disc 1 stays fixed, Disc2isreversed
during development as/whenrequired
to edit/assemble
source files.
TITLE

Change to the Top of Form Assembly Listing Header Message, example:—

TITLE MegaGame, Section 6.

CONDITIONAL ASSEMBLY DIRECTIVES.

The Assembler is able to include or exclude certain blocks of code during the
assembly process through the use of flags and conditional directives. Combined
with the SELECT system described above, the system becomes very flexible, as
the first files may define flags which control the assembly of code in subsequent
files.

The mechanism of conditional assembly is the classic IF something THEN do this
ELSE do that.

The something is an Arithmetic Expression. If the expression is TRUE (non-zero)
the first path (THEN) is taken. Otherwise the second path (ELSE) is taken. The
second path is optional and the final directive must be an ENDIF statement.

The following examples show how the process can be used. The code on the left
has the FLAG set to 1 (TRUE) so the THEN-CODE is assembled. The code on the
right has the FLAG set to 0 (FALSE) so the ELSE-CODE is assembled.

FLAG: EQU 1 FLAG: EQU 0

' IF FLAG ' IF FLAG

THEN-CODE: LD A,(VALUE-1) THEN-CODE: LD A,(VALUE-1)
ELSE ELSE

ELSE-CODE: LD A,(VALUE-2) ELSE-CODE: LD A,(VALUE-2)
ENDIF ENDIF

' END ' END

Note the usage is always IF ... ELSE ...ENDIF. The THEN statement is implicit
as the first branch after the IF statement. The ELSE section is optional. An IF
directive must always have a corresponding ENDIF statement.

An alternate to wusing the [F..ELSE..ENDIF directives are the
COND..ELSE..ENDC directives. They are both valid.

20

MACRO DEFINITIONS and USAGE

A MACRO is a short piece of code, defined in a file at the beginning of the
assembly process. When its name is used, the previously defined piece of code
is generated again.

A MACRO statement defines the start of the definition and it must have a label
which is used as the Macro-Name. The name must be ALL alphabetic and may
be up to SIX characters long. Imagine the Macro as a new Instruction for the
Assembler. The two examples here show a macro without Parameter Usage on
the left, and with Parameter Usage on the right.

SBCX: MACRO SWAP: MACRO#P1,#P2
XOR A PUSH AF
SBC HL,DE LD A#P2 (LDA,C)
ENDM LD #P2,#P1 (LDC,D)
; LD #PLA (LDD,A)
LD HL,(VALUEI) POP AF
LD DE(VALUE2) ENDM
SBCX ;
LD (VALUE3)HL SWAP D,C

’

The example on the left shows how a small macro can be used as an additional
instruction. In this case the SBCX macro is assembled as two instructions. The
first clears the carry flag before executing the second SUBTRACT with CARRY
instruction.

The example on the right shows parameter substitution. During Assembly
usage of the SWAP macro causes a five byte routine to be generated which will
cause the contents of the C and D registers to be exchanged. The SWAP macro
can be used to exchange any two registers except for register A.

Macro Parameter Usage

As shown in the above example, parameter usage is positional and works by
substitution. If parameters contain commas or quotes, they must be enclosed
within single or double quotes as shown here:—

STRING: MACRO #P1,#72
DB #P1 (DB5)
DB #12 (DB21,22,23,24,'X")
ENDM

' STRING 5,721,22,23,24,X’"

Macro Symbol Generator
If a macro definition contains labels, DUPLICATE LABEL errors will occur
during the assembly process if the Macro is used more than once. In such cases

the #5YM suffix must be added to the label. Each time the Macro is used, a
4-digit suffix is incremented and attached to the label.

21

The following example is a macro which tests HL and substitutes the hex-decimal
constant OFFFFH if HL is zero. Each time it is used, the JR TEST-#SYM
instruction and TEST-#S5YM labels are expanded with the next value. The first
time thru the JR will be to the TEST-0001 label, then it will be TEST-0002 and so
on...

; MACRO tests HL, if ZERO replace with OFFFFH.

