
AMSTRAD CPC464/664/6128 FIRMWARE Appendix 13.1 
 

Appendix XIII - 
Hints, Tips, and Workarounds 
 
Following are a number of ‘WORKAROUNDS’ for the 464 machine, that is, routines which 
allow the 464 to act as specified in the ‘464 FIRMWARE SPECIFICATION’. 
 

Soft End Of File 
 
Reading characters from the disc using CAS IN CHAR when it is redirected to the 
AMSDOS routine can run into problems caused by the routine returning an error when it 
reads the end of file character #1A. This can be avoided by patching the jumpblock so that 
the end of file error is detected and ignored. The following program does this. 
 
SAVE_ENTRY: DEFS 3   ;Space to save jumpblock entry 
; 
INSTALL: 
 LD A,(CAS_IN_CHAR + 0) 
 LD HL,(CAS_IN_CHAR + 1) 
 LD (SAVE_ENTRY + 0),A 
 LD (SAVE_ENTRY + 1),HL ;Save original contents 
; 
INTERCEPT: 
 LD A,#C3 
 LD HL,NEW_CAS_IN_CHAR 
 JR PATCH   ;A/HL = jump to new routine 
; 
RESTORE 
 LD A, (SAVE_ENTRY + 0) 
 LD HL, (SAVE_ENTRY + 1) ;A/HL jump to original routine 
; 
PATCH 
 LD (CAS_IN_CHAR + 0), A 
 LD (CAS_IN_CHAR + 1), HL 
 RET 
 
; 
NEW_CAS_IN_CHAR 
 PUSH HL 



Appendix 13.2  AMSTRAD CPC464/664/6128 FIRMWARE 

 

  
 

CALL RESTORE  ;Put original jump back because 
     ;AMSDOS requires it to be executed 
     ;in its original position! 

CALL CAS_IN_CHAR  ;Read the character 
PUSH AF 
CALL INTERCEPT  ;Continue intercepting jumpblock 
POP AF 
POP HL 
RET C   ;Quit if OK 
RET Z   ;Quit if ESC 
CP #1A 
SCF 
CCF 
RET NZ   ;Quit if a real error 
OR A 
SCF 
RET    ;Pretend OK if soft EOF 

 
Before reading from the file the user should call INSTALL and from then on CAS IN CHAR 
will return character #1A just like any other character. Note that INSTALL must only be 
called once, otherwise the original contents of the jumpblock entry will be lost! The patch 
will be lost if the external commands TAPE, TAPE.IN, DISC or DISC.IN are executed. 
 

MODE switching on V1.0 firmware 
 
Some programs, such as SORCERY+, run with different parts of the screen in different 
modes. It is possible to do this using the firmware but it is necessary to intercept the SCR 
MODE CLEAR indirection so that the screen is not cleared each time the mode is changed. 
On V1.l firmware all that is necessary is to patch a RET instruction into the first byte of the 
SCR MODE CLEAR indirection. On V1.0 firmware this would result in all the inks being 
set to the background colour! This can be overcome by using the following routine to install 
the users own ink refresh routine: 
 

LD HL,SCR_MODE_CLEAR 
LD (HL),#C9 
LD HL,EVENT_BLOCK ; Points to 9 byte block 
LD DE,INK_ROUTINE ; points to Interrupt routine 
LD B,#81 
CALL  KL_NEW_FRAME_FLY ; Add Frame Flyback Interrupt 
RET 



AMSTRAD CPC464/664/6128 FIRMWARE Appendix 13.3 
 

 
INK_ROUTINE: LD DE,INK_VECTOR  ; Points to INK settings 

JP MC_SET_INKS 
 
EVENT_BLOCK: DEFS 9 
 
INK_VECTOR: DEFB 4,4,10,19,12,11,20,21,13,6,30,31,7,18,25,26,5 
 
 
 

Detecting the DDI-1 on a 464 
 
If you are writing a program which needs to detect whether a DDI-1 interface is connected to 
the computer or not, then the way to accomplish this is to issue a DISC command, if this is 
not found then the DDI-1 is not connected. 

The following program shows how to do this under machine code. 
 
FIND_DISC: LD  HL,DISC_COMMAND 

CALL KL_FIND_COMMAND 
SBC A,A 
RET 

DISC_COMMAND: DEFM 'DIS','C'+#80 
 
Calling FIND DISC will return A = #FF if a DDI-1 is connected or A = 0 if a DDI-1 is not 
connected). 
 
 
 
Express Asynchronous Events 
 
A problem was discovered with Express Asynchronous Events, in that, the COUNT byte 
should always be reset (to 0) upon termination of the Event, otherwise the event will not be 
kicked again. This can be done simply by adding the following program to the event routine: 
 

... 

... 

... 
LD HL,EVENT_BLOCK+2 
LD (HL),#00 
RET 



Appendix 13.4  AMSTRAD CPC464/664/6128 FIRMWARE 

 

Printing characters above 127 and suppressing the 
double line feed 
 
The following patches are to enable characters greater than 127 to be printed, and that the 
line feed character automatically sent after a carriage return can be suppressed and so stop 
the infamous double line feed problem on printers. 

