AMSIRAN
BASIC

a tutorial guide

AMSTRAT
BASIC

a tutorial guide

Part 2
MORE BASIC

by Ian Padwick and George Tappenden

Copyright © 1985 Amstrad Consumer Electronics plc
All rights reserved

First edition 1985

Reproduction or translation of any part of this work or the cassette
computer program tapes that accompany this publication without
permission of the copyright owner is unlawful.

Amstrad Consumer Electronics plc
Brentwood House

169 Kings Road

Brentwood

Essex

Amstrad BASIC
A Tutorial Guide
Part 2: More BASIC

SOFT 156
ISBN 1 85084 001 6

O Production by Peter Hill, Ray Smith and Solo

O Printed in England by Carlton Barclay Limited, Units 5,6 & 7
Carlton Court Grainger Road Southend-on-Sea Essex SS2 5BZ
Telephone Southend (0702) 613944 (5 lines)

Preface

Chapter 1
HERE WE GO AGAIN

CONTENTS

11

How to use this book 11
Command descriptions 12

Playtime 15
Testing 16

Chapter 2
REHOUSING

17

Above and below the line 17

Variable variables 19
CHATEAU 21
Arrays 24

Playtime 26
Testing 26

Chapter 3

PAINTING BY NUMBERS 27

Colour and mode 29

Coloured drawings 30

Window dressing 33

Words and pictures 36

PIE CHART 39
Testing 42

Chapter 4

TIME ON YOUR HANDS 43

Loops within loops 43

Once in a while 45
Digital clock 46
ALARM 49
Testing 50

Chapter 5

ALL WORK AND NO PLAY
Business programming 51
Screen design 52
Estimating with ESTIM 55
ESTIM user’s guide 65
Further improvements 66
Testing 67

Chapter 6

BACK TO SKOOL
Trig 69
Square roots 72
Taking off 74
Prime time 81
Testing 82

Chapter 7

PLAYING WITH WORDS
How long is a string? 84
Stringy numbers 85
ASCII and ASCII 87
Opposite numbers 88
Left, right, and centre 88
Searching for words 91
Playtime 93
Testing 93

Chapter 8

MOVING PICTURES
Flashy programming 95
Animation 96
Another brick in the wall 101
DIY 109
Playtime 109
Testing 109

Chapter 9

SOUND FX
Channels 111
Envelopes 112
Playtime 117
Testing 117

51

69

83

95

111

Chapter 10

MUSIC
Bogey man 119
Oranges and lemons 121
Serious stuff 124
Testing 125

Chapter 11

ADVENTURE
Roland in the house 127
Playtime 128
Just to recap 128
Design of ‘ADVENTUR’ 130
Your house could be a castle 142
Testing 144

Chapter 12

WHAT NEXT?
Advanced Amstrad 145
Fast loading 147
Hard copy 148
DATABASE 148
Testing 149

List of Programs
List of Keywords

Index

119

127

145

151
1563

155

PREFACE

This is Part 2 of a self-study course on programming in BASIC
using the Amstrad CPC464 Colour Personal Computer. Whereas
Part 1 is intended for the beginner, More BASIC is suitable for
anyone who is familiar with the principles of programming and
already understands the most commonly used BASIC
commands.

The two datacassettes that accompany this written text contain
computer programs that are an integral part of the course.
Datacassette A contains:

O Programs to help illustrate the techniques described in the
text.

O Games for your amusement and to demonstrate the
capabilities of the CPC464.

Datacassette B contains:

O Self-assessment tests to make sure you have understood the
content of the preceding chapter.

The third part of this series covers the most advanced features of
Amstrad BASIC and is intended for experienced programmers.

Chapter 1

HERE WE GO
AGAIN

If you read Part 1 of this series, you will have already learnt a
certain number of Amstrad BASIC commands and will have a
very good idea of the capabilities of the Amstrad CPC464 Colour
Personal Computer. Hopefully, you will also have tried out your
new-found knowledge by writing a few programs of your own
and have had the satisfaction of seeing them run successfully -
not the first time, maybe, but still...! This part of the course
is intended to consolidate what you learnt in Part 1 and ta give
you an even more extensive vocabulary of Amstrad BASIC
commands.

If you skipped Part 1, it is worth our repeating that Amstrad
BASIC will not necessarily work on other computers - and vice
versa. This is because it contains many unique commands and
functions that are not available on less sophisticated
equipment.

Each time a new keyword, or an extension of a previously
described keyword, is introduced, it is printed in the outside
margin so that you can easily flip back through the pages when
you need to refresh your memory.

HOW TO USE THIS BOOK

Although this book has been written with a minimum of
computer jargon, it would be very tiresome if we kept calling a
spade a ‘wooden-handled, straight-metal-bladed garden
implement’. Within any specialised field of study it is inevitable
that some words acquire special meanings, and computing is no
exception. So we will start off with a look at the main terms used
to describe the commands of Amstrad BASIC.

Each chapter of this book represents about one or two evenings’

Here We Go Again

11

12

work. Typically it will contain:

O Written explanation

O Practical work on the computer

O Examples for you to program yourself

There are exercises to reinforce what you have learnt, and there
is a programmed self-assessment test to go with each chapter.

Don’t skip chapters. New information is introduced
progressively through the book and is built on the knowledge
obtained from previous chapters. If you think a chapter or a
section of a chapter looks a bit complicated, just read it quickly
once or twice and then work through it slowly. The exercises and
the programs that you are expected to enter yourself are
intended to help you to understand the principles involved in the
subject under discussion, so don’t miss them out. Make sure that
you understand by means of the self-assessment tests.

After completing this part of the course you should be able to
write your own computer games, or hobbies and business
software - not terribly sophisticated as yet, but that only comes
with experience. Part 3 of this course will instruct you further in

the fine detail of Amstrad BASIC.

COMMAND DESCRIPTIONS

In Part 1 we saw that a command is made up of a keyword and
(mostly) one or more arguments, as in the line-drawing
command:

DRAW x,y

where the arguments ‘x’ and ‘y’ give the graphic co-ordinates of
the position on the screen to which the line must be drawn. As
you already know, putting in the wrong characters or leaving
spaces and characters out when typing in the command may
produce the message ‘SYNTAX ERROR’ So what is syntax?
And why do you need a comma in the middle of the command?
All will be clear before the end of this chapter.

Syntax

In ordinary English the sentence, ‘The tail was wagged the little
dog by’, is inept and ridiculous. There are not many of us (we
hope) who would dream of breaking the rules of our language in
such a way. The syntax, i.e. the order in which words are placed
in a sentence, is badly wrong. Even so, it is a measure of the
superiority of the human brain over the computer that it is still

Here We Go Again

possible to understand the sense of the phrase and to
compensate for the inadequacy.

A more extreme case is where there is an unclear connection
between the parts of the sentence:

The tail/the little dog/was wagged

If the connecting word ‘by’ is not added at the right place there is
considerable doubt as to what wagged which!

In BASIC the rules of the syntax are even more rigid than in
ordinary English. There is no question of an IF-THEN-ELSE
branch being an equivalent to an IF-ELSE-THEN branch - the
second one just doesn’t exist in BASIC. In the same way, if you
forget to leave a space between one word and anotherin English,
it may make it a little more difficult to read but it is still
understandable. If you omit a space at a critical point when
writing BASIC, the CPC464 will not be able to work out what you
were trying to tell it and will often flatly refuse to run the
program until you have corrected the error.

There are a lot of new and sometimes complicated commands to
be learnt in this book so, to save time and space, a sort of
shorthand will be used to describe the syntax of each command.
This involves some unfamiliar terms and punctuation which
require some explanation. Study the following glossary
carefully. You may have to refer to it continually until the words
become familiar.

Command glossary

Brackets Certain commands and functions require that the
argument(s) be enclosed in round brackets «)’, e.g. CHR$(97).
Round brackets are also used to impose the order in which
arithmetic operations are carried out.

In this book we will also use two other sorts of brackets for
describing commands. The first sort, pointed brackets ‘<>,
mean that whatever they enclose is described elsewhere. The
second sort, square brackets {], show that whatever they
enclose is optional.

Defaults When the CPC464 is switched on, orreset, therearea
number of things, such as the screen, border and text colours,
which are set up automatically. In addition, there are commands
like DRAW and PLOT which, once the INK has been specified,
can have this argument omitted in following commands. Values
such as this are known as defaults and we shall see later that
there are many commands where optional arguments have
default values.

Here We Go Again

13

14

Expression See Integer Expression, Numeric Expression,
and String Expression.

Integer Expression A numeric expression containing real or
integer numbers whose result is rounded to the nearest whole
number before it is used.

Integer number Whole numbers; that is, they do not have a
decimal part.

Keyword A word reserved for use in BASIC commands such
as RUN, MOVE and PRINT, or BASIC functions such as RND
and INT.

Numeric expression This can be one of four things:

O A number, e.g. ‘20473.611’

O A numeric variable, e.g. ‘total’

O The result of a numeric operation, e.g. ‘total/252%percent’
0O A function, e.g. ‘LOG (x)’

Real numbers Numbers that have a decimal part.

Separators Used in BASIC to define the beginnings and ends
of keywords and their arguments. The usual separators are:

comma @)
semi-colon)
space)

In our command descriptions we will also use the colon (:) to
show when an argument may consist of a list of items.

String expression Alphanumeric information which may be
one of four things:

O A string enclosed by quotation marks, e.g. ‘““Name”’
O A string variable, e.g. ‘type$’

O The result of a string operation, e.g. ‘type$ + “Name”’
O A string function, e.g. ‘LEFT$(A$,3)

Example of a typical command

Take a careful look at the following:
DRAW {(x co-ordinate), (y co—-ordinate) [, {ink)]

where:

<x co-ordinate> = integer expression
<y co-ordinate> = integer expression
<ink> = integer expression

Because both <x co-ordinate> and <y co-ordinate> are described
as expressions, we know that we can put into those positions

Here We Go Again

either a numeric value, or a numeric variable, or a combination
of values, operators and variables which will result in a numeric
quantity. Both of these integer expressions must be included
in the command. If either, both, or the separator (,) are missing
when the line is entered, the CPC464 will give the ‘syntax error’
message.

Conversely, ‘,<ink>’ is enclosed in square brackets. If you leave
out this part of the command the CPC464 assumes that you are
happy for the current INK to be used as a default, and doesn’t
give you an error message. As a general rule, where an argument
is optional it is because there is a default value of some sort.

So, every command in Amstrad BASIC can now be described in
the same way. By using these brackets and separators, and now
that you know what the different sorts of expressions are, we
don’t need to spend too much time on the subtleties of each
command. Notice, for instance, that our DRAW command
requires integer expressions for the co-ordinates. This does not
mean that only whole numbers can be used here, but that the
CPC464 rounds the value in these arguments to the nearest
pixel. So you don’t have to worry about decimal parts in these
expressions.

If you refer to your copy of the Amstrad CPC464 User Guide, you
will see that we are using exactly the same set of conventions. In
this way you can quickly understand the use of any command
not covered in the following chapters.

PLAYTIME

Load the first program from Datacassette A, SHEP. You can
then spend an enjoyable half-hour pretending that you are a hill
farmer directing your faithful sheepdog to get two rather stupid
sheep into their fold. Have fun!

Here We Go Again

15

16

TESTING

For those of youwhodidn’t go through Part 1 of this course, First
Steps, it would be a good idea to run the first Self-assessment
Test, SAT1, to make sure there are no aspects of Amstrad BASIC
that you need to study before going on to Chapter 2. Even if you
did complete Part 1, a little revision wouldn’t do any harm!

Here We Go Again

Chapter 2

REHOUSING

We will meet quite a few old friends from Part 1 in this chapter:
the house for a start. Our original design was ratherlong-winded
with all those MOVESs, so now is the time to learn how to make it
shorter and neater. Then we are going to have a more detailed
look at variables.

Before all this though, let us have a look at a group of commands
which are aids for program entry.

ABOVE AND BELOW THE LINE

When you have used LIST to display long programs on the
monitor screen, it has probably been a bit tedious waiting for the
bit you want to come round. In fact the command has an optional
argument which speeds things up quite a lot. The structure is:

LISTL(line number range)]

where <line number range>> can be one of four things. The best
way of understanding what these are is to try them out as

follows. Load the next program from Datacassette A, called
CHATEAU, but don’t run it. Then enter:

LIST 100
As you can see, line 100 is put on the screen on its own.
Now try:

LIST —-100

This time the CPC464 gives you all the line numbers up to and

including 100. Now you no longer have to be fast on the ESC
key to stop the listing where you want to.

17

18

For the third example enter:
LIST 100~-200

to get all the lines between and including 100 and 200. If you
imagine that you have a niggling bug in that part of a program,
you can easily see how useful this is for pulling out just that
section onto the screen each time there is a change to be made.

And, finally, try:
LIST 700-

which gives you all the lines from 800 through to the end of the
program. It is especially useful if you follow the normal practice
of putting all your subroutines at the end of the program,
starting at a particular line number.

The next command is DELETE. The syntax is as follows:
DELETE <(line number range)

You will notice that the argument is not optional, but otherwise
it can take line number ranges in identical fashion to the LIST
command. Entering, for example:

DELETE 100-200

will wipe those line numbers out of memory, so that the next time
you LIST they will not appear on the screen.

Be careful when using this command. If you haven’t saved a
copy of the program you may accidentally rub out quite a lot
of hard work. Where it is useful, though, is when you want to use
some routines from an existing program. Just load the program
and delete what you don’t want.