’

TEST: MACRO
XOR A ; Clear Carry
LD DE,0 ; SetDE to zero.
SBC HL,DE ; Subtract/ TEST
JR NZ,TEST-#SYM ; if NZ JMP to TEST-000n
LD JL,OFFFFH ; else set HL to OFFFFH
TEST-#SYM: EQU $; continue ... TEST-000n

’

Macro Listings
Normally only Macro Definitions are listed. To see the expanded code you must
use the MLIST directive. To turn this facility OFF use the MNLIST directive.

EXTRA INSTRUCTIONS.

There are a number of Z80 instructions which are not normally shown in Z80
programming manuals because they do not always work! If you are writing
software for other Z80 users, DO NOT USE THEM. If you must use them, the
PYRADEV Assembler will accept them, but the Directive ‘EXTRA’ must be given
first.

The first group of op-codes allow the general purpose 16 bit IX and IY registers
to be used as four 8 bit registers by classifying them as LOW or HIGH order
registers. We use operands LX, HX, LY, and HY to represent the Low and High
bytes of IX and IY respectively. The alternate form XH, XL, YH and YL may also
be used.

LD HXA LD HXB LD HXC LD HXD LD HXE LD HXn
LD LXA LD LXB LD LXC LD ILXD LD LXE LD LXn

LD HYA LD HYB LD HYC LD HYD LD HYE LD HYn
LD LYA LD LYB LD LYC LD LYD LD LYE LD LYn

LD AHX LD BHX LD CHX LD DHX LD EHX
LD ALX LD BLX LD CIX LD DILX LD ELX

ID AHY LD BHY LD CHY LD DMHY LD EHY
LD ALY LD BLY LD CLY LD DLY LD ELY

LD HXLXLD LXHXLD HYLYLD LYHY

INC HX INC LX INC HY INC LY
DEC HX DEC LX DEC HY DEC LY

22

ADD AHX ADD ALX ADD AHY ADD ALY
ADC AHX ADC ALX ADC AHY ADC ALY
SBC AHX SBC ALX SBC AHY SBC ALY
SUB HX SUB LX SUB HY SUB LY
CP HX CP ILX CP HY CP LY
AND HX AND LX AND HY AND LY
OR HX OR IX OR HY OR LY
XOR HX XOR LX XOR HY XOR LY

A second group of codes provide additional SHIFT-LEFT-LOGICAL opcodes
complementing the existing SRL instruction. They are:—
SLL A SLL B SLL C SLL D SLL E SLL H SLL L SLL (HL)

The operations is the same as the SLA instruction, however, a (1) bit is placed
into bit position 0 instead of (0).

Please note: The above op-codes are not standard (since there is no formal
definition for them) however, they do correspond with mnemonics used by a
number of publications concerning Z80 programming. Where possible we have
used common definitions.

FREE FORMAT

The use of the FREE directive enables the Assembler to process a type of Z80
expression useful to games writers. It is a mixed data and value expression
system suitable for defining tables. Byte generation is always assumed unless a
single exclamation symbol (!) preceeds an expression in which case a word-value
is generated. The use of DBXON is ideal when you first use free format to check
that tables are being set up correctly. The following examples show how FREE
format can be used...

’

FREE ; FREEFORMAT.
DBXON : DBEXPANSION.
FLAGI: EQU 0
FLAG2: EQU 1
VALUEl: EQU 2
ROUTINEl: CALL GET-CURSOR
INC H
CALL SET-CURSOR
RET
: CONTROL TABLE

1,2,3,1100,1200,!300,FLAGO,FLAG1, “STRINGA”,“ABC1”,111”,'ROUTINE1

4,5,6,1200,!400,'600,FLAG1,FLAG2,“STRINGB”,"ABC2",“222” ,'ROUTINE2

7,8,9,1300,!600,!900, FLAG2,FLAG2, “STRINGC”,“ABC3",”333"”,'ROUTINE3
; END OF CONTROL TABLE

DBXOFF ; DBEXPANSION OFF

23

Each of the three lines in the control table above will be assembled in a similar
manner. Here we describe just the FIRST line and what binary code is
generated....

Three bytes containing the values 1, 2, and 3.

Three words containing the values 100, 200, and 300. Notice the !.
A byte containing the flag-0 value.

A byte containing the flag-1 value.

A string of bytes containing ‘STRINGA’.

A string of bytes containing ‘ABC1".

A string of bytes containing ‘111"

A single word with the address of ‘ROUTINET’. Notice the !.