First the main patch code which is used in both programs should be set up as follows: 
 
INITIALISE: 

LD A,(MC_WAIT_PRINT) 
 LD HL,(MC_WAIT_PRINT+1) 
 LD (NEW_PRINT),A 
 LD (NEW_PRINT+1),HL ;patch the jumpblock to end of new code  
 LD A,#C3 
 LD HL,PRINT_PATCH 
 LD (MC_WAIT_PRINT),A 

LD (MC_WAIT_PRINT+1),HL  ; redirect the jumpblock to the new code 
RET 

 
Then the PRINT PATCH code for printing characters above ASCII 127 is as follows: 
 
PRINT_PATCH:  

CP 128 
 JR C,NEW_PRINT  ; character below 128 then print it  
 AND #7F   ; mask off bit 7 
 LD (CHAR),A  ; store away the character 
 PUSH HL   ; HL is preserved on exit  
 LD HL,ESCAPE  ; point HL at escape sequence 
 
 LD B,5 
PRINT_LOOP:  

PUSH  BC 
LD A,(HL)   ; get character from sequence 
CALL NEW_PRINT  ; send character to printer 
INC HL   ; bump HL to next character 
POP BC 
DJNZ PRINT_LOOP  ; do this 5 times 
PO P  HL   ; restore HL 
RET    ; return to calling program 

 
  
 



AMSTRAD CPC464/664/6128 FIRMWARE Appendix 13.5 
 

NEW_PRINT:  
DEFS 3   ; Storage for MC_WAIT_PRINTER 

     ; jumpblock 
ESCAPE DEFM 27,">"    ; Sets the printer to alternate character set  
 
CHAR DEFB 0   ; storage for original character being sent 
 
 DEFM 27, "< "   ; Sets the printer into normal character set  
 
 
NOTE the escape sequences ( ESC= and ESC> ) are used with the AMSTRAD DMP2000 
printer and may have to be changed for other printers, (e.g. a number of printers use ESC4 
and ESC5 instead). Check with your printer user manual. 

The PRINT PATCH code to suppress the line feed after a carriage return appears below: 
 
PRINT_PATCH:  

CP  10 
 JR NZ,NOT_LF  ; Jump if character not a line feed 
 LD A,(CHAR)  ; restore last character printed 
 CP 13   ; test if last char. was a 13 (CR) 
 LD A,0 
 LD (CHAR),A  ; zeroise the last char. printed store 
 SCF    ; set carry flag, char. printed OK 
 RET Z   ; Return to calling program if last char. 
     ; printed was a 13 (CR) 
 LD A.10   ; If last char. was not a 13 (CR) then print 
     ; a 10 (Line Feed) 
NOT_LF:  

LD (CHAR),A   ; store character 
NEW_PRINT:  

DEFS 3   ; Execute printing of character 
     ; and return to calling program 
CHAR: DEF13 0   ; storage for I ast character printed 
 
So to use either the LF suppressor or the printing characters above 127 routines, the code 
INITIALISE and the relevant PRINT PATCH should be tied together and then assembled at 
a convenient location in RAM. Once initialized they will work until a call to MC RESET 
PRINTER which re-initializes the original indirection jumpblock at MC WAIT PRINTER.  
  
 



Appendix 13.6  AMSTRAD CPC464/664/6128 FIRMWARE 

 

American CPC6128: Frame Flybacks and Interrupts 
 
This technical note discusses the relationship between frame flybacks and interrupts on the 
NTSC version of the CPC464/664/6128. Currently the only production model affected is the 
American version of the CPC6128 - all other markets use PAL/SECAM models and this note 
does not apply to them. 

There was an error in the original hardware specification for the CPC464/664/6128 in that 
the value to be loaded into the Vertical Total Adjust register in the HD6845 (register 5) was 
incorrectly given as 6 for the NTSC version whereas it should have been 4. Thus the various 
ROMs produced for the CPC464/664/6128, when used with an NTSC system, load an 
incorrect value into the 6845 whenever a full reset occurs; for example when the machine is 
first powered on, or the RESET_ENTRY firmware call is made. 

PAL/SECAM systems work correctly and, fortunately, the only effect of the incorrect value 
on NTSC systems is to cause the interrupt associated with frame flyback to occur at exactly 
the same time as the frame flyback pulse becomes true. With the correct NTSC value the 
interrupt will occur 125 microseconds after frame flyback becomes true - corresponding to 
PAL/SECAM systems and the description given in Section 1. 

What this means in practice is that on an American CPC6128 a program which tests the PPI 
Frame Flyback signal (for example by calling MC_WAIT_FLYBACK) will not see frame 
flyback become true before the interrupt occurs, but must rely upon frame flyback still being 
true when the processing associated with the interrupt is complete. If the interrupt processing 
takes too long, the program will appear to 'Lock Up' because it never sees frame flyback set 
true. 