The next useful command in this groupis RENUM. You will now
see why we need a type of shorthand to explain the syntax:
RENUM [{new lirne number)]
[,[<{old line number)l[, {increment) 1]
These optional arguments allow you to renumber the lines of the
current program starting at the position given by <old line
number> beginning with <new line number> in steps of

<increment>. If you don’t specify any of the arguments, the
default values are assumed. These defaults are equivalent to:

RENUM 10, , 10

The missing argument merely indicates that renumbering starts
at the first line in the program.

If you still have any of CHATEAU left after playing with the
previous command, you can try out the various optional
arguments before giving a RENUM by itself so that you get the

Rehousing

default arguments. Notice that RENUM automatically updates
the GOTO and GOSUB references.

Finally, there is a command that saves you the chore of typing in
the line number each time. This is AUTO, and is used as follows:

AUTO [{line nuwmber)][, {increment)]

The argument <line number> is the number at which you want
to start and <increment> is the size of the step between
numbers. If, for example, you enter:

AUTO 100, 5

the CPC464 will put 100 at the beginning of the nextline, leavea
character space and leave the cursorin position so that you can
complete the line by typing in a command. When you hit the
ENTER key it does the same thing again except that the number
will be 105 this time.

AUTO numbering is terminated by pressing the ESC key.

If there is already a line in memory with the same number as the
one just generated, an asterisk (*) is printed as a warning. If no
action is taken before pressing the return key, the new line
replaces the old one.

VARIABLE VARIABLES

The way variables were described in Part 1 - labelled storage
places for numbers and strings - was only part of the story.
There are actually two types of numeric variable, real and
integer; both these and string variables may also be subscripted.

Real numeric variables

Real numbers or expressions may have a decimal part or may
even have a value less than one. Another name for these is
‘floating point’ variables since the decimal point is notin a fixed
position. The following are examples of real numbers:

1234862.01
0.000000154768119
2.3

When you specify a variable, either by a LET or by implicationin
an expression, the default is that it will be real. For clarity in
your programs, you could make sure you can recognise them by
using the suffix ', for example:

LET finallength!=measure*coeff*0.0001

Rehousing

19

20

Integer numeric variables

If you want to work in integers only, i.e. whole numbers which do
not have a decimal part, it is necessary to specify this by adding
the suffix ‘%’ to the variable name, for example:

LET percent*=100%profit/cost

The variable ‘percent%’ can only ever contain integers, and any
decimal part of any value stored in it will be rounded to the
nearest integer.

Subscripted variables

Subscripted variables are sometimes called ‘list variables’
because they can store lists of similar data rather than just a
single item. They can bereal, integer, or string variables, and are
described by:

(variable name) ((list oft: (subscripts))

where <subscripts> are integer expressions. Whole lists of
variables can therefore be stored under a common name but with
different subscripts.

For example, take the top six football teams in the first division
at the beginning of April 1984:

Team Points
Liverpool 69
Manchester Utd 67
Nottm Forest 60
QPR 57
Southampton 56
West Ham 55

Now suppose that we want to store information so that it can be
updated week by week, and the list printed outin the latest order.
If we number the league positions from zero to five the current
points of the team at that position can be stored in a subscripted
variable called ‘points(n) where ‘n’ is the league position, as
follows

Variable Contents
points(0) 69
points(1) 67
points(2) 60
points(3) 57
points(4) 56
points(5) 55

Rehousing

A table of data like the one above is also known as an array, and
this is the term we shall use from now on. (Strictly speaking, our
football points table is a one-dimensional array - we shall see
why later on in this chapter.)

You would probably also want an array of strings with the
names of the teams at each position.

CHATEAU

I don’t suppose there are many of us who have not been taught
that chateau is French for castle. What youmay not knowis that
it is also the name used for particularly nice mansions in one of
the richest parts of France.

Having massacred the program in the first part of this chapter,
you would be well advised to rewind the cassette and load the
program again. The intention here is to show how a program can
be progressively improved, and so our original HOUSE program
has had several rebuilds to bring it into the luxury dwelling
class.

So, having loaded the program, run it. It looks just like the
MANSION program with its window panes and fence, doesn’t
it? If you look at the listing below, however, you will see that the
program has been completely rewritten.

Chateau

100
» {(Improved MANSION)

110
120 ?
130 °
140 °
150 MODE O : BORDER 12

160 INK ©,12 ¢ INK 1,3 = INK 2,6 ® INK 3,17

170 PAPER O

i80 ’

190 ' Borders

200 7

210 READ X,y

220 IF y=-1 THEN 290

230 IF u=0 THEN colour=y 3 GOTO 210

240 IF x{0 THEN MOVE -x,—-y ELSE DRAW x,y,colour
250 6070 210

260 7

270 ' Fence

Z80 ’

290 FOR F=0 TO 620 STEP 20

300 MOVE F,O0:DRAW F, 60

DR 17/9/84

Rehousing

21

I10 NEXT F

320 MOVE O, 45:DRAW 620, 45

330 7

240 7 Window Frames

350 7

360 size=18

370 FOR i=1 TO 16

380 READ x,y:iMOVE x,y

390 DRAWR 0O,size * DRAWR size, O
400 DRAWR O,~sizei DRAWR —size, O
410 NEXT

420 °

430 END

440 7

450 * Data for edges

460 7 in pairs ! negative
470 : 0O, X

480 ° : O,-1

490 °

300 DATA 0, i

510 DATA -100,-50, 100,250, 400,250, 400,50, 100,30
520 DATA —-400,~250, 600,250, 600,50, 400,30, 400,230
530 DATA 500, 350, 600, 250, 400,250

540 DATA —100,-250, 200,350, 500,350

550 7

S60 7 Door

570 7

580 DATA 0,2

590 DATA -225,-50, 225,140, 273, 140, 273,50

&00 7

610 * Large Windows

620 °

630 DATA 0,3

640 DATA -120,~-70, 120,130, 180,130, 180,70, 120,70
650 DATA —-120,-170, 120,230, 180,230, 180,170, 120,170
660 DATA -320,-170, 320,230, 380,230, 380,170, 320,170
670 DATA -320,-70, 320,130, 380,130, 380,70, 320,70
&80 DATA O,~1

&30 °

700 * Data for little windows

710 7

720 DATA 130,78, 156,78, 130,103, 156,103, 130,178
730 DATA 156,178, 130,203, 156,203, 330,78, 356,78
740 DATA 330, 103, 356,103, 330,178, 356,178, 350,205,
356,203

move
colour change
end

I

The first thing you will notice is the use of the apostrophe (’) sign
instead of REM. It operates in exactly the same way - anything
following an apostrophe is ignored. As you can see, the

22 Rehousing

advantage is that the layout can be a lot clearer with dummy
lines between explanations and remarks.

And here are two important new keywords for you as well,
DATA and READ. In our MANSION program in Part 1 there
were a lot of successive MOVE commands to get the graphics
cursor into the right place before issuing a GOSUB. A neater
way of achieving the same end is to put all the positioning co-
ordinates in the same place and then use variablesin the MOVE
and DRAW commands. This is exactly what READ and DATA
allow you to do.

The syntax for DATA is:
DATA (list of: {(constant)

A list of numeric or string constants can be used, separated by
commas. In fact almost anything is acceptable, since a line of
rubbish with no comma in it will be taken as one string constant.

The syntax for READ is:
READ (list of: (variable)

A <variable> can be either string or numeric, separated by
commas.

The following few lines show how these two commands work
together:

10 FOR x=1 TO 4
20 READ N%

IS0 PRINT N#

40 NEXT

50 DATA Ann, Dorothy,Jill, Sharon

Each time the program executes the READ command, the next
string constant in the DATA statement is put into the variable
N$. So, when x=1 ‘Ann’ is printed, when x=2 ‘Dorothy’ is printed,
when x=3 ‘Jill’ is printed, and when x=4 ‘Sharon’ is printed.

You may have wondered if there was any way of avoiding
having to write out long DATA statements all over again when
you needed exactly the same values to be read more than once.
The keyword that can help you do this is RESTORE. Here is
the syntax:

RESTORE [{(lirne number}]

Rehousing

23

24

To understand how the argument <line number> works, you
have to remember what happens each time the CPC464 executes
a READ command. No matter how many DATA statements
there are, or where they are in the program, they are read one by
one in the order in which they appear. After each READ
command is executed the CPC464 sets up a pointer which
indicates the next constant to be used when the next READ
command is executed.

The optional argument in the RESTORE command allows you
to reset this pointer to the first constant of the DATA statement
at or following the position in the program identified by <line
number>. By this means you can re-use or select data constants
dynamically during execution of a program. Omitting the
argument will set the pointer to the first constant of the first
DATA statement in the program.

ARRAYS

As promised, we are now going to have a look at arrays. Earlier
in this chapter we saw that you could make up tables by using
subscripted variables. You then get the effect of a certain
number of boxes with a common name.

This, then, is a one-dimensional array, ‘widgets(a)’, where ‘a’
gives the number of a particular box. Printing ‘widgets(3)’ gives
the number of widgets in box 3. We can subdivide further to give
atwo-dimensional array, widgets(b,a) where ‘a’ is the number of
our box, within its own carton, and ‘b’ is the carton number.
Printing ‘widgets(15,3)” gives the number of widgets in box 3 of
carton number 15.

WAREHOUSE 22
65 AT T 2N

|

AN MU NN W W

Rehousing

And before you ask the question, the answeris yes, you can have
three-dimensional arrays, but we won’t be bothering with them
in this book. In fact, the CPC464 lets you use arrays of as many
dimensions as you like (subject to line length and available
memory), as you can see from our illustration!

So, how do you use an array? Well, enter the following and runit:
10 widgets (5)=47

20 for n=0 to 20
30 print widgets(n);

40 next

Note that each of the positions in the array designated by a
subscript is known as an ‘element’, and the numbering starts at
zero. Line 10 assigns the value 47 to subscript 5, i.e. the sixth box
in the array, and the remaining lines are just to print the
contents of the entire array. What you will get on the screen is:

¢ 0 0 0o 0 47 0 0O 0 0 0
Subscript out of range in 30

The error message is because there is a new command to learn,
but we’ll come to that in a minute. You can see that the CPC464
sets the initial value of subscripted variables to zero, so the first
five zeros represent the values of elements 0, 1,2,3and 4, and the
last five zeros the values of elements 6-20. So what happened to
element 11? Well, unless we tell it otherwise, the CPC464
assumed that any array we use has 10 elements or less, which
explains why we got an error message.

For arrays with more than 10 elements we have to use the DIM
command to specify the maximum size of an array. The syntax
is as follows:

DIM (list of:{subscripted variable)
where <subscripted variable> is, of course:
{variable name) ({list of: {integer expression))

Each <integer expression> sets the maximum value allowed for
the corresponding subscript.

We can therefore get rid of the error message in two ways. The
simplest is to stop the loop at 10 instead of 20! But if you really
insist on a 21-element array, you can add the following line:

S DIM widgets (2O)
Try it.

Rehousing 25

26

PLAYTIME

The next program, VILLAGE, gives you not just one house but
lots of houses!

TESTING

Check that you have fully understood all this new information
by running SAT2 before going on to the next chapter.

Rehousing

Chapter 3

PAINTING BY
NUMBERS

If you have been confused by the relationship between PEN,
PAPER and INK up till now then read on. If not, then read on
anyway since it is probably a lot more subtle than you think!

The CPC464 can display 27 different colours (see table overleaf),
which can be put into 16 different ink pots. However, the number
of ink pots within range for drawing depends on the MODE.

In MODE 0 you have a range of 16 inkpots, in MODE 1 youhave
4, and in MODE 2 you have just 2. Imagine now that whenever
you PRINT text you are using a quill and a sheet of paper that
have each been dipped in an ink pot.

Switch on or force a restart (SHIFT/CTRL/ESC); you are in
MODE 1, and you therefore can have 4 inks on the screen at once.
All 16 inkpots have been filled with their default colours. The
screen is blue because it has been set to the colour of PAPER,
which has defaulted to INK 0 (colour 1). The text is in yellow
because it was written by the PEN which has defaulted to INK 1
(colour 24).

27

Number Colour Number Colour

0 black 14 pastel blue

1 blue 15 orange

2 bright blue 16 pink

3 red 17 pastel magenta

4 magenta 18 bright green

5 mauve 19 sea green

6 bright red 20 bright cyan

7 purple 21 lime green

8 bright magenta 22 pastel green

9 green 23 . pastel cyan

10 cyan 24 bright yellow

11 sky blue 25 pastel yellow

12 yellow 26 bright white

13 white
Type PEN 2. Now new text is written in bright cyan (colour 20).
Type PEN 3 and the new text becomes red (colour6). Type PEN 4,
however, and the new text will be blue - the same as the paper.
This is the same as typing PEN 0 since although there are 16 ink-
pots, you only have 4 colours within range in this mode. In fact
the PEN really has been set to INK 0. In this mode the CPC464
just refuses to set it outside the range 0 to 3: it has converted your
request for INK 4, which is out of range, into INK 0 which is in
range. Similarly, INK 5 would be converted to INK 1, INK 6 to
INK 2, INK 7 to INK 3, INK 8 to INK 0 again, and so on.
You still have blue on blue, so type PAPER 1 carefully, because
you won’t see any mistakes you might make. If you’ve got it right
you will now see the word ‘Ready’ in blue on a yellow

28 Painting by Numbers

background. This is because when the CPC464 puts a character
on the screen, it uses a square background, just large enough for
one character, which is in the INK of PAPER. The character is
then written on this background with the current PEN, so the
yellow surrounding ‘Ready’ is the result of drawing a character
with the newly defined background.

Entering CLS will set the whole of the screen (except the border,
of course) to the new yellow PAPER.