MEMORY MANAGEMENT.

During the assembly process, memory allocation for the symbol table, source
code storage, cross reference table and macro definitions varies according to
available memory.

On the Amstrad 464 and 664 machines which both have 64K of memory, the
symbol table is stored from the bottom of the memory upwards, whilst the
optional cross-reference table is stored from the top downwards. In addition a
2K buffer is used to read source code. If you assemble very large programs, at
some stage it will not be possible to obtain a cross-reference list as the 64K system
will be fully utilised.

On the Amstrad 6128 (or a 464/664 using a RAM addon kit*) the following
memory allocation scheme is used:-

O Thesource codeis stored in the extra banks in pass 1, enabling pass
2 to read source from memory, speeding up the assembly process.

O The optional cross-reference table is held in 32K in the second bank
of RAM if selected, allowing upto 6,500 entries.
This permits very large assemblies.

* The PYRADEYV system has been extensively tested using a CPC464 with a DD1
disc drive and CPC6128. Memory sizes from 64K upto a total of 384K have been
used by using the DK ‘Tronics 256K Ram Expansion Kit.

Additional RAM above 128K only provides a marginal improvement (about 10~
15%) in overall assembly time.

24

ASSEMBLER STATISTICS.

Atthe end of pass 2 (object code generation) the following statistics are displayed
in order that you can see how close you are to the Assembler’s processing limits.
The Free Symbol Memory is the critical value, and it must always be ‘well above’

zero!
Number of Errors nnnn
Number of Symbols nnnn
Symbol Table from nnnn to nnnn
Macro List from nnnn to nnnn
Number of X-Refs nnnn
X-Ref table from nnnn to nnnn
Free Symbol Memory nnnn
File Start: nnnn End: nnnn Length: nnnn
SUMMARY OF ASSEMBLER DIRECTIVES
COND «exp» Conditional assembly.
DBXOFF DB expansion Off.
DBXON DB expansion On.
DEFB «exXp»,«exp» Define bytes.
DEFL «exp» Redefine alabel.
DEFM «exp» Define memory.
DEFS «exp» Define storage.
DEFW «exp» Define single word value.
EJECT Form Feed.
ELSE Part of conditional assembly.
END End of source input stream.
ENDBIN End binary code generation.
ENDC End of conditional assembly.
ENDIF End of conditional (IF) assembly.
ENDM End of MACRO.
EQU «exp» Equates alabel.
EXEC «exp» Define EXEC address.
EXTRA Enable extra opcodes.
FREE Enable FREE format.
IF «exp» Conditional (IF) assembly.
LIST Turn on selective printing.
LOAD «exp» Generate zero bytes until «exp»
MACRO «parmlist» Start macro definition.
MLIST Enable macrolisting.
MNLIST Disable macro listing.
NOLIST Disable selective printing.
ORG «exp» Define object code address.
PRINTR «parms» Define printer options.
PAUSE = message Pause Assembly.
SELECT «filename» Append another file.
TITLE message Change Listing Header.

25

DB same as DEFB

DL same as DEFL
DM same as DEFM
DS same as DEFS
DW same as DEFW

4.0 MONITOR.

The PYRADEV Monitor is a powerful debug monitor which provides all the
features necessary to drive sub-programs and routines to perfection before
adding them into a major system program. It is selected from the SYSTEM-
MENU by pressing (M).

Itallows you to LOAD test programs, set traps, start code execution, single step,
change code, write code to disc and so on. In addition you can dis-assemble
memory contents, and ROMS, writing the dis-assembled source code to an
ASCII file if required.

WARNING: If you have not used a Monitor before, please practice using it on
very simple routines (such as PROGRAM.001). Do not start using it immediately
on code which modifies the screen area for example as it will be difficult to
understand.

TAMSTRAD MONFLORT 4DISCr - TOWTR-RON OFE - UPPEFR-RON ON 0™

CIRL-Y o b (ESC tor MENL) PYRAMON

Figure 4.0 Debug Monitor

NOTE: Your test code should not initialise background ROMS. These are already
active (via KL.ROM.WALK) which PYRADEYV calls at startup time.

26

SCREEN DISPLAY.
The Monitor Screen is split into five different sections. The top left section
contains trap information.