In order to minimise the possibility of ‘Lock Ups’ occuring Amstrad have ensured that all 
American CPC6128 machines are fitted with the type of 6845 which does not have a 
programmable frame flyback pulse length. Therefore the frame flyback will last for a fixed 
1000 microseconds rather than the programmed time of 500 microseconds. The 500 
microseconds period is in fact quite sufficient for the system routines invoked by the frame 
flyback interrupt; 1000 microseconds will allow a number of user routines to also occur at 
that time without any difficulty. 

Clearly though, software for American CPC6128s which has much to do at frame flyback 
time, or which wishes to avoid flickering effects on the top few lines of the screen, must 
arrange to place the correct NTSC value into register 5 of the 6845 using code equivalent to 
the following: 

SET_NTSC LD B,#F5 
  IN A,(C)  ; Read PPI port B 
  AND #10  ; Inspect LK4 
  RET NZ  ; Return if not NTSC: No action required 
  DI   ; Need exclusive access to CRTC 
  LD BC.#BC05 
  OUT (C),C  ; Set CRTC address to register 5 
  LD BC.#BD04 
  OUT (C),C  ; Set Vertical Total Adjust to 4 
  EI   ; End of exclusive access 
  RET 
 
  
 



AMSTRAD CPC464/664/6128 FIRMWARE Appendix 13.7 
 

Using Interrupts with Z80 Peripherals 
 
Z80 support chips such as PIO, SIO, DART, DMA, and CTC have an elaborate interrupt 
priority system involving the connection of the IEO output of one chip to the IEI input of the 
next in a daisy-chain. 

When a chip wishes to interrupt it inspects its IEI input. If this is ‘1’ then no higher priority 
device is interrupting and the chip may pull on the interrupt request signal. It will also set 
IEO to '0' so that lower priority devices are aware of its request. If IEI into a chip goes to ‘0’ 
then the chip will not interrupt until the higher priority devices have been serviced. 

When the CPU is actually interrupted an interrupt acknowledge bus cycle occurs and the 
highest priority interrupting device (the one with IEI = 1 and a reason to interrupt) assumes 
that it is being serviced and disables its interrupt. This means that interrupt service routines 
have the option to issue an EI instruction to allow immediate response to higher priority 
interrupts. 

When interrupt servicing is complete a RETI instruction must be issued. This causes a 
support chip with an interrupt under service to redetermine its interrupt status and the state of 
IEI and to set IEO accordingly. 

Section 11.2 clearly describes the scheme used for external interrupting devices. This relies 
upon the external device continuing to interrupt during the service routine so that it can be 
distinguished from the internal ticker interrupt which is automatically disabled as soon as the 
interrupt acknowledge bus cycle occurs. From the above description it will be clear that Z80 
support chips do not meet this condition and thus their interrupts cannot be used. Hardware 
designers should also note that interrupts should be disarmed by an OUT to the RESET 
PERIPHERALS channel (# F8FF). 

The code given below does two things, it arranges for a RETI instruction to be issued after 
every interrupt to ensure that all chips which assumed that they were being serviced will 
reassert their interrupt request. This is important where several Z80 support chips are 
involved because there is no provision for IE0-IEI connections between add-on devices. 
Secondly, a RETI is issued immediately before deciding whether an interrupt is internal or 
external which will mean that Z80 support chips will renew their interrupt request and the 
firmware will correctly determine that the interrupt is external. 

Set up an external device service routine by intercepting the indirection at #0003B. 
Remember to make this interception code relocatable. 

Add the following Z80 support chip code only if a mark 1 ROM versions 0, 1 or 2 is fitted 
(This means all existing CPC464 664/6128 machines - see KL PROBE ROM). 

#0038 (ROM or RAM) originally contains: 

JP ADDRESS_X 

ADDRESS_X + 5 will be in RAM, not under a ROM, and originally contains: 

LD  A,C 
SCF 
EI 
EX  AF,AF' 
DI 



Appendix 13.8  AMSTRAD CPC464/664/6128 FIRMWARE 

 

replace the five bytes at ADDRESS_X + 5 by: 

CALL NEW_CODE 
RETI 

replace NEW CODE et seq (which must not be under a ROM) by: 

LD  A,C 
SCF 
EX  AF,AF' 
CALL LABEL_1 
DI 
JP ADDRESS_X + 10 

LABEL_1: 
EI 
RETI 

Note that there is no suitable indirection or jumpblock into which the new code can be 
added, so that it is necessarily somewhat more contorted than the usual sort of code which 
one adds. Note also that this code is only for use with existing ROMs such as are fitted to the 
CPC464/664/6128. Any future compatible machines will not support it - so it is most 
important that the program to install the code cheeks the ROM version number before 
proceeding. Steps will be taken to ensure newer ROM versions will not need alteration in 
this way. 

Note that the old interrupt code and the indirection at #003B will be replaced when KL 
CHOKE OFF, MC BOOT PROGRAM or MC START PROGRAM are run (viz when a new 
foreground or background program is executed). Fortunately these are also the routines 
which issue RESET PERIPHERALS request. 
 