Now we come to the tricky part. Let’s say we don’t want yellow,
we want white instead. This involves using the INK command.
Enter:

INK 1,26
Lo and behold, everything that was yellow is now white!

This is what happened. To change yellow to white we had to
empty inkpot 1 (which contained yellow) and refill it with white,
colour 26. So ‘INK 1,26’ means ‘change the ink in pot 1 to colour
26’. It does not mean ‘change colour 1 to colour 26’.

You will remember that INK 4 was defaulted to white, even
though it is out of rangein MODE 1. Now we have white in INK 1
as well. That’s perfectly all right - we can have the same colour
in as many pots as we like!

Of course, the CPC464 is constantly, dipping into the inkpots to
refresh the screen (50 times a second in fact) so everything that
was yellow becomes white. Try changing the colour of another
ink, say blue into orange. The blue is in inkpot 0 and orange is
colour 15 so we type:

INK 0,15
Now change it back to blue:
INK 0,1

COLOUR AND MODE

In MODEs 1 and 2 you can put any number in the range 0-15
after the PEN and PAPER commands, but the CPC464 will
change the value it uses to refer to the lowest numbered inks, i.e.

Painting by Numbers

29

30

in MODE 2 whatever INK you try to set PEN and PAPER to,
only INKs 0 and 1 are within range, and so on. However, the
same is not true of the INK command. The colours of all16 INKs
can be affected, although you won’t see this unless you change
modes.

Force a restart, then type:
MODE O:PEN 13

Note that the colour of the text is pastel green. Now type
MODE 1

and then

INK 13,26
Nothing changes since INK 13 is far out of range in MODE 1.
Now type MODE 0:PEN 13 again. The text is now white, not
pastel green. What we have proved is that you can change the
colour in an inkpot even when it is out of range in the current
screen mode.

,% % @n Gl
Eldw
s

-

COLOURED DRAWINGS

Here are the syntax descriptions of our old friends the PLOT and
DRAW commands:

PLOT (x co—ordinate), {y co-ordinate} , {(ink)1]
DRAW {(x co-ordinate’, {y co-ordinate) [, {(ink)1

Painting by Numbers

INK DEFAULTS

Ink Colour
0 1

1 24

2 20

3 6

4 26

5 0

6 2

7 8

8 10

9 12
10 14

11 16
12 18

13 22

14 1,24
15 16,11

The <x co-ordinate> and <y co-ordinate> must be numeric
expressions. If the INK argument is not included, the line or
pixelis drawn in the current ink of the graphics pen. Thisis setto
INK 1 by default, but every time a command including the INK
argument is used, the line is drawn in the new ink and the
graphics pen is set to it.

Painting by Numbers

31

32

Changing the text PEN INK does not affect the INK with which
you PLOT and DRAW. Enter:

DRAW 640, 400

You should get a line across the screen the same colour as the
text. Now enter:

MOVE O, 0:DRAW 640, 400, 3
The line will be redrawn in INK 3.
Type in the following program after forcing a restart.

10 CLS

20 r=40:y=200:c=1

30 FOR x=40 TO 600 STEP 40
40 FOR i=-r TO r STEP 2

50 h=80R{r#*r—i%i)

60 PLOT x—h, i+y,c

70 DRAW x+h, ity

80 NEXT i

90 c=c+1

100 NEXT x

Type MODE 0 then RUN. You will see a series of variously
coloured disks drawn across the screen, each partly covered by
the next. Don’t worry how the disks are drawn, it is the colours
we are concerned with.

First, remember that in MODE 0 you have all 16 inkpots within
range and filled with the colours you see. Secondly, you change
the colour you PLOT with by putting the INK number after the
co-ordinates. Now look at the listing. In line 60 we have a third
variable, ‘c’, which specifies the INK to use. Inline 90 we see that
‘¢’ is increased by one each time the ‘I’ loop is completed.
Variable ‘c’ has an initial value of one, line 20. RUN the program
in each mode to confirm what has been discussed so far in this
chapter.

Finally, RUN the program in MODE 0 and then experiment by
typing some INK commands like INK 6,12 and INK 2,15.

Painting by Numbers

WINDOW DRESSING

Once you have mastered the manipulation of PEN, PAPER and
INKs you should be able to create some interesting effects. Even
more elaborate screen displays can be achieved once you have
learnt a few more details about the CPC464’s ability to mix text
and graphics.

First, let us study the ORIGIN command. Those of you familiar
with mathematics will know that the origin of a graph is the
point where the horizontal and vertical axes meet, usually x=0,
y=0.

The CPC464’s display is made up of 256,000 individual points.
There are 640 across the screen (numbered 0 to 639 from left to
right), and 400 up the screen (numbered 0 to 399 from bottom to
top). These points are not the same as pixels, which are made up
of a different number of points depending on the mode. Each
pixel can be designated by the co-ordinates of any of the points of
which it is comprised.

PIXELS

Mode 0 %

Mode 1

s

Mode 2 4

LA\

Each of these points can be referred to individually for the
purposes of drawing graphs, etc. Plotting 0,0 will cause point 0,0
(and all the other points in the same pixel) to be set to the
graphics pen.

Plotting values of x and y that are outside the limits above (x=0
0639 and y =0 to 399) will not cause an error. This isbecause the
CPC464 remembers your position off the screen and continues to
execute PLOT and DRAW commands, even though you can’t see
anything on the screen.

Painting by Numbers

33

yi

o
"
w Y

The ORIGIN command allows you to ‘move’ the co-ordinate 0,0
to anywhere on the screen, or off it! Being able to do this is very
convenient for plotting graphs.

Force a restart, then type in the following program:
5% CLG
10 PLOT 0,0
20 DRAW Z00, 200
30 DRAW 400, 200
40 DRAW 200, 350
50 DRAW —-100, 350
&0 DRAW —-100, 100
70 DRAW 0, 100

80 DRAW 0,0

34 Painting by Numbers

RUN the program and you will see that an irregular polygon of
no particular significance has been drawn. Note how part of it
cannot be seen because it is off the left edge of the screen. Now
type ORIGIN 150,0 and then RUN. Cleverisn’tit! You have just
told the CPC464 to consider the point 150,0 relative to the bottom
left of the actual screen as the co-ordinate 0,0 and to do all
PLOTing and DRAWing relative to this new origin. The bottom
left corner of the screen is now referenced by PLOT -150,0.

Don’t get confused about what is happening. Imagine a piece of
paper on an enormous drawing table: you can draw anything
you like on the whole of the table, but the paper only remembers
what actually passes over it. The rest might as well never have
happened.

Try putting in some different values for the origin such as -50,0
or 200,-50. Once you have done that add some more lines to the
program:

S FOR o=0 TO 100 STEP 10
& ORIGIN 100+0,0

30 NEXT o
and RUN.

You will have come across the CLG command before - it has an
effect similar to CLS. Here is the syntax:

CLG [<ink>3J

CLG clears the graphics window and moves the graphics cursor
to wherever the co-ordinates 0,0 are. The optional argument
<ink> will fill the graphics window with the ink specified. But
just a minute, you may say, whatis the graphics window? Well,
it’s the whole screen until you tell the CPC464 thatitisn’t. Youdo
this by an addition to the ORIGIN command. Type in:

ORIGIN 100,0,0, 300, 200, 0

This tells the CPC464 to move the origin to co-ordinate 100,0 and
also to limit the graphics window to all pixels 0 to 300
horizontally and 0 to 200 vertically. Doing this will chop off all
but the bottom left quarter of the screen.

It’s about time we looked at the syntax of ORIGIN:
ORIBIN <x), (y) [, (left), {right}, {top), (bottom}]

All the arguments are called ‘absolute screen co-ordinates’ and
must be numeric expressions. An absolute screen co-ordinate is
just like the numbers you give to DRAW or PLOT, except that it
is always relative to the actual bottom left corner of the screen. It

Painting by Numbers

35

36

doesn’t matter whether a previous ORIGIN command has
moved co-ordinate 0,0; the next one always has the same effect.
In other words a new ORIGIN or window is not relative to the
last setting of co-ordinate 0,0; but to the bottom left corner of the
screen.

Enter CLS and then RUN the program. You will see that the
graphics display is now limited to the lower left quarter of the
screen. LIST the program two or three times then type CLG. Just
the lower left quarter of the screen is cleared. Enter the following:

CLS: PAPER 3: CLS

You should have a red screen; now type CLG. Our graphics
window is blue. Now RUN the program to complete the effect.

Try some different values for the window, e.g.

ORIGIN 100, 0,301, 600, 400, 201

will move the window to the upper right of the screen. To return
to normal you would type:

ORIGIN 0,0,0,639,399,0

WORDS AND PICTURES

The following listing is of the next program on Datacassette A
called SINCOS which we are going to use to illustrate some of
the new keywords and to introduce a couple more.

100 7

110 * Sine and Cosine Graph
120 7

130 * By Ian Padwick

140 * Amended by DA 21/9/84
150

160 * Set up screen

170 7

180 MODE 1:BORDER 20

190 INK O, 23:INK 1,20:INK 2, 0:INK 3,26

200 ORIGIN 144,200,108,534,310,96 = CLG 2

210 DEG ' use degrees in sin/cos

220 PEN 2:LOCATE 4,4

230 PRINT"Graphs of Sine and Cosine functions®
240 °

250 PLOT 0,-100,3
260 PLOT 360,-100
270 PLOT 0,0

280 PLOT 90,7

DRAW O, 100
DRAW 360, 100
DRAW 360, 0

DRAWR 0, —14

Painting by Numbers

290 PLOT 180,7 DRAWR O, -4

300 PLOT 270,7 DRAWR 0, -14
310 TAG

320 MOVE -20, 104 PRINT "i"s
330 MOVE -20,4 PRINT "Q":
340 MOVE -36,-94 PRINT "—1":
350 MOVE ~4,-110 PRINT "O":
360 MOVE 78,-110 PRINT "90":

370 MOVE 158,~-110
380 MOVE 248,-110
Z90 MOVE 338,-110
400 MOVE S50, -1:28
410 7

420 ' Draw sine curve
430 7

440 FOR x=0 TO I60

450 PLOT x, 100#8SIN(x), 1
460 NEXT

470 MOVE 132,90

480 PRINTUSINE":

490

300 ' Draw cosine curve
510 7

520 FOR x=0 TO 360

530 PLOT x, 100%C0OS(x),3

PRINT "180";
PRINT "270";
PRINT "360":
PRINT "Angle in degrees";

540 NEXT

550 MOVE 40, -BO:PRINTCOSINE":
560 7

S70 7 Tidy up

=580 7

590 TAGOFF : LOCATE 1,1

600 WHILE INKEY$="" @ WEND
610 END

After running the program, study the listing above. First, line
180. The border is set to colour 20. In line 200 we see an ORIGIN
command that sets a graphics window in the centre of the
screen. Our new origin is 144,200 and the window is limited to all
points from 108 to 534 horizontally and from 56 to 310 vertically.

The command DEG in line 210 tells the CPC464 to do all its
calculations of sines and cosines in degrees instead of radians
(see Chapter 6) and lines 250 to 300 draw the axes for the graph.

The keyword in line 310, TAG, allows you to do some clever
things with PRINTed text. When you PRINT ordinarily, the
characters are assigned to the ‘cells’ into which the screen is

Painting by Numbers

37

38

divided and to which we can refer using the LOCATE command.
The text cursor points to the cell where the next character will be
PRINTed.

TAG stands for Text At Graphics cursor and when it is in
operation all PRINTed text commences at the graphics cursor
instead of the text cursor. Since we know that the graphics
cursor can be anywhere on or off the screen, this allows great
flexibility when PRINTing. In this exercise we are going to use
TAG to label the axes and curves of the graph.

The reason we have a special command to achieve this is that it
1s much slower for the CPC464 to draw a character on the screen
if it straddles character cells.

The graphics cursor is moved around by the MOVE or MOVER
command. Type LIST 310-400 and you will see how the
PRINTing is done. Note that the semi-colon after each set of

quotes is used to suppress a pair of arrows that would otherwise
be PRINTed.

Enter the following:
CLE:TAG:MOVE S0, SO0:PRINT"HELLO THERE™"

and you will see the arrows. If we weren’t using TAG, these
characters would move the cursor to the start of the next line.
Since we are using TAG we have no use for them.

For every character the graphics cursor takes the top left
position within each 8-pixel-by-8-pixel character cell, and is
moved 8 pixels right for the next character. Note that if you now
type PRINT“LOLO”, the characters are PRINTed at the text
cursor once more. TAG is switched off after ENTER is used; that
is why the first line above was typed in as one line. Type
TAG:PRINT“LOLO”; once more the characters are PRINTed at
the graphics cursor.

Note also that the ink for the TAG text is the graphics and not
the text PEN ink. To change the ink you have to use the third

TAG

Graphics
Cursor
Address

Painting by Numbers

argument of PLOT or DRAW since there is no command like
PEN to change the graphics pen directly. Similarly, the
background colour for the characters is that of the graphics
window, not PAPER.

Lines 440-550 carry out the calculations and PLOTing for the
graphs (which may or may not be familiar to you). In Chapter 6
the uses of SIN and COS will be fully explained and reference
will be made to this program. Line 590 has the keyword
TAGOFF which does exactly what you think it does - it returns
PRINTing to the text cursor. Note that when TAG is on,
LOCATE still moves the text cursor around the screen, even
though nothing happens there until you issue a TAGOFF.

PIE CHART

The next program on Datacassette A is PIE CHART. It is a
further example of a program that uses both words and graphics
on the same screen.

Pie charts are even more popular with sales managers, market
researchers and sociologists than bar charts. The reason is they
can show percentages as a portion of a total cake, rather than
just relative to one another. This program only asks you to enter
the numbers you want displayed - it even calculates the
percentages for you! Try it out before studying the following
listing.