The middle-left section contains register contents (current and previous), cpu
flag settings and the four bytes of memory pointed at by each of the address pair
registers DE, HL, IX and IY.

The bottom section is a memory display. It alternates with a menu display.

The very top right of the screen shows the status of the lower and upper ROM
sections.

The right hand section of the display is the main dis-assembly display.

RELOCATION.

The Monitor is fully relocatable, and will load itself initially into a high memory
address (which it displays). It will then ask if relocation is required. If you reply
(Y)es, you may then select the (S)tandard Monitor or (M)ini Monitor.

The Mini-Monitor is sub-set of the Standard-Monitor which can be used when
memory space is restricted. The following functions are excluded from the
Mini-Monitor: Write-File-to-Disc, Copy-Memory, Help-Menu, Ink-Changes,
ROM-Display Screen-Printing and Dis-Assembly to Disc or Printer.

The Monitor will then ask whether you wish to specify a Low Boundary (start
address) or High Boundary (end address).

Specifying a Low boundary instructs the Monitor to relocate itself such that its
lowest address does not go below the Low-Boundary.

Specifying a High boundary instructs the Monitor to relocate itself such that its
highest address does not exceed the High-Boundary.

FFFFH
Screen Buffer

C000H

High Boundary
(End Address)
MONITOR (CUHBHEHHIT
(Start Address)

Low Boundary

40H

Figure4.1

27

MENU DISPLAY.
When ready, the Monitor Menu can be displayed by pressing the ESC key. The
menu alternates with the memory display section at the bottom of the screen.

T....TRAP G..GOTO-ADDR L...LOAD Q..QUERY] Jo.PAPER Co...CAT
Z.CLR-TRAP Go..STEP-IST W..WRITE N.NEW-SCN KKo...PEN ToA..TAPE
M.AoMEMORY S..SSTEP(fl) ~ O..OTHER X...ROMS Do DISASM «.». .PRINT

R....REGS So.DSTEP(f2) U.UPDATE Y....COPY Xo....EXIT

Figure 4.2 Monitor Menu

DEVICE SELECTION.

Press (CTRL-T) to toggle TAPE or DISC operation. The selected device type is
shown at the top of the screen and will be used to READ and WRITE files. Press
(CTRL-C) to see the device CATALOGUE DISPLAY.

LOADING TEST CODE.

Press (L) to load a program file and enter the file-name. The file header will be
examined in order to display the load-point and execution address will be
displayed. You can alter the load point before pressing the enter key to read the
file into memory if you wish.

DIS-ASSEMBLY DISPLAY.

A Right-Arrow symbol indicates where the address cursor is. Press the (O) key
until the Right Arrow symbol is at the top right screen display and enter a
dis-assembly address. The display can be scrolled with the arrow and shift arrow
keys.

CHANGING CODE and MEMORY.

Use the ESC key until the memory display appears on the bottom of the screen.
Use the (O) key until the Right-Arrow symbol appears at the memory display
address line. Enter the address to be changed. press (M) to select MODIFY-
MEMORY. Move the cursor and over-type memory as required by using
two-digit hex-codes per byte. Instead of (M) you may use (CTRL-A) to modify
memory using ASCII. Press the ESC key after all changes have been made. If you
have made code changes, press (O) to move the cursor back to the top right
display, enter the address where the changes were made and the new code will
be dis-assembled onto the screen.

The display can be scrolled up and down by 1 byte, 16 bytes or 128 bytes by using
the up and down arrow keys in normal, shifted and control states as required.

28

SETTING TRAPS.

Use the top right display to study code, then press (T) to set a trap. Enter the first
byte address of the instruction you wish to trap. One of the five trap lines will be
used to show which instruction the trap has replaced. Use the (G)oto function to
start executing code. When the trap occurs, the relevant trap line will be
displayed in reverse inks. There are two ways to continue from a trap:—

S — Start single-step code execution from the trap address.
G - Goto address, the default one continues execution.

When a trap occurs it automatically clears itself. If you want the trap to occur
again, you should re-install the trap before continuing.

GOTO ADDRESS.

After traps are set, or have occurred, press (G) start or resume code execution. A
resume address will be displayed and can be accepted by pressing the Enter key.
To go to a specific execution point, overtype the address shown with one of your
own choosing.

