
AMSTRAD CPC464 FIRMWARE (REV 1) APP 10.1

Appendix X
Kernel Block Layouts.

The user provides a number of blocks to the Kernel for various purposes. The layouts of
these blocks are described below, mainly for the interest of the user. There are very few
occasions when the user is allowed to write to one of these blocks. Routines are provided to
perform most actions that the user could wish to perform (see KL INIT EVENT, KL ADD
TICKER, KL NEW FRAME FLY, KL NEW FAST TICKER and KL DISARM EVENT).
These routines set values into the block from registers. The user should not write to the
blocks, except as noted below.

All the following blocks must lie in the central 32K of RAM (otherwise the Kernel will be
unable to access them).

a. Event Blocks.

See section 11 for a general discussion of events and event blocks. An event block is laid
out as follows:

0, 1: Chain
2: Count
3: Class
4,5: Routine address
6: ROM
7+: User

fields

Chain is a system pointer which must never be written to by the user. It is used to store
events on the various event queues.

Class records the type of the event. It should not be written to by the user.

Bit 0: 1 ⇒ Near address, 0 ⇒ Far address.
Bits 1..4: Synchronous event priority.
Bit 5: Must be zero.
Bit 6: 1 ⇒ Express event, 0 ⇒ Normal event.
Bit 7: 1 ⇒ Asynchronous event, 0 ⇒ Synchronous event.

App 10.2 AMSTRAD CPC464 FIRMWARE

Note that many system queues are kept in priority order and so the block must be requeued if
the priority is changed, it is not sufficient merely to change the priority in the event block.

Count is the event count - a record of how many kicks are waiting to be processed or
whether the event is disabled. See section 11.2 for a full discussion of the use of the event
count.

Routine address and ROM make up the far address of the event routine. If the near address
bit in the event class is true then the event routine is at a near address - the ROM select byte
(byte 6) is ignored and the event routine is called directly. If the near address bit is false then
the event routine is at far address - bytes 4,5 and 6 make up the far address to call to run the
event routine. The user may write to the routine address and ROM fields (and to the near
address bit in the class byte as well) provided that the operation is performed indivisibly (i.e.
interrupts should be disabled).

The user fields are optional. They may be used to provide a data area specific to the event
block so that a single event routine may be shared between a number of different event
blocks (the event routine is passed the address of the user fields).

b. Ticker Queue Blocks.

See section 11 for a general discussion of ticker interrupts and the ticker queue. A ticker
queue block is laid out as follows:

0, 1: Tick chain
2,3: Tick count
4,5: Recharge count
6+: Event block

Tick chain is a system pointer which must never be written to by the user. It is used to store
the block on the ticker queue.

Tick count is a count of the number of ticks before the next kick occurs. A tick count of zero
means that the tick block is dormant and will not generate any kicks. (Ideally a dormant
block should be removed from the ticker queue to avoid wasting time). The user may write
to this field if required providing this is done indivisibly.

Recharge count is the value that the tick count is set to after each kick. If the recharge count
is zero then the ticker block will become dormant after generating one kick. The user may
write to this field if required providing this is done indivisibly.

Event block is a standard event block as described in section (a) above.

AMSTRAD CPC464 FIRMWARE (REV 1) APP 10.3

c. Frame Flyback Queue Blocks.

See section 10 for a general discussion of frame flyback interrupts and the frame flyback
queue. A frame flyback queue block is laid out as follows:

0,1: Frame chain
2+: Event block

Frame chain is a system pointer which must never be written to by the user. It is used to
store the block on the frame flyback queue.

Event block is a standard event block as described in section (a) above.

d. Fast Ticker Queue Blocks.

See section 10 for a general discussion of fast ticker interrupts and the fast ticker queue. A
fast ticker queue block is laid out as follows:

0,1: Fast chain
2+: Event block

Fast chain is a system pointer which must never be written to by the user. It is used to store
the block on the fast ticker queue.

Event block is a standard event block as described in section (a) above.