100 ° Pie charvt

1147

120 ° DR 30/9/84

130 7

140 7 Screen

150 °

160 CLEAR

170 DIM name$(9), avount (3) ' optional

180 MODE 2 : BORDER 19
130 INK ©, 23 1 INK 1,0

200 PAPER O @ PEN 1

210 PRINT CHR$ (23) :CHR$ (0) :

220

230 [OBUR 300 7 heading
kd

240
-;‘::5(:) Q$=“Y“

260 WHILE UPPERS$ (g$)="Y"
270 °

280 GOSUE 650 ' get data
290 CLS

Painting by Numbers

39

300 GOSUB 930 ° Draw pie

310 7

320 L.0CATE 1,19

330 INPUT “Again (Y/N) ", g%

340 WEND

350 END

360 7

370 7 SUBROUTINE t Draw a cirecle
80 7 Centre & x,y

390 ° Radius & »r

400

410 MOVE x, y+r

420 s=0,2 ¢ 'Fineness of PLOT

430 FOR i=0 TO Z#PI+s STER s

440 DRAW x+SIN(i)*y, y+COS(i)*r, 1
430 NEXT

460 RETURN

470 *

480 ' SUBROUTINE @ Print heading page
430 7

500 CLS

510 LDBCATE 35,2 @ PRINT "Pie Chart®
520 MOVE 260, 360:DRAW 356, 3601 DRAW 356, 390:DRAW 260, 390:

DRAW 260, 360

S30

540

WINDOW 5, 80,5, 23
PRINT "This program demonstrates a simple subroutine

which will draw pie charts®

550

PRINT “"from a set of information supplied. You

should enter the data as a"

360

PRINT "rmumeric list giving if you wish a name to

each itewm. The program is®

570
the
580
yOu
590
&00
610
620
&30
640
&£50
660

PRINT “designed to accept ten items only although
pie routine within wiil"

PRINT "work with as many itews as you wish, should
alter the input program®

LOCATE 25, 7:PRINT"Press SPACE to continue®

WHILE INKEY${(*" " @ WEND

RETURN

' SBUBROUTINE : Get 10 data items

¥

cLs
PRINT"Please enter the amount and the the description

of each item. The list will"

&70

FRINT"terminate after 10 entries or if you give a

negative value for an amount”

&80
690

BRINT
LOCATE 18,4 : PRINT " Amount" : LOCATE 35,4 ! PRINT

“Description®

700
710
720

40

ent ry=0icount=0
WHILE (entry)=0 3} AND (count {10)
LOCATE 9, S+count * PRINT "Item”j;count+l

Painting by Numbers

730 LOCATE 19, 5%+count @ INPUT "",entry :
amount (count) =ent ry

740 LOCATE 35, 5+count @ INPUT """, names(count)
750 count = count + 1

760 WEND
770 IF entry)=0 THEN count=count+l
780 count = count ~ Z 7 now=no of valid items

790 sum=Q

800 FOR i=0 TO count

810 sum=sumt+amount (i)

B20 NEXT 1

B30 PRINT : PRINT TABWS) :"Thank you. Now press SPACE
to see the chart®

B840 WHILE INRKEY$ (» * " 1 WEND

850 RETURN

B&0O 7

870 ' SUBROUTINE : Draw the pie

880 7 Entry variables f x,y,r — centre and radius of circle
ag0 -’ : cagunt - nuwber of items

300 7 : amount (0) to amount (count) - items
gi0 ° 3

20 0F

930 x=J20 & y=1i80 & r=130

240 GOSUB 410 7 Draw circle

950 7

360 p = 0 3 oldp = O

970

980 FOR i=0 TO count ' main loop
290 cum=0 * zero cumulator

1000 7

1010 7 Count up to current bar

1020 °

1030 FOR 3=0 TO i @ cum=cumtamount (33 = NEXT
1040 ?

1050 oldp = p ¥ store last bar

1060 p = (cum/sum }*¥Z#P] 7 calculate next one

1070 MOVE x,y ' centre of circie

i080 DRAWR SIN(p)*r,CO0S(p)*r,1 * draw to edge
10390 GOSUR 1160 7 print description

1100 NEXT i

1110 RETURN

1130

1140 7 SUBROUTINE @ Print pie description
1150 °

1160 middie=(p+oldp)/2 ’ wmiddle of segment
1170 outer=r+25 ’ putside circle

1180 MOVE x+8IN(middle)#outer, y+COS(middle) *outer
1190 wid = LEN(name$(i))

1200 IF widdle » PI THEN MOVER ~8%wid,0 "if on left
move left

1210 TAG @ PRINY name$(id; @ TABOFF

1220 RETURN

Painting by Numbers 41

42

TESTING

When you run SATS3, keep this book to hand so that you can look
up the answers. You aren’t sitting an exam - these SATs are

meant only as a help in assessing how well you have understood
before going on to the next chapter.

Painting by Numbers

Chapter 4

TIME ON YOUR
HANDS

LOOPS WITHIN LOOPS

In Part 1 the keywords FOR, NEXT and STEP were introduced
to show how a row of fence posts could be drawn across the
screen. To save you looking it up, the routine was:

€50 FOR f=0 TO &20 STEP 20
660 MOVE f,0:DRAW f,E0, 15

670 NEXT f

Type it in now if you like and RUN it. It was explained that the
CP(C464 allocates successive values of ‘f”, increased by the value
of the STEP, each time it comes across the NEXT, beginning
with 0 and ending with 620. So the first value of ‘f’is 0, the next1is
20, the next 40 and so on. It should be mentioned thatthe end-of-
range value is not necessarily the last value to be taken; that
depends on the STEP size. For example, if you type in a new line
650:

£50 FOR f=0 TO 635 STEP 20

The last value of ‘f” will still be 620 because the next value, 640,
falls outside the FOR-NEXT range. The STEP size can be
virtually any amount including fractions and negative
numbers, for example:

FOR f=0 TO 10 STEP 0.15
gives values 0, 0.15, 0.3, 0.45, 0.6, etc., up t09.9. 10 is not the last
value.

FOR f=10 TO -7 STEP -2

gives values 10,8, 6,4,2,0,-2,-4 and -6. Again, -7 isnot the last
value.

43

44

In the last chapter, the program which drew a row of disks
across the screen had two FOR-NEXT loops, one inside the
other. The inner loop (variable 1) drew the disks, while the outer
loop (variable x) positioned the centre of each disk.

FOR-NEXT loops can be used in three ways:

0O As in the example above, if we want particular successive
values of the FOR variables that are to be used for
PRINTing, PLOTing, or running through an array.

O If we want to repeat a set of commands a particular number
of times.

O If we want to introduce a delay to slow down the speed at
which things happen.

The following program illustrates all three principles:

i0 FOR 1=1 7O 3

20 FOR =10 TO 100 STEP S
30 PLOT O, n:DRAWR 100, 100
40 FOR d=1 to S500:NEXT d
50 NEXT n

60 CLS

70 NEXT 1

The innermost loop on line 40 is the delay loop which causes the
CPC464 to count from 1 to 500 to itself before carrying on. Try
changing the value 500 to, say, 50 or 5000 to get the idea, then
delete that line completely to see the maximum speed.

Nesting

The next loop is from lines 20 to 50 and uses the variable ‘n’ to
position the graphics cursor. The outer loop, lines 10 to 70, makes
sure the whole process is repeated three times. The loops in the
program are said to be ‘nested’, which means stacked one inside
the other. Any number of loops can be nested so long as you
remember that they must never overlap. Swop lines 50 and 70
and then RUN.... You will get a message: Unexpected NEXT in
70. The CPC464 found that loops ‘I’ and ‘n’ were overlapped and
so failed to execute the program. If you leave the variable name
out after the NEXT command the CPC464 will match a NEXT to
the last FOR. But that means that if your program is wrong, it

Time On Your Hands

will simply run on a bit further before collapsing, so don’t do it!
Always add the variable name.

Note that when the CPC464 exits from a loop, the variable used
for the loop will have a value equal to the first value that was
OUTSIDE the range and not the last value inside the range.

RUN the program again and when it has finished type in:

PRINT nsl

You will see the numbers 105 and 4 on the screen: not 100 and 3 as
youmay have expected. The CPC464 will also allow you to jump
out of a loop before it is completed and, of course, any of the range
and step numbers can be replaced by variables:

10 LET a=7:LET b=73: LET s=1.2
20 FOR n=a TO b 8TERP s

30 IF my50 THEN GOTO &0

40 PLOT S,n

50 NEXT n

&0 PRINT n

ONCE IN A WHILE

The FOR-NEXT loop is not the only sort of loop you can use on
the CPC464. There is also the WHILE-WEND loop. The syntax
of WHILE is as follows:

WHILE {(logical expressiom

These loops can be nested just like FOR-NEXT loops and the
same rules apply; every WHILE must have its WEND. The
WHILE-WEND loop is one that depends upon a specified
condition being true or false. All the program thatis between the
WHILE and its matching WEND will be executed so long as the
condition specified in the WHILE is true. For example:

10 WHILE s (1000
20 n=n+1
IO s=En¥nEn

40 PRINT s

Time On Your Hands

45

46

30 WEND

60 PRINT

RUN this and you should see on your screen ten numbers which
are the cubes of the numbers 1 to 10. The program was prevented
from continuing beyond this by the WHILE, but only after the
condition had been tested. When the CPC464 then came across
the WEND again, ‘s’ was not less than 1000 so it jumped out of
the loop to line 60.

What, you may be thinking, are the advantages of using a
WHILE-WEND loop instead of the following?

10 IF s)=1000 GOTO &0
20 n=n+l

30 sEnENnEn

40 PRINT s;

350 GOTO 10

60 REM end of loop

After all, it does the same thing!

The answer is that with WHILE-WEND you do not have to
concern yourself with which line numbers to GOTO, and it is
therefore more convenient, especially if you have a large block of
program in the loop or you are liable to move and change lines
and forget where you had to jump back to.

You may exit a WHILE-WEND loop before the condition
becomes false if you wish; the CPC464 won’t get confused!

DIGITAL CLOCK

If you now look at the listing of DIGITALC you will see that
there are seven FOR-NEXT loops, six of which are nested. There
is also a very simple WHILE-WEND loop at line 170. There are
several aspects of programming in this program that may be
new to you, but one very important one is the conditional multi-
statement line as seen in lines 1000 and 1180 of DIGITALC.

Time On Your Hands

10 INK L, Z262BEN 1 :MODE
20 FOR nm=48 T0O 57

S0 g in-48)=CHRE (n)

40 NEXT n

SC PRINT TRB(14) 0 "DIGITOL DLOCKY

0 PRINT PRINT

700OINDBUT FENTER starting houri—"oh
B0 hi=INT{(n/10}

30 y=h-nthe i

BRI
INPUT PENTER starting saingbesi-" e

w=INT (/100

S D Rl O

Al LOURATE &, 123 ?LM"JEQER sEt to start at 1 BTRE(hL*10+x)
REEE T AV “ﬂ&» () e a0y

150 PEN A2

10 H
5T LE MhtY$"”"NE‘1
1930 MDDE J:Dt.\ 2rink &2
SO0 PRINT # DIGITHL CLOCKRY
210 LOCATE 2, 10:PRINT 2 I

1000 IF hi=0 THEN v=3 ELSE v=ZIiL0OCRTE 7, 103 PRINT n$(hi)
1010 FOR humy TS
LOS0 LOCATE 8, 108
1030 FLJ L=y TG
L0460 LOUATE 10, 1OIDRINT ndimb)
1050 FOR mus=z TO 9

060 LODATE 11, 108 PRINT n®{mu)
LOT70 "
10OR0

fmte

12, 28
any key to start the clook

s
H

xT:’

RINT m& (=)

Lﬁ‘tl<

RINT mn%ist)

PR ENT N (s}
ZFINEXT p

wﬁxT Sl
NEXT st
NEXT muzz=0

NEXT mb ty=0

NMEXT husr=0

LOCATE 7,10

IF hit=1 THEN mt=02x=]10RINT * "I1FLEE hi=]fw=0:
kRN

1QU GOTO L1000

In Chapter 7 of Part 1, you were introduced to the IF-THEN-
ELSE command. Remember this?

IF money}0 THEN PRINT "Rich®
ELSE PRINT "Hard up®

Time On Your Hands 47

48

In this command the word ‘Rich’ would be PRINTed if the
variable ‘money’ had a value greater than zero, or ‘Hard up’
would be PRINTed if ‘money’ had a value of zero or less. In
Chapter 6 of Part 1 you were told how to put several commands
on a single line so long as they were separated by colons. We did
this earlier in this chapter.

Until now you may well have thought that there is no difference
between putting lots of commands on a single line or on separate
lines. This is correct so long as one of those commands is not an
IF command. Whether or not any commands following an IF
statement on a multistatement line are executed depends on
whether the condition was true or false.

Consider

IF money)O THEN PRINT "Rich" ELSE PRINT
"Hard up":PRINT"Lend me some money please"

and

IF money)O THEN PRINT "Rich" ELSE PRINT

"Hard up"
PRINT "Lend me some money please”

You may think there is no difference between these two
arrangements, but you would be wrong. In the lower example,
‘Lend me some money please’ would be PRINTed whatever the
value of the variable ‘money’. But in the upper example this is
not the case. ‘Lend me some money please’ will only be
PRINTed if ‘money’ is zero or less, just as ‘Hard up’ will be. This
is a very important point to remember and can be put like this:
When the IF condition is true, only the statements after the
THEN and up to the ELSE are executed; when the condition isn’t
true, only the statements after the ELSE are executed.