STEPPING THROUGH CODE.
You can step through code after a trap occurs, or by setting the first trap point
with (CTRL-G).

Press (S) or (f1) to SINGLE-STEP through code. This form of stepping will follow
the logical address path (control flow) as the code executes. If a CALL to ROM
code occurs, the step operation will discontinue since the step mechanism
cannot over-write ROM hardware in order to set the necessary traps.

Press (CTRL-S) for (f2) to DOUBLE-STEP. This form of stepping will set traps in
ascending memory locations. This means that when single stepping, if a CALL
occurs to a ROM routine, use a double step. This will set a trap on the next
memory instruction so that stepping (single or double) can be resumed after the
CALL operation is complete and control returns from the ROM routine.
AMSTRAD programs normally use many ROM calls to effect system operation.

The MODE (0,1,2) your program uses can be altered using shift 0,1, or 2. When
set to 2, it is the same as the MONITOR and so the display screen will NOT be
cleared each time a trap or step is executed.

CHANGING REGISTER CONTENTS.

Press (R) to change register contents, then carefully overtype the existing values
with the new ones. Press the ESCAPE key to exit from the change function. The
new values will be used when code execution is resumed either by using (G)oto
or the single (S)tep function.

NEW and UPDATE. .
The current memory display or dis-assembly display can be updated by pressing
(U). This will be required when monitoring memory which is changing. When
code execution is over-painting the screen (making it difficult to read), the (N)ew
command can be used to update the entire screen.

29

QUERY, SEARCH.

Pressing (Q) selects query mode and allows HEX or ASCII of upto 30 characters
to be searched for. Wild cards (?) may be used in both ASCII and HEX formats.
As each match is found, it is displayed on line two of the lower-screen memory
display. The search can be confined between a low and high memory address
and can be stopped or continued at each match.

EXAMINE ROMS.

Both the dis-assembly and memory displays read memory according to the
LOWER and UPPER ROM selections. Pressing the (X) key allows the status of
the ROM selections to be altered.

The display areas will change if they are displaying memory areas below 16K or
above 48K as the lower and upper ROMS are switched.

DIS-ASSEMBLE TO DISC, VIDEO OR PRINTER.

Press CTRL-D and enter a START and END address to identify the area of
memory to be dis-assembled. Enter a Workspace address where the symbol
table can be built. The default address supplied defines the 1000 byte area and
may be used in most cases. If the space is exhausted by the dis-assembly process
(about 500 labels) an error message will be displayed and the dis-assembly will
have to be re-run with an alternate and larger work-space.

Data areas may then be defined by pairs of Start-End addresses. Use a zero-pair
to terminate the selections. The output of the dis-assembly process may be
selected with (V), (D) or (P) denoting Video, Disc or Printer. Note: References to
non-existent labels may occur if embedded data-areas are not defined before the
dis-assembly. :

If (D) is selected enter the file-name to be used. Dis-Assembly to Video or Print
can be paused with the Escape key and resumed with any other key. If the (D)
option is used, a single Escape key aborts the process.

Dis-assembly to disc file(s) will pause after each 30K of source code has been
generated so that subsequent file names can be entered before the process
resumes.

WRITE.

To write a section of memory as a binary file press (W). The load point, execution
address and length (saved when the file was loaded) are re-displayed and can be
overtyped if required. After entering a file-name the relevant section of memory
is written to disc as a binary file.

COPY MEMORY.

A section of memory can be copied by pressing (Y). Define the block to be moved
with a BEGIN and END address. Then specify the destination address. The
block will be copied ‘intelligently’. This means the destination may be anywhere,
and may overlap the inital block area.

MEMORY BANK-BLOCK SELECTION.

Press (CTRL-B) to select an alternate block of memory to be mapped into the
address range 4000H to 8000H. (128K and larger systems only).
SCREEN-PRINT.

Press the (.) key on the numeric (function) island. The contents of the screen will
be decoded and printed. Press the ESC key twice to cancel printing.

30

PAPER and PEN COLOURS.

Use of the (J) and (K) keys will step the paper and pen colours through their next
ink values. Experimenting with the inks will improve screen readability on both
mono-chrome and colour monitors according to background lighting conditions.
CTRL-J and CTRL-K can be used to step through the ink colours in a reverse
fashion.

STACK ALLOCATION.

If the Monitor is loaded below 4100H, it allocates a stack area using the current
HIMEM value. If the Monitor is loaded above 4100H the stack is allocated just
below the load-point used.

The catalogue (CTRL-C) function uses a 2K buffer located 2048 + 200 bytes below
the stack.

EXTERNAL ACCESS.
The first instruction in the monitor is JP nnnn. This can be used to jump into the
monitor from your own program if required.

5.0 THE DISC-NURSE.

The DISC-NURSE is selected from the System Menu by pressing (D). It then
waits for a disc to be loaded. After loading a disc the (D) key must be pressed
again before the Disc-Nurse can be used. A number of functions are provided in
a friendly and easy to use menu system. These allow you to explore your disc(s),
and if necessary make changes.

TANISTRAD DISC NURSES

010 1122033 44 33 00 00 00 00 00 i B i 0 e iue &
020 LRI U DG EHY S0 00 D 0 U8 Y R O 00 1

030 THI A0 00 UG EREAIO U8 TRV 00 Y0 00 0313

40 THY Q0 (03 08160000 00 TR 00 00 g $1

030 LHY 00 00 (10 00 00 1000 00 (R0

Doy T 6000 THY Q000 LR U I 10 0

[t TE 2233 44 55 0 dih g og i kst DIUU &
080 Q00000 100000 O 00 U IO

040 Q0 000U 100 00 D0 0 i

OAU AR EILE D CRY 0 a0 DD O i in

UBY A0 QU DO D RO a0 an o

&l D6 DUF O 0 01 D0 U 00 T e)

s 1122 EARTIREANI

Do Dine R Read secto 1 i~V Bt AT
I Tk Woown " % R Sevte (F
S ector MUY Nediny Sect P DIRECTORY
b File COCat Directony K

CTRLE-N to ENIT Pross Dt FOGIN dis MYRADSC

Figure 5.0 Disc-Nurse
31

WARNING: You should not modify disc sectors directly without first making a
backup of the disc. You can easily lose your favourite game, weeks of source
code development or the entire disc contents. You must be aware of the
AMSTRAD disc structures and file header constructions before changing
anything. Please note this warning!

DRIVE.
Press (D) and the prompt ‘Drive A or B’ will be displayed. Press (A) or (B) to
select required drive and the relevant directory will be displayed.

You MUST do this if you change the disc(s) being examined!

TRACK and SECTOR.
Press (T) to enter a track address, press (S) to enter a sector address.

READ.

Press (R) to read the selected sector. After a sectoris read, the following keys can
be used. They provide the ability to follow file chains or read forwards or
backwards at sector level.

KEY: Normal Shift Control
LEFT ! Chainback 1/2sec {! Chainback1sec. | ! Locate Beginning
RIGHT ! Chain frwd 1/2sec |! Chain frwd 1sec. | ! Locate End
UpP ! Previous 1/2 sector {! Previous sector ! Not used.
DOWN ! Next 1/2 sector ! Next sector ! Notused.
Figure 5.1
MODIFY SECTOR.

Press (M) to modify using HEX or (A) to modify using ASCII. Use the arrow keys
to move the cursor to the required bytes and over-key the values as required. If
you modify File-Header bytes, after making the changes press (CTRL-H) to
re-calculate the checksum byte. When the sector changes are complete, press the
ESC key. The changed sector can be written to disc with the (W) command...

WRITE.
Press (W) to write the displayed/modified sector back to disc. The write request
must be confirmed with the (Y) key. Any other key aborts the Write Request.

WARNING: The sector will be written to the Track and Sector shown on the
bottom right of the screen.

UN-ERASE.

This can be used to re-claim a file which has been accidentally deleted. Press (U)
to select the un-erase function and enter a file-name. The DISC-NURSE will
check the sector-allocation tables. If the file sectors have not been used, the file
will be restored for normal use and will re-appear on subsequent directory
displays.

32

FILE ACCESS.

To access the sectors belonging to a specific file, press (F) and enter a file-name.
The first sector of the file will be read. See the (R)ead function above for a
description of the scroll/browse key functions.

QUERY.