Referring to line 1180 of DIGITALC we can see that if the
variable ‘ht’ has a value of 1 it will be changed to 0, the variable
‘x’ will be set to 1, and a space will be printed at column 7, line 10.
However, if the value of ‘ht’ is not 1 then it will be setto 1, ‘x’ will
be set to 0 and the subscripted variable n$(ht) will be printed at
column 7, line 10.

Conditional multistatement lines are very useful when used
correctly and save a lot of extra lines in the program.

Another point to make concerning DIGITALC is the use of
subscripted string variables for the printing of the numbers
that make up the clock. Why not use the values of the FOR
variables itself? The answer is that when the CPC464 prints a
number it always puts a space in front and a space after it. Thus
you cannot PRINT one number directly after another as the first

Time On Your Hands

will be partly erased by the second one’s leading space. When a
string variable is PRINTed, however, there are no leading or
trailing spaces. It is therefore much easier to set up the string
array and use those characters for the numbers than chopping
the spaces off the actual numbers (which can be done, see
Chapter 7).

Note that the program DIGITALC does not make any checks
on the input you make. It will accept silly times like 10:76 or
35:15. In a later chapter we will explain how to trap errors by
inserting lines that check the inputs. Finally, you may be
wondering why this clock does not make use of the CPC464’s
own built-in clock (which can be accessed by the TIME keyword).
The answer is that the use of TIME calls for some fancy string

handling and chopping which will be explained in Chapter 7. -

Suffice it to say that if you type PRINT TIME, the number you
get is the number of 1/300ths of a second that have elapsed since
the computer was switched on or reset (not including cassette
use).

PRINT TIME/300 will give you seconds and PRINT
TIME/300/60 will give you minutes, of course. Using TIME will
make the clock more accurate, but for now find out how accurate
the present version is.

ALARM

ALARM is the next program on Datacassette A. It makes use of
a lot of commands we have looked at in this chapter, and quite a
few others besides. You really can set it to wake you up in the
morning, or you can use it to teach your little sister to tell the
time!

Time On Your Hands

49

50

Although this program contains some rather advanced
programming, you may like to list it on your screen to see how it
is put together.

TESTING

Yet another chance to check up on your progress through this
course. Don’t worry if you keep having to go back over things -
that’s what learning is all about, so load up SAT4 and away you
go.

Time On Your Hands

Chapter 5

ALL WORK AND
NO PLAY

In the early days of computers, they were nearly all bought by
commercial organisations and used almost exclusively for
processing such things as stock levels, invoices and payroils.
There was one company that tried to make all its personnel
aware of this by putting the following message on the screen
every time someone signed on at the computer:

The company computers are for business purposes only

The idea was to stop people from playing computer games in
company time. It didn’t work!

Since computers have now become available at a price ordinary
people can afford, the problem hardly arises any more. Few
commercial computers have anything like the colour graphics
capability of the CPC464, let alone the sound commands.

The real irony is that a CPC464 which has been bought for
playing and programming computer games can also be used for
running business software. It could well be the only computer
that a small businessman will ever need!

BUSINESS PROGRAMMING

Very few business users of computers know, or indeed want to
know, anything about programming. For them the computer is
just another part of their business equipment and not the main
object. Professional decorators don’t need to know the chemical
composition of paints they use to produce a good job, any more
than they have to make their own brushes! For this reason the
design of such programs is considerably different from those
which hobbyists produce for their own pleasure.

The first difference is in the design of the screen instructions to

51

52

the user. For a business user they must be clear and
straightforward, and any INPUT statements should give the
nature and range of the required data.

The other difference is the need for a ‘User Guide’ for the
program. Even though the screen design will help users
through the data entry stages, users would find it tedious if they
had to sit through a long explanation of what was required each
time the program was run. Many people also prefer to have a
quick skim through the program description before actually
sitting down at the keyboard. In addition, we all find it helpful to
have some form of reference material at our elbow whatever we
are doing.

Most of the rest of this chapteris about a program called ESTIM;
this will give you a taste of what business software is like. Don’t
be put off by the idea. Although Amstrad have never made the
inflated claim that the CPC464 could run a nuclear power
station, there are many ways in which it could help you at home,
or at school, or at work.

SCREEN DESIGN
Getting the facts in

Here is another old friend from Part 1:

INPUT [{quoted string’ ;]
[{list of: {variable)]

As you can see, it is possiblé to have more than one numeric or
string variable to a single INPUT command. This is done by
using a comma as a separator as in the following example:

INPUT “"Enter four numbers'ja,b,c,d

In this form the command puts a question mark at the end of the
prompt string and leaves the cursor one space to the right of it.
When entries are now made on the keyboard, separated by
commas, the CPC464 will attempt to assign them to the
successive variables in the list. If the entries are not of the same
type, e.g. string instead of numeric, orifinsufficient entries have
been made, it will give the message

Redo from start
and repeat the prompt.

If you replace the semi-colon after the prompt string with a
comma, the question mark and space will be suppressed.

AllWork and No Play

Getting the facts out

An even older friend isPRINT. Whereas INPUT is the main way
we have for the user to talk to the program, PRINT is the only
method for the program to talk to user. Apart from the cursor
controls of LOCATE and TAG, the use of the PRINT command
is the thing that can make or mar the screen presentation.

The usual syntax is:

PRINT {(print item) [{(separator) (print item)
.« Jlseparatorl

As you will remember from Part 1, the separator may be either a
comma, which will cause the cursor to skip to the beginning of
the next print zone before handling the next <print item> (we’ll
come to the ZONE command later on!), or a semi-colon, which
will append <print item>s. When there is a separator at the end
of the command it also stops the next PRINT command from
being started on a new line.

The <print item> can be one of three things:

{expressiom
SPC{{integer expression’)
TAB{{integer expression})

SPC and TAB may appear at first sight to carry out the same
function, since they are both used to automatically generate
spaces between <print item>s. The difference is that SPC will
insert the number of spaces given by the <integer expression>
starting from the current position of the text cursor, whereas
TAB counts the number of print positions from the beginning of
the line.

If the number of spaces specified by SPC is greater than the line
width, the CPC464 automatically subtracts the number of print
positions per line (a suitable number of times if the value is
greater than one line width) and then gives the resulting number
of spaces. SPC need not be followed by a semi-colon as a
separator since one is automatically assumed, even when SPCis
the last item in the PRINT list.

When the print position given by a TAB is greater than the
current cursor position, spaces are generated until the required
position is reached. (Nothing happens if the cursoris already at
the required position.) Should the required position have already
been passed, a new line is started and spaces generated on it
until the required position is reached. A semi-colon separatoris
assumed automatically in the same way as SPC.

AllWork and NoPlay

53

There are also two string functions which can be used as the
<expression> in a print command: SPACE$ and STRINGS.

SPACES$ is nearly, but not quite, the same as SPC since, if the
number specified in its argument is greater than the number of
remaining print positions on the current line, a new line is
generated and the spaces continued along it. The maximum
number of spaces is 255.

Strings of spaces are often used for erasing text without using
CLS. It is easier to type

PRINT SPACE${40)
than
PRINT *» B

Finally, there is STRINGS that will give you a string full of any
one character:
STRING$ (integer expression)

The <integer expression> is the number of characters you want
in the string. The <expression> is either an integer giving the
ASCII value of the character you want, or youcan putin a string

directly:
PRINT STRING®(10,920) gives ZZZZZZZZZZ
PRINT STRING$ (16, "=") gives = ===
PRINT STRING®(7,"CPC4E&4") gives ccceeeo

Here is the ZONE command as promised:

ZIONE {{integer expressiom . {exaression!

Not very complicated really - it resets the width of the print
zones across the screen to the value given by <integer
expression> (the default is 13 - remember?). This is a useful
command which makes tables of numbers easier to handle.

Laying the facts out

The above new facets of the PRINT command are all to do with
positioning words and numbers on the screen. Even so, they still
can’t handle all aspects of screen design without a lot of extra
programming. This is why Amstrad BASIC has a very powerful
option known as PRINT USING. Here is the syntax:

PRINT USING (string expression):;{print list®
The <print list> is the list of <print item> with separators as for

54 AllWork and No Play

the ordinary PRINT command, but the <string expression> is
known as the ‘Format template’, and is used, for example, as
follows:

PRINT USING “###.H##":finaltotal

If ‘finaltotal’ was calculated to be 87.4473, the number that
appeared on the screen would be:

87.45

What happens hereisthataslong as the expression to be printed
is of the right sort (numeric in this case), the CPC464 will print it
with the decimal point in the correct position on the line and
rounded to the number of digits printed.

The ¢ and ‘#’ are known as ‘format field specifiers’. There are
eleven of these, but by now you are probably getting impatient to
get back to the keyboard so we’ll leave the explanation of these
until later (thereis a list of them on page 55, Chapter 8 of the User
Guide).

ESTIMATING WITH ESTIM

ESTIM is an example of a simple estimating program that
could be used by a professional painter and decorator, or a DIY
enthusiast. It is actually a lot more sophisticated than the usual
method used in the trade, which is to give a fixed price per room
(based on experience, of course) and hope thatit all balances out,
but is still not overkill for a small business. The principle is that
all materials and times are related to the average size of the
rooms in a house, and to the number of rooms - even the outside
work.

To use computer jargon, this program is ‘menu driven’; this
means that the user chooses between different procedures by
selecting them from a screen display known as a ‘menu’. The
menu routine can be seen starting at line 640 following the
initialisation, screen and heading routines. Thisis the main loop
of the program and it directs the user to the routines for five
options. Apart from ‘End program’, these options are either
input procedures which ask the user to enter a series of values, or
output procedures, which give a display of standard data or
results.

Note that the default values used for calculating estimates are
contained in the data list starting at line 3740. These values are
suggestions and not immutable facts. Please check these figures
against current prices and wage rates before committing
yourself to decorating a 57-bedroom palace in Monte Carlo!

Here is the listing for your perusal.

AllWork and No Play

55

100

110 7 Estim

120 7

130 * DA 29/9/784 DGBC z28/11/84
140 *

i%0 7 Initialise

160 *?

170 CLEAR

180 th%=45 * coluwn for input of replies

190 true=-1i:false=0

200 beep$=CHR$(7) :bs$=CHR$ (8) 1 1 f$=CHR$ (10) tcr$=CHRS (13)
210 x®=" Y+bg$+CHRE(24)+" Y 1 xi%=" “"+CHR$ (24)

220 s1$=CR$+]1f$+SPRCES$(T) @ sZ4=GPACES$(1Q)

230 cp.roll=12 a roll covers 12 sq m

2460 DEF Fihcent re$(a$)=8PARCE$ (40-LEN(a%)/2)+a%$

250 DEF FNeven{x,y)=ROUND(x/y) % y ‘round x to nearest y
260 7

270 7 Initialise defaults

280 *

290 DIM ms(7),m(7),mu$(7),c$(4),c(4),a$(6),a(6),16(1),
1(1) * optional

300 RESTORE I790

310 FOR i=0 70 7 READ mb (i), m{i), mub (i) NEXT

I20 FOR i=0 TO 4 : READ c#$(i),c(i) ¥ NEXT
330 FOR i=0 TO & ¢ READ as(i),ali) : NEXT
340 FOR i=0 TO 1 @ RERAD 1%(i),1(i) 3 NEXT

I50 READ rph%, rph

60

370 * Screen

80 7

Z90 MODE 2 : BORDER O

400 INK 0,0 = INK 1,22
¢ PEN 1

410 PAPER O
420 *

430 hé="Decorating Estimator”

440 GOSUB 1860 ° heading

450 ?

460 7 Menu

470 7

480 RESTORE 3760

490 FOR i=1 TO S

500 READ t$

510 LOCATE 28, i*Z+3

520 PRINT ig". ":1t$

530 NEXT

540 LOCATE 32,20 @ PRINT CHR%(18);

550 INPUT "Select (1-8) @ *,i$ & i=VAL(i$)

S60 IF i{1 OR i)5 THEN PRINT beep%:; @ GOTO 540
570 ON i GOSUR &70, 2360, 2660, 1670, 630

580 °

56 All Work and No Play

590 GOTO 430

600 °

610 * End program

620 7

&30 LOCATE 1,22 3 END

640 7

630 7 SUBROUTINE : Input job details

&0 ?

670 h$="Input details"”

680 GOSUEB 1860 ° heading

690 LOCATE 1,5

700 ?

710 * General

720 7

730 hd$="Name of client":FA=79-tb%:iG0OSUB 2140:iclient$=v$
740 hd$="Address (no commas please) ":FA=79-tb%:GOSUB Z140:
address$=vé

730 GOSUR 1810 : total.rooms = roowms

760 PRINT

770 °

780 ' Capture data

790 7

800 hd#$=x%$+"INSIDE DECORATION"+x1$:B0SUB 2240:id. flag=v%
810 IF id.flag=false GOTO 1150 * no inside dec

8z0 °

830 * Ceilings

840

850 hd$=s1$+x$+"Ceilings"+x1%:605UB Z240:ice. flag=vh

860 IF ce.flag=false GOTO 930

870 hd$=sZ%+"Ceilings papered+emulsioned":G0SUR 2040:
ce. pes=vi

880 hd$=s2%+"Ceilings emulsioned only":GOSUB 2040ice.e=vih
830 ce.number=ce.petce.e

300 ce.area.pap=ce.pe*a(() ! ce.area.ewul=(ce.pe+ce.e)*al(d)
910 ce.cost=(ce.area.pap # (m{l)/cp.reoll)) +
(ce.area.emul * (m(2)/c(2)))

920 ce.time=(ce.area.pap /7 1(0) + (ce.area.emul / 1(1))
9z0

840 ' WHalls

950 7

960 hd$=sl$+x$+"Walls"+x1$:608UB 2240:1wa. flag=vh

370 IF wa.flag=false GOTO 1040

980 hd#$=52%+"Rooms papered only":B08UR 2040:wa. p=v#%

390 hd$=s2%+"Rooms emulsioned only”:BOSUR Z040iwa.e=vi
1000 wa. number=wa. pt+wa.

1010 wa. area.pap=wa.p*a(l}) ! wa,area.emul=wa.e*a(l)

1020 wa.cost=(wa.area.pap * (m(0)/cp.roll)) +

(wa. area.enul * (m(Z)/c(2)))

1030 wa.time=(wa.area.pap 7/ 1(0)) + (wa.avea.emul / 1(1))
1040 7

10350 * Woodwork

All Work and No Play 57

1060

1070 hds=sis+x$+"Woodwork"+x1$:605UB Z22405ww. Flag=v%
1080 IF ww.flag=false GOTO 1150)

1090 hd#$=s2%+"Rooms undercoated+topcoated” :G0SUR 20403
wWw. ut=vi

1100 hd$=g5Z$+"Rooms topcoated oniy":1G60BUB 2040i1ww. t=v%
1110 ww. nunber=ww. ut+ww. t

1120 ww. area. under=ww. ut*a(2) ! ww.area.top=(ww. ut+ww. t)
*a{2)

1130 ww. cost=(ww. area. under * m(3)/c(Q)) + (ww.area.top *
m{4)/c{1))

1140 ww. fime= (Ww. area. under+ww. area, top) /7 1(1)

1150 7

1160 7 QDutside decoration

1170 7

1180 PRINT @ PRINT

1190 hd$=x$+"0UTSIDE DECORATION"+x1%$:608UR 2240:0d. flag=v#%
1200 IF od.flag=false BOTO 1520 ° no outside dec

iz10 °

1220 7 Windows and Doors

1230 7

1240 hd$=sid+x$+"Windows and doors +x1$:605UR 2240:
wd. flag=v#

12850 IF wd. flag=false GOTO 1340

1260 wd.cost=03wd. time=0

1270 doors. and.wind=total. rooms * a(3)

1280 hd$=sZ$+"All Varnished only?":1608UR 2240

1290 IF v% THEN wd.cost=doors.and.wind * m{&) /o)

wil. time=doors. and.wind /7 1(1):60TD 1340

1300 hd$=s2%+"All Undercoated+topcoated?" :GOSUR 2240
1310 IF v% THEN wd.cost=doors.and.wind *{ m(3)/cld)
+m(5) /o(l) 1iwd. time=doors.and.wind*2 / 1(1):60TO 1340
1320 hd$=s24+"All Topcoated only?":G0SUBR ZZ40

1330 IF v% THEN wd.cost=doors.and.wind * m(3)/c{l) ¢
wd. time=doors.and.wind / 1(1)

1340 7

1350 * Guttering & Downpipes

i360 7

1370 hd$=slé+x$+"Guttering and downpipes"+x1$3G08UR 23240%
gd. flag =v%

1380 IF gd. flag=false GOTO 1430

1330 gd.cost=01i1gd. time=0

1400 gd. length=total. rooms * al4)

1410 hdd=sZ%$+"A11 Undercoated+iopeoated?’ @ GOBUR 2240
1420 IF v#% THEN gd.cost=gd. length *#{ s(3)/c{Q) + m(3)/
c(1) Yigd. time=qgd. length*2 / 1(1) ::GOTO 1430

1430 hd$=s24$+"A11l Topcoated only?" @ BOSUR 2240

1440 IF v% THEN gd.cost= gd. length * m(5)/c(i) :gd.time
=gd. length / 1(1)

1450 -

1460 * Dutside Walls

58 AllWork and No Play

1470 7
1480 hd$=sit+x$+"Outside walls"+x1$:1808UB 3400w, Fi AQRSVH
1490 IF ow.flag=false THEN 1520

15300 ow.cost = total.rooms * a(S) % (wm{(7)/c{4)
1510 ow.time = total.rooms * a(Sy / 1(1)

1520 °

1530 7 Rounding of variablies

19540 °

1550 ce.cost=FNeven({ce.cost,0.03i) ¢ ce. tive=FNeven{ce. tine,

0.25)

1560 wa.cost=FNeven (wa.cost, 0. 01)

0,25

1570 ww.cost=FNeven (ww.cost, 0. 01)

0, 25)

1580 wd.cost=FNeven(wd.cost, .01} ! wd,.time=FNeven{ng. time,
0. 25)

1590 gd.cost=FNeven(gd.cost, 0. Q1)
0.25)

1600 ow.cost=Fheven(ow.cost,0.Q1) & ow.times=Fheverniow. tive,

0,28

1610 7

1620 PRINT @ PRINT : GOSUER 1950 ' spacebar

1630 RETURN

1640 7

1650 * SUBROUTINE & Prepare for estimate outout

1660

1670 he="Print Estimate” : BOSUR 1860 ' heading

1680 * send to screen

1690 7

1700 str = 0 3 BOSUBR 3100

1710 ?

1720 7 Send to printer

1730

1740 REM: str = 8 : BOSUR 3100 (disabled)

1750 °

1760 RETURN

1770

1780 7 SUBROUTINE : Ask the rnumber of roows

1790 return answer in ' rooms’

1800 7

1810 hd#%="Total number of rooms" & F% = 2

1820 GOSUR 2040 & rooms=v% @ RETURN

1830 7

1840 7 SUBROUTINE @ Print heading

1850 7

1860 CLS

1870 templ=LEN(h%) itempZ={80~templ) /2

1880 PRINT TAB(tempZ) :CHR$(24) sSTRINGS (templ+2, 131) (DHR$ (24
1890 PRINT TAR(temp2): CHRﬁ(ﬁ&)j” Yehket Y ICHR$ (24

1900 PRINT TQB(tempEﬁ;CHR$(2ﬁ};STRZNG$(temD1+E7iaD};QHR$(2a}
1910 RETURN

wa. time=FNeven{wa.tim e?

wWw. time=Fieven lww. T ine,

gd. time=FNevenigd. time,

~

AllWork and No Play 59

1920

1930 * SUBROUTINE : Wait for the spacebar {(debounced)
1940 7

1950 LOCATE 1,25

1960 PRINT Fihcentre$ ("Press “+CHR®(24)+" SPACE "+CHR$ (24)
+" to continue");

1970 WHILE INKEY$ » "" & WEND

1980 WHILE INKEY$ (O™ O WEND

1930 RETURN

2000 7

2010 * SUBRDUTINE f Input routine (number)
2020 7 returns number in V%

2030 7

2040 PRINT hd$;TAB(tbh%);

2050 PRINT™L":

2060 PRINT STRINGS(F%," "):"]1 number";5TRINGS (F%A+8, bs$)
2070 INPUT "' V%

2080 RETURN

2030

2100 7 SUBROUTINE : Input routine (string)
2110 7 returns string in V$
21207 Field length in F%
2130 7

2140 PRINT hd$:TAE(tb%) 3

2150 PRINT “"[":

2160 LOCATE tb%+F%, VPOS (#0) sPRINT"I";
2170 LOCATE tb%+1 ,VPOS (#0)

2180 INPUT """, V$

2190 RETURN

2200

2210 7 SUBRDUTINE : Yes/No routine

2220 ° if yes then vi=true else vi=false
2230 ¢

2240 PRINT hd$:;TRAB{(tb%) ;

2250 v4=1

2260 PRINTYL 1 Y - yes or N — no"STRING® (35, 8);

2270 g¥=INKEY$:IF g#$="" GOTO 2270

2280 IF UPPER%$ (g$)="Y" THEN v%=true # PRINT"Y";B5TRINGS
(1, bs$)::607T0 2320

2290 IF UPPER$ (g$)="N" THEN v¥%=false: PRINT"N";8TRINGS
(1, bs$);:60T0 2320

2300 IF v%{l AND g%$=cr$ THEN PRINT:RETURN

2310 PRINT beep$:

2320 BOTO 2270

2330 °

2Z40 ' SUBRDUTINE @ Display defaults

2350 7

2360 GOSUR 2610

2370 PRINT & PRINT"MATERIALS":TAR(40) 3 "COBT";TAB(53);
"UNIT" ¢ PRINT

2380 FOR i=0 TO 7

2390 PRINT " “"sm®b(i);

60 All Work and No Play

2400 PRINT TAB(40) sUSING "##. ##" jm (i)

2410 PRINT TAB{(SS) ;mub (i)

2420 NEXT

2430 PRINT @ PRINTYCOVERING POWER":TAE(40):"5@ METRES/
LITRE": PRINT

2440 FOR i=0 T0O 4

2450 PRINT " ":c$(i)3TAR40) ;USING BHEE, # 1o (1)

2460 NEXT

2470 GOSUR 1950 7 Next screen

2480 GOSUEBR 2610

2490 PRINT : PRINT"AREAS":TAB(40) ;"S6 METRES/ROOM" : PRINT
2500 FOR i=0 TQ 3

2510 PRINT * ":a$(i);TAB(40) ;USING THEE. H"ra(l)

2520 NEXT

2530 PRINT @ PRINT "MAN-HOURS":TAB(40):;"S58 METRES/HOUR" :
PRINT

2540 FOR i=0 70 1

2550 PRINT " ":14$(i);TAR(40) ;USING THEE. #" 1 (1)

2560 NEXT

2570 PRINT ¢ PRINT "RATE / HOUR":TAB(40) ;"POUNDS/HOUR" 2
PRINT

ZSR0 PRINT * ":rph$;TAB(40) ;USING "##. ##" ;rph

2990 GOSUR 1980 ° space

2600 RETURN

2610 h%$="Costings" & GOSUR 1860 ° heading

2620 RETURN

2630 7

2640 ' SUBRDOUTINE : Amend Material Costs

2650 7

2660 GOSUB 3000

2670 PRINT ¢ PRINTYMATERIALS":TAR(40) ;"COST";TAB(S0) ;
TNEW CDST";TQB(GS);“UN?T" 1 PRINT

2680 FOR i=0 TO 7

630 PRINT " ":m$ (i) ; TABR(40) ;USING "##. ##";m (1)

Z700 PRINT TAB{(&S) jmus (i)

2710 LOCATE 55,VROSGH#0)-1 @ INPUT "",n

2720 IF ndQO THEN m(i)=n

2730 NEXT

2740 PRINT @ PRINT"COVERING POWER":;TARE(40):"8R METRES/
LITRE" s TAR(60) "NEW VALUE": PRINT

2750 FOR i=0 T0O 4

2760 PRINT " ":c$ (i) :TAB(4AOQ) USING “###.#";c(1) 3

2770 PRINT TAB(E&OY : 2 INPUT "',n

2780 IF v 0O THEN c(i)=n

2790 NEXT

=800 GOSUR 1920 ' Next screen

2810 GOSUR F000

2820 PRINT @ PRINT"AREAS":TAB(40) ;"5Q METRES/ROOM" ; TRE(&O) 5
UNEW VALUE® @ PRINT

2830 FOR 1=0 TO 5

2840 PRINT " ":a%(i);TRB(40) jUSING "###.#";a(i);

2850 PRINT TAR(EO); 3 INPUT """, n

All Work and No Play 61

2860 IF v 0 THEN a(i)=n

2870 NEXT

=880 PRINT : PRINT "WORK-RATES";TAB(40) ;"SR METRES/HOUR"»
TRE (60) 1 "NEW VALUE®

ZB90 PRINT

2300 FOR i=0 TO |

2910 PRINT " ":14 (i) ;TAB(4O) sUSING "H##. #" 11 (1) ;

2220 PRINT TAB(EO); @ INPUT "' n

925 IF v O THEN. 1(i)=n

2930 NEXT

2940 PRINT @ PRINT "RATE / HOUR®;TAE(40) 3" POUNDS/HOUR" :
TREBIGO0) "NEW RATE"

2950 PRINT

2960 FRINT " ";rph$;TAB(40) jUSING "“##.##":roh:

2370 BERINT TAB(EO): ¢ INPUT """, n

29753 IF n 0 THEN rph=n

F380 GOBUE 1930 7 space

2930 RETURN

3000 he="Amend Costings" @ BOSUE 1860 ® heading

S0L0 PRINTH Use ENTER to skip®

020 RETURN

JN30
3040
050
SO&D
3070
3080 7 Main heading
3030
2100 ta=0 1 th=% 1 to=25 @ td=45 : te=65 ' column positions
0¥ report

3110 IF (id.flag false) AND (od.flag = false) THEN PRINT
pesp$; ! RETURN 7 no figures

J120 PRINT #str, FNcentre$("Estimate of tiwe and materials
far redecorating work at:?)