Pressing (Q) selects the query / search function. The search can be limited to a
(S)ector, (Fjile or (D)isc and may be for an ASCII string or a HEX string. Wild
Cards (?) are permitted.

The hex string may be entered as a continuous or broken string of hex numbers,
ie NNNNNN or NN NN NN.

The search starts from the current track/sector position and proceeds to the last
sector. Searching for an unlikely ASCII string is a good way of checking a disc.
When a match is found, the sector address, word offset and sector contents are
displayed on the screen. The search can be continued by pressing the SPACE
bar, or terminated with the ESC key.

CATALOGUE and EXTENDED DIRECTORY.

Pressing (C) will display the disc catalogue using the standard display format.
For extended directory information and hard-copy facilities press (CTRL-C). If
the output is to be printed, answer (Y) to the print question. A title line may be
entered which will appear at the top of the listing.

SCREEN-PRINT.
Press the (.) key on the numeric (function) island. The contents of the screen will
be decoded and printed. Press the ESC key twice to cancel printing.

PAPER and PEN COLOURS.

Use of the (J) and (K) keys will step the paper and pen colours through their next
ink values. Experimenting with the inks willimprove screen readability on both
mono-chrome and colour monitors according to background lighting conditions.
CTRL-] and CTRL-K can be used to step through the ink colours in a reverse
fashion.

6.0 UTILITIES.
The Utilities Program provides general file management and copy facilities in a
single and easy to use package. The following features are provided:-

O Directory Display of Drives (A) and (B).

O File Renaming, using a link to the JREN command.
O File Erasing, using a link to the |[ERA command.

O File Transfer; any AMSDOS file type, Tape and Disc.

INITIAL PROMPT.
The following prompt is displayed....

Drive (A), (B), (D)elete, (R)ename, (C)opy or (X) to Exit.

Selection of (A) or (B) displays the appropriate directory. Selection of (D) or (R)
provides file DELETE and RENAME functions and need no further explanation.
(Wild cards may be used).

33

COPYING FILES.

The Copy Function is a general purpose copy routine which will copy ANY
standard AMSDOS file to and from DISC or TAPE. When selected the following
prompt appears:—

1: Disc-Disc 2: Disc-Tape 3: Tape-Disc

A valid reply must be given or control returns to the initial prompt. After a
selection of 1, 2 or 3 an INPUT file name must be entered. A file-name is not
required for option 3.

After the INPUT file is opened, the header information is displayed. The copy
can then be continued by responding (Y)es to the COPY-? prompt.

Depending on the option chosen and file-type detected, the copy operation will
go through a number of prompts. The options and valid responses are described
on the next page.

NOTE:- The Destination Tape or Disc may be changed BEFORE the reply to
‘PROTECTION ?’ is entered.

COPY OPTION RESTRICTIONS.
Disc to Disc Discto Tape Tape to Disc
ASCII Compression?
Reply Yes or No.
36K Limit ***
BINARY 36K limit *** Note-1 Note-1
BASIC 36K limit ***
CPM Compression?
Reply SPACE-BAR
36K limit ***

Protection can be INSERTED or REMOVED in all cases.

Figure 6.0 Copy Options.

NOTE-1: ABINARY file written to tape via the PYRADEV Utility System MUST
be restored to disc with the same Utility in order to restore the correct
LOAD point address in the File Header. Such files may NOT be RUN
until this has been done. They can however be LOADED to a specific
memory location from tape and CALLed. (Game Writers BEWARE).

34

7.0 TRAINING.

As you may have realised, the PYRADEYV system, is small but powerful. There
are many features and functions to explore and new commands to learn. For this
reason the file ' PROGRAM.001’ is supplied on the MASTER DISC for you to
Assemble, Edit and generally play with.

The program contains a single routine called ‘DEBUG’. It can be LOADed and
CALLed from BASIC and will display register contents on row 25 of the screen.
The program is very heavily commented with two types of text.

The (UPPER CASE TEXT) enclosed in brackets is all about the program code.
Hopefully you will quickly see how the routine works, and perhaps adapt it as
an additional debug routine for code that you will be writing,.

The ;* Normal Text *; enclosed in semi-colons contains information about using
the Source File Editor. You should read these comments and practice the
functions. When you have finished ‘playing’ in the Editor, press CTRL-A to
abort, then (Y) to confirm and exit.