2130 PRINT #str

3140 PRINT #str, FNeent re$ (adaress$) ¢ DRINT #str

F150 PRINT #str, FNocentre$("for "+olient$) @ PRINT #str

Siea ”

317C¢ 7 Inside work

180 ¢

3190 id.cost=0 @ id.time=0

200 IF id. Flag=false GOTO 3350

O BRINT #str, TREB{(ta) :"Inside work % 3 PRINT #str

SZE0 PRINT #stv, TAB(tb) : "WORK" s TRAE (te) 1 "NO OF ROOMS" «
TRE(td) ; "MATERIAL COSTH":

SUBROUTINE f Print out estimate
! str=siream to orint to

ta - te = tab settings

B Y

]

IEI0 PRINT #str, TAB (te+i) 1 "TIME™
I240 BRINT #str, TAR(£D) § " =——=" 1 TAE(£E) § "—m e e "
TRE(H) ¢ 5 e "y

3
S50 PRINT #stre, TAB(te+1) 1 #———=" 1 DRINT #str
Poni=ce. number ¥ cl=ce,cost @
cioe.time @ BOSUR 3670 @ id.cost=id.cost+ee. cost ! id.time

62 AllWork and No Play

=id. timet+ce.time

3270 IF wa.flag THEN n=1 ! ni=wa.number i cl=wa.cost =
i

wa.time @ GOSUR 3570 : jid.cost=id.cost+wa.cost *

id. time+wa. time

I280 IF ww.flag THEN n=2 I ni=ww.number : ol=ww.cost :
P i

ww. time : GOSUB 3670 d.cost=id.cost+ww.cost :
id. timetrww.timne

3290 PRINT #str

3300 PRINT #str, TAB(td) 3" ————m—m ": TAB(te-2);"-——m

7

3310 PBRINT #str, TAR(tc) ;"Totals:';

3320 n=6 ¢ nl=0 @ ci=id.cost ! tl=id.time : BOSUB
IZ30 PRINT #str, TAB(td) ;V'=======". TAR({e-2);"====
3340 PRINT #str @ PRINT #stre

3350

3360 ' Dutside

3370

3380 od.cost=0 @ od.time=0

II90 IF od.flag=false GBOTO 3520

S670

3400 PRINT #str, TRB(ta) :"Outside work " & PRINT #str
F410 PRINT #str, TARBE(ED) : "WORK": TARB{(td) : "MATERIAL COSTS";

TAB(te) ;" TIME"

3420 PRINT #str, TAB(tD) ;¥————%: TAB($d) j"—=——mm———

TAB (te) ;M —mmm
I4I0 PRINT #str

tl=
id. times

til=
id. time=

2440 IF wd. flag THEN n=3 nl=0 ! ci=wd.cost @ tl=wd.time

GOSUB 3670 * od.cost=od.cost+wd.cost @ od. time=od. time+

wd. time

3450 IF gd.flag THEN n=4 : ni=0 ! cl=gd.cost : ti=gd.time
GOSUB 3670 @ od.cost=od.cost+gd.cost : od.time=sod.time+

gd. time

3460 IF ow.flag THEN n=5 & ni=0 i cl=ow.cost i ti=ow.time
GOSUB 36870 @ od.cost=od.cost+ow.cost ¢ od.time=od.time+

ow. time

3470 PRINT #str, TAB(td) ;" ———rw—m "« TAB(te—-2) 3=

*

480 PRINT #str, TAB{tc) " Totalsi®;

3670

3490 rn=6 ! nl=0 ! cl=od.cost ! ti=od.time @ GOSUR

3500 PRINT #str, TAE(td) : "=======": TAR(te-2) ;"========!
3510 PRINT #atr ¢ PRINT #str

3520

3530 t.cost=id.cost+od.cost @ t.time=id.timetod.time

3940 PRINT#str, TRB(Lb) :“Grand Totals";

3550 =6 ! ni=0 ! cl=t.cost ¢ ti=ft.time ::GOSUR 3IE&70
I560 PRINT #str, TAB(tD) z"Labour Cost":TAB{td) ;USING

“####.##";tl*rph;
S70 PRINT #str
3480 PRINT #5TR, TAB(td-2) ;"=========,

590 PRINT #Str TAB(th) :"Total Estimated":TAR{td) ;USING

“#### #H"stb. t1me*rph+t cost
SE00 PRINT #str @ PRINT #str
3610 °

I620 GOSUE 1950 ¢ RETURN

AllWork and No Play

63

3630
3640
3650

3660
I670
I680
3690
F700
3710
I720
3730
3740
3750
3760
3770
3780
3790
J800
Z810
J820
3830
ZB40
3850
F8e0
3870
3880
3830
Z3900
310
3920
3330
3940
3950
3960
3970

? SUBROUTINE : Output line for use with est. printer

Ed

needs n for a$, nl,cl,ti * if ni=0 then
dan’t print

IF a$(n)?"" THEN PRINT #str, TAB(tbD) 1a%(n)

IF n1>0 THEN PRINT #str, TAB(tc) ;USING “"##":nl:
PRINT #str, TAB(Ed) ;USING "##d##,. ##" 1ol

PRINT #str, TAB(te) jUSING “###. ##" €1

PRINT #str," hrs. ™

RETURN

¥

' Data list

¥t

DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA

DATA
DATA
DATA
DATA
k4

DATA

Input Job details,Display costings, Amend costings
Print customers estimate,End program

wallpaper, 3. 00, roll (12xim)
ceiling paper,3.00, roll (12xim)
enmulsion,2.72,litre
undercoat, 2. 81, litre

topcoat (inside),3.05, litre
topcoat (outside),3.05,1litre
varnish, 11.20, litre

wall paint,2.72Z,1litre

undercoat, 14.5, topcoat, 15, emulsion, 14
varnish, 22, wall paint, 17

ceilings, 9, inside walls, 34, inside woodwork, 3
putside windows and doors, 3, guttering ete, 0.5
cutside walls, 16, """, 0

papering, 6, painting, 1.5

Rate per hour,35.350

64

l PAI|

All Work and No Play

ESTIM USER’S GUIDE

Well, we did say at the beginning of this chapter that the guide
book was an essential part of a business program, didn’t we?
Without labouring the point too much, the following few
paragraphs are the sort of thing that could help a non-
programmer to use the ESTIM program without getting tied into
knots.

Starting up

When you load and run the ESTIM program a menu is put up on
the screen from which you may select the procedure you require.
You are returned to this screen at the end of procedures 1-4 so
that you may make a new selection.

Note that this program only stores information for the time that
the system is running. Be careful before selecting procedure 5,
‘End program’, that there is nothing you want to record, since
running the program again will reset everything.

Entering the job details

First you enter the customer’s name and address as requested by
the screen prompts. You are then asked for the number of the
rooms in the house for which an estimate is required. Include the
kitchen, bathroom, toilet and large hallways, but you can
exclude cupboards and pantries.

After answering yes to any of the ‘yes-no’ questions, enter the
number of rooms that require each particular type of work. You
can either enter zero or press the ENTER key if that type of work
doesn’t apply to any room.

Costings

Option 2 displays the quantities, prices, hours, etc., on which the
estimate will be based.

Amending the costings

This option (No. 3) puts each costing on the screen, one after the

other, so that you can enter a new value. You can skip over the
ones you don’t want to change by pressing the ENTER key.

AllWork and No Play

65

66

These changes are only retained for the time the program is
being run.

Printing the estimate

You print the estimate on the screen by selecting option 4. This is
a summary of the estimated costs, calculated from the
information you entered as job details and the current costings.
Note that only one estimate can be handled at a time, and that
putting in a new set of job details will completely erase the
previous estimate.

It is possible, however, to go back to option 3 (without ending the
program) and change some of the costings - a cheaper grade of
wallpaper, for example - and print a new version of the same
estimate.

FURTHER IMPROVEMENTS

There isn’t a program yet written that can’t be improved or
extended in some way. ESTIM is no exception. In addition,
business programs are constantly being modified and adapted
to the changing needs of their users. Nodoubt you will wanttodo
the same thing to this one.

Here are a few things you may like to consider as further
improvements to ESTIM:

Allow for type of house (semi-detached, bungalow, etc.)
Record paper and colour scheme per room

Calculate total paint and paper requirements

Add paint and paper stripping

Add cost of hiring ladders or other equipment

onoooano

You can probably think up another half-dozen for yourself,
although the first priority is to write a new option that will give
you printed output on your Amstrad DMP-1 dot matrix printer.
Some guidance on this is given in Chapter 12.

F”__——,-—':'.:

Y ——=
Vo o

Cd

¢

All Work and No Play

Don’t be too ambitious though. Computers have often acquired a
bad name simply because an over-enthusiastic programmer has
made the system so complicated to use that it is much quicker to
work out estimates on the back of an envelope!

TESTING

This really has been all work and no play, hasn’t it? For this
reason we are being kind and not giving you a SAT for this
chapter.

All Work and No Play

67

Chapter 6

BACK TO SKOOL

Those of you lucky enough to have done mathematics to ‘O’
Level or CSE level and beyond will have heard all about things
like sines, cosines, tangents, radians, logarithms and
exponentials. The rest of you have that pleasure to come!

This chapter is not intended to be a maths lesson - after all you
can buy some very good maths books - but it will be necessary to
indulge a little in order to explain the maths functions the
CPC464 supports. The CPC464 is a clever beast and can do some
pretty fast number-crunching, but a lot of computer programsdo
not use actual maths functions at all, just +, -, * and /. However,
you will need to know about things like SIN, LOG and EXP in
order to know when to use them (or when not to).

TRIG

So here we go then.... The keywords SIN, COS, TAN and ATN
all deal with angles and are trigonometric (trig for short)
functions. In any calculations to do with angles, the CPC464
assumes, by default, that your angles are measured in radians
and not degrees. Aradianis a special angle and isequal t057.295
degrees; there are 2%PI of them (6.2838) in a circle. Strangely
enough, working in radians sometimes makes things easier. Itis
most likely that you will want to work in degrees, °, however, and
so to save you lots of tedious conversion, the CPC464 has the
keyword DEG which we metin Chapter 3. It tells the CPC464 to
work in degrees. There is another keyword, RAD, that tells it to
work in radians again.

Type in the following program:

69

70

S DEG

10 ORIGIN 300, 200
20 FOR n=1 TO 360
30 x=8IN (n)

40 y=COS (n)

90 PLOT 100#%x, 100+y

60 NEXT n

Let us now use this program to demonstrate a few points.

The ORIGIN command moves the point 0,0 to the centre of the
screen more or less (as was explained in Chapter 3). The variable
‘n’ is going to be incremented by one, starting at 1 and finishing
with 360. The sines and cosines of each value of ‘n’ (remember
SINCOS) are multiplied by 100 and PLOTted in turn.

Now RUN and you will see the circle PLOTted degree by degree.

For those of you who are wondering how our circle program
works, the following diagram will help.

sine of angle

x=-1 y=

x=1 y=0

B T

Y

”
Il
<>
-

Il

cosine of angle

]
TETEESsses.Y

Back to Skool

Solving triangles

SINes, COSines and TANgents are most often used for the
solution of triangles, i.e. given some information about a
triangle you can find out all the rest. These trig functions
represent the ratios between the lengths of the different sides. In
a right-angled triangle (one angle =90°), the sine of either of the
other two angles is found by dividing the length of the side
opposite the angle by the length of the longest side, which is
called the hypotenuse.

In Amstrad BASIC, as in fact in maths books, instead of ‘The

sine of the angle x’, we write SIN(x), just as we write “The square
root of x’, as SQR(x).

Referring to the diagram,
sin(x)=a/h

and, similarly,
sin(y)=b/h.

The cosine of the angle is found by dividing the length of the side
adjacent (next to) the angle by the length of the hypotenuse:

cos(x)=b/h and cos(y)=a/h

Notice that sin{(x)=cos(y), and vice versa. This is a special
feature of right-angled triangles and makes them easier to solve.

The tangent is found by dividing the opposite side by the
adjacent side:

tan(x)=a/b and tan(y)=b/a

To solve any right-angled triangle we need know only two sides
or one side and one other angle. So, if a=20 and h=50, we can find
sin(x) and cos(y). If you type:

Back to Skool

71

72

LET a=20: LET h=30:PRINT a/h
you get the answer 0.4; 0.4 is both sin(x) and cos(y):
SIN(x)=COS(y)=0.4

Now we know this, we can easily find out how big the angles ‘x’
and ‘y’ are in degrees. On a scientific hand-calculator you would
probably press an INV key and then press SIN or COS to get the
answers. What you are actually doing is using the inverse
functions of SIN and COS. These are called arcsine and
arccosine. There is also arctangent.

Of these arc functions, the CPC464 has only arctangent:
ATN ({numeric expression))

So finding the arcsine and arccosine is a little tricky but not
impossible since the functions are all related. We simply convert
the SINes and COSines into TANgents then use the ATN to find
the angle. To save you wading through pages and pages of
maths notes or slaving over a hot pencil for hours trying to work
it out, here is the solution:

sin(x)

vV 1 - sin?(x)

tan(x) =

V' 1 - cos?(x)

tan(x) = cos(x)

SQUARE ROOTS

The CPC464 has a function for square root. It is SQR and it is
used thus: PRINT SQR(64) gives the answer 8, since 8 squared
(in BASIC the notation for this is 8" 2*) is 64. Type the following:

LET tangent=0.4/88R(1-(0.4"2))
PRINT ATN{(tangent)

You should get the answer 23.578, which is about 231 degrees.
Now do the same for the COSine:
PRINT ATN(SER(1-(0.4™2)3/0.4)

You should get 66.421, or just under 66/, degrees. If we now add
these two answers together we should get 90 because the angles

*Note: the character ', meaning ‘raise to the power of’, appears on the
keyboard and screen of the CPC464 as ‘}.

Back to Skool

of any triangle always add up to 180°, and 90° of them are used
up by the right-angled corner:

23.578+66. 421+90=180 (close enough!)

So now we know the angles, all thatisleftistheside ‘b’. We know
for example that sin(y)=b/h. We can easily change this around to
give b=hxsin(y). We can do the same thing to the other functions
as well to produce a table:

sin(y)=b/h becomes b=h*sin(y)
cos(x)=b/h becomes b=h*cos(x)
tan(x)=a/b becomes b=a/tan(x)
tan(y)=b/a becomes b=a*tan(y)

So we have four ways of finding the length of side ‘b’ and each
should give the same answer. Try it and see! Type the following:

PRINT SO*SIN(&6.421) (gives 45.825..)
PRINT S0#C0S8(23.578) (gives 45.825...)
PRINT 20/TAN{(23.578) (gives 45.826...)