The file PROGRAM.001 can be Assembled as it is. You should do this at an early
stage with the Macro Assembler, and use the various OUTPUT options to see
what happens. You are advised to use the default options to start with.

The file PROGRAM.002 is also supplied on disc. This is a complete example of
ALL the Z80 instructions. If you have any problems with your code, check that
you are using correct syntax, and code mnemonics by looking in this program.
It also contains examples of the Assembler Directives described in section 3. Itis

a useful piece of reference code and can be Assembled and Listed as a reference
chart.

The file PROGRAM.003 is a simple FILE-COPY program. It can be modified and
used to transfer other ASCII file formats into the PYRADEYV system by adding
custom code to effect special changes during the transfer/copy operation.
Please ensure you understand how the system operates before using it on live
project code, and make sure you always keep backups of development source
code.

Thank you for buying PYRADEV. We hope that you will enjoy using it.
8.0 CONTROL KEY SUMMARY.

EDITOR (edit mode)

CTRL-A: Abortand Exit
CTRL-B: Begin Pointer
CTRL-D: Delete Block
CTRL-E: End Pointer
CTRL-F: Find Marker
Island(.): Print
ESCAPE: Help-Display

CTRL-G: Goto Line nnn
CTRL-L: Set Mark
CTRL-O: Open Up Text
CTRL-5: Search System
CTRL-T: Tab Settings
Island(0): KS memories

CTRL-U: Undo Changes
CTRL-V: View Begin/End
CTRL-X: Save and Exit
CTRL-Y: Vary Cursor
CTRL-Z: Command Mode
Island(1-9): Replay KS

Small-Enter: Toggle KS Recording On and Off

35

EDITOR (command mode)

A: SetDrive A D: Delete File

B: SetDrive B R: Rename File
C: Compression Z: ZAP Backups

ASSEMBLER (run time toggle keys)
V: Video Output P: Print Listing

MONITOR (main menu)
T: Set Trap Point

Z: Clear Trap Point

R: Change Registers

M: Modify using HEX
CTRL-A: Modify ASCII
G: Gotoan Address
CTRL-G: SetStep Addr.
CTRL-T: TAPE/DISC
SHIFT0,1,2: Set mode

S: Exec Single Step
CTRL-S: Double Step
L: Load Test File

W: Write Disc File

O: Other Display

U: Update Screen

N: Refresh Screen
CTRL-C: Catalogue
CTRL-B: Bank Select

DISC-NURSE (main menu)
D: Select Disc Drive

T: Set Track Value

S: Set Sector Value

F: SelectFile

U: Un-Erase File

Island(.): Screen Print

R: Read Sector

W: Write Sector

Q: Query/Search
J,CTRL-J: Paper
K,CTRL-K: PenInk

UTILITIES (main menu)
A: Display Drive A
B: Display Drive B

D: Delete File
R: Rename File

UTILITIES (copy menu)
1: DisctoDisc
2: Discto Tape
3: Tape to Disc

36

L: Load Options
S: Save Options

S: Selective Print

J,CTRL-J: Paper
K,CTRL-K: PenInk

E: Error Printing

Q: Query/Search

X: Examine all ROMs
Y: Copy Memory Area
CTRL-D: Dis-Assembly
CTRL-X: Exit Monitor
J,CTRL-J: PaperInk
K,CTRL-K: PenInk
Island(.): Screen Print

C: Catalogue Display
CTRL-C: Extended Dir.

M: Modify using HEX

A: Modify using ASCII
(CTRL-H: Hddr Checksum)

X: Exit Program
C: Copy AMSDOS File

(Optional ASCII Compression)
(Protection Insert or Remove
(Always displays header information)

)

	pag 00
	pag 01
	pag 02
	pag 03
	pag 04
	pag 05
	pag 06
	pag 07
	pag 08
	pag 09
	pag 10
	pag 11
	pag 12
	pag 13
	pag 14
	pag 15
	pag 16
	pag 17
	pag 18
	pag 19
	pag 20
	pag 21
	pag 22
	pag 23
	pag 24
	pag 25
	pag 26
	pag 27
	pag 28
	pag 29
	pag 30
	pag 31
	pag 32
	pag 33
	pag 34
	pag 35
	pag 36