PRINT 20%TAN(66.421) (gives 45.824..))

We do indeed get the same answers, and a good thing too! That
was an example of solving a right-angled triangle. As we said
before, two sides, or one angle (apart from the right-angle) and
one side are enough for us to figure out the rest.

If instead we have any old triangle, then the situation is a little
more complicated, but, given enough information we can find
out all we need. However, the calculations are a bit more
complicated. They make use of two rules:

0O The sine rule: for any triangle
a/sin(A) = b/sin(B) = ¢/sin(C)

O The cosine rule: for any triangle
a? = b2 + ¢ - 2bccos(A)

Back to Skool

73

74

TAKING OFF

By this stage you may well be thinking ‘This is all very well but
how does it apply to me and the real world?’.... OK then.
Suppose you were the pilot of an aircraft wanting to fly due north
to another airport. On a day with no wind you would simply fly
due north to get there. However, on a windy day, which is most
days, if you flew due north you would, depending on the wind
direction, be likely to miss the airport because the wind would
blow you off course.

Getting your bearings

What you need is some way of calculating the course to steer in
order to compensate for wind drift. The answer? Triangles!

Ever heard of vectors? A vectoris a line that has a direction and
magnitude. The wind can be represented by a vector; it has
direction, e.g. southerly, and magnitude, e.g. force 6. An aircraft
course is also a vector: direction, e.g. course 156 degrees, and
magnitude, e.g. speed 315 knots.

What we do is set up a triangle of vectors whose lengths
represent speed, not distance.

Refer to the diagram.... The first vector then is the direction we
want to fly, due north or0 degrees. We can draw a line straight up
from our starting point A but we don’t know how long the line is
as we don’t know what speed we can achieve. For instance, if we

Back to Skool

are flying at 200 knots straight into the teeth of a 50 knot wind,
we will only manage 150 knots compared to the ground. This
speed across the ground is called, logically enough, the
groundspeed to distinguish it from airspeed, which only
depends on how hard our engine works.

Ground Speed (GS)

A

Air Speed (AS)

Wind Speed (WS)

The second vector is the wind, drawn from point A. When we say
that the wind is coming from the north-west, it is equivalent to
saying that it is going to the south-east. Since we are more
interested in where it is going, that is what we will use.
Assume a wind speed of 20 knots. The third vector to complete the
triangle is going to represent the direction in which we point the
aircraft, but we don’t know that yet. All we do know is its length
(our airspeed), say 200 knots.

Back to Skool

75

76

So we have a triangle and we want to find two values: first our
course given by the angle C, and the length of the groundspeed
vector so that we can calculate how long the journey will take.
So, to calculate angle C we can use the sine rule. We can put in
some values:

SIN{(C) 720 = SIN(135) /200
from which we can see that:
SIN(C) = ZO0%SIN(135) /200

Now type DEG followed by:
LET sinc = ZO*SIN(135)/200: PRINT sinc

You should get the answer - 7.07107E-02, whatever that might
mean! Maybe it’s time youlearnt how the CPC464 displayslarge
and small numbers.

When numbers get very big or very small they become very
tedious to write out so a shorthand called scientific notation is
used. In this, numbers are represented as being raised to a
certain power of ten. e.g. 1,000,000 (1 million) becomes 10"6
(because 10%10%10%10%10%x10 = 1,000,000), 3000 becomes
3%10°3. A negative power of ten means dividing by ten that
number of times. S0 10°-6 is 1/10/10/10/10/10/10 or 0.000001,
and 0.000002 becomes 2%10°-6. The CPC464 would display
these as 1E6, 3E3 and 2E-06. The E means ‘multiplied by ten
raised to the power of”.

So our number, 7.07E-02 means 7.07%10"-2 which is 7.07%0.01
or 0.0707; we will still refer to it as ‘sinc’ however. Now we must
convert ‘sinc’ into an angle. Remember the magic formula we
gave you earlier? Type:

LET tanc = sinc/S50R(1-sinc™2) :PRINT tanc
The value of ‘tanc’is7.08881 E-02 or0.0708881. We can now type:

PRINT ATN(tanc)

and get the answer 4.05480723. Angle C is therefore about 4.05
degrees so our course must be 4.05 degrees west of north, or
3556.95 degrees as it is conventionally stated (courses are
measured in degrees from north going clockwise).

Flight plan

The wind is blowing against the direction of the aircraft’s
forward movement to some extent, so you can expect to be slowed
down a bit. How much? We must work out how long the
groundspeed vector is, side GS of our triangle. Again we can use

Back to Skool

the sine rule.

gs/sin(Z) = 200/sin(135)
so we can change that to
gs = sin(Z)%*200/sin(135)

Hang on though, we don’t know angle ‘Z’! We can easily find it
because we know the other two, and all three angles add up to 180
degrees:

Z =180 - (135 + 4.05)
Therefore
Z = 40.95

PRINT SIN(40.95)%200/SIN(135) gives 185.375162 so our speed
over the ground is a little over 185 knots. The wind slows the
aircraft by nearly 15 knots. (One knot is one nautical mile per
hour, which is just a bit faster than one ordinary, statute, mile
per hour.) We could use the cosine rule to find the groundspeed:

gs = V as? + ws? - 2as.ws.cos(Z)
Or in BASIC:
LET GS=80R(200°2+20"2— (2%200%20%C0S(40.95)))

gives 185.358424, which is just about the same as before. One
point about the line above is it looks very complex. It could be
split up into several shorter operations. However, the rule to
remember is that brackets must be nested, like FOR-NEXT
loops. Every opening bracket must have a closing bracket. The
innermost brackets are operated on first and the CPC464 works
its way outwards. Our angle C could be calculated like this:

(ws.sin(Z))
as
J 1- ws.sin(Z)\?2
(%)
Or in BASIC:

LET C = ATN((20*BIN(135) /200) /8GR (1~
(20%8IN(135) /7200)~2)

¢ = arctan

This line combines all the operations we went through. Test it to
see that it works. You should get the same answer, 4.05480723.

If you now load the program called FLIGHTPL, the next one
on Datacassette A, and run it you will see that all that has been

Back to Skool

77

discussed so far is incorporated within it. The listing is shown
below.

100

110 * Flight Plan

120 7

130 * by Ian Padwick

140 * amended by DR 21/9/84
150 7

160 7 Screen

170 7

180 MODE 2:BORDER 20O
190 INK O,20:INK 1,0

200 LOCATE 30, 3:PRINT CHR$(24) 3 STRING® (1S, 32) :» CHR$(24)
210 LOCATE 30, 4:PRINT CHR$(24) 3 ® Flight Plan " : CHR$(Z4)
220 LOCATE 30,5:PRINT CHR$(24) ; STRING$(15,32) 3 CHR%$ (24)

230 WINDOW 5,79,8, 24

240 7

250 DEG

260 CLS

270

280 ' Random speed and direction

290 7

300 ws=ROUND (RND#*350)

Z10 wd=ROUND (RND#*#359)

320 °

I30 7 Get speed

340 7

350 PRINT:PRINT"Wind speed:'jws;"knots"

I60 PRINT:PRINT"Wind directioni:'j;wd;'"degreas"
370 PRINT: INPUT"Enter the speed of your aircraft:", as
380 IF as(12 THEN PRINT "Too low!" : GDTG 370
390 °

400 7 Do rcalculations

410 7

420 IF wd)=180 THEN wd=wd—180 ELSE wd=wd+180
430 sinc=ws*SIN(wd) /as

440 c=ATN(sinc/S50R({(l-sinc™2})

450 IF {0 THEN co=RBS{(c) ELSE co=360-c

460 co=ROUND (co, 2)

470 IF wd=180 OR wd=0 THEN gs=as+ws#C0S (wd) 16070 510
480 IF wd) 180 THEN z=180~((360-wd)+co)ELSE z=180-(wd+c)
490 gs=ABS(SIN(z)*as/SIN{wd))

3500 gs=ROUND (gs, 1)

510 t=100/(gs/60)

520 t=ROUND (t, 1)

530 7

540 ' Print results

950 ?

78 Back to Skool

560 PRINTI:PRINT"Course to fly is'ico;'degrees”

570 DRINTIPRINT"Your groundspeed will be';gs;"knots”
580 PRINT:PRINT"The flight will take":t;"minutes”
590 7

£00 7 Do it again

610 7

£20 PRINTIPRINT:PRINT "Press any KeYeoson'

G330 WHILE INRKEY$="":WEND

£40 BOTO ZE0

Once again there are some new keywords. The program
generates a random wind and asks you to input your aircraft’s
flying speed. It then tells you the course to fly and how long a
100-mile journey will take. Warning...! Do not enter a speed
lower than the wind speed, you may never get there if you're
flying against it! One new keyword is ABS. ABS returns the
ABSolute value of a number which means it makes negative
numbers positive but doesn’t change positive numbers.

The only lines that need some explanation are 470 and 480. Line
470 deals with two special cases. These are when the wind
direction is due north or due south (0 or 180 degrees). We cannot
allow the calculation to continue in these cases since a division
by zero will occur: sin(0) = sin(180) =0. Instead we add or subtract
the wind speed accordingly. COS(wd) in line 470 can only be 1 or
-1 and provides a rather neat way of doing this.

Line 480 calculates the angle ‘Z’. If ‘wd’ is greater than 180,1.e.a
reflex angle, then we must subtract that angle from 360 to get the
complementary angle (the one inside).

As far as the eye can see

Let’s come on to another problem now. Suppose that having
taken off we want to know how far we can see, i.e. the distance to
the horizon. For example, how high would we have to go to be
able to see our destination 100 miles away? Type the following
program and RUN it. Study the listing in conjunction with the
diagram and figure out how it works.

10 r=3960 "radius of the earth in miles
20 INPUT "Enter altitude in feet:", ft
J0 mi=ft/5280

40 d=(mi+y) "Z—pr"2

Back to Skool 79

80

50 d=SER(d)

60 d=ROUND (d,2)
70 PRINT:PRINT"Distance to horizon is";d:"miles"
80 PRINT:PRINT:=PRINT

90 6OTO 20

Sines and cosines turn up in the maths of many games. In
snooker, for instance, they govern the directions in which two
balls go after they strike one another, and the direction of a ball
after bouncing off the cushion. They also turn up whenever
things are wobbling about - the speed of a pistonin a car engine,
a swinging pendulum, or a weight on the end of a piece of elastic
can all be described by sines or cosines.

If you want to use a computer to model what happens in reality
(and that is behind the best games programs), trig functions are
a great ally.

Of course, there are a few other maths functions we could explain
to you like LOG, LOG10, EXP, SGN but these are explained well
in the manual.

Back to Skool

PRIME TIME

And finally, here is a program which does absolutely nothing
useful at all. Reset the CPC464 and enter the following:

10 MODE ©

20 DIM a(2Z000)

30 a(0)=2: x=0

40 FOR n=3 TO 10001 STEP 2

30 p=0

60 IF a(p)™2)n THEN x=x+1: a(x)=nt PEN 1: GOTO 90

70 IF n/a{py=INT(n/a(p)) THEN PEN 3: GOTO 90
80 p=p+1i: GOTO &0
90 PRINT TAR(8)n

100 NEXT n

It prints out what could be an endless stream of odd numbers.
Those that are prime numbers it prints in yellow, the others are
red. A prime number is one that cannot be divided exactly by
anything other than itself and 1. There are quite a lot of them as
you will see, but they get harder to find the bigger they get.

Although the program prints out all values of ‘n’, only those that
are prime are loaded into the array ‘a’. The program then uses
these numbers to divide into further values of ‘n’. After all, if a
number is not divisible by a prime number it must be a prime
number itself.

When the program has finished, or before if you get bored, you
can print out the values in the array by typing the following:

FOR n=0 TO 2000: PRINT a(n): NEXT n

It does not need a line number as it is self-contained. How many
prime numbers are there between 1 and 10,000? To what value of
‘n’ would you have to go before the array was full? If the array
filled the CPC464’s memory, how big a prime number would you
have at the end?

Back to Skool

81

82

TESTING

That was pretty tough wasn’t it! Go back over the main points of
this chapter again before running SAT6.

Back to Skool

Chapter 7

PLAYING WITH
WORDS

The CPC464 is not a word processor in itself but it can process
words and has several keywords designed for doing all sorts of
clever things. You need to remember that any variable you use
which began life enclosed in quotes (“‘”’) or anything that you
PRINT that is enclosed in quotes is called a ‘string’.

A string is not necessarily a word. It is any list of characters
enclosed in quotes. When you assign a variable name to a string
it must have a dollar ($) suffix to tell the CPC464 thatitisdealing
with a string. Here are some strings; enter them on your CPC464:

LET as="Amstrad"
LET c$="CPC4E64"

LET r$="45"%) lko+-CF#!} "

Now type:
PRINT a$%,c$, ré

Within a string you can put any of the CPC464’s 256 characters.
We cannot do mathematical operations on strings directly
except to add them together, joining them end to end (a process
called concatenation), or compare them.

Try this:
LET z#=a%+" "+c4: PRINT z$

You should get ‘Amstrad CPC464’ printed on the screen. The
contents of a$ and c¢$ which have been copied into z$ are now
substrings of z$, i.e. strings within a larger string.

83

84

HOW LONG IS A STRING?

So, what can we do with strings? Well, using the keywords in this
chapter you will be able to chop them up into smaller strings,
swop them, reverse them, search them for particular characters
and much more.

The first thing we can do with a string is find its length, i.e. the
number of characters within it. We do this using the command
LEN which has the structure:

LEN ((string expression))

For example, PRINT LEN(a$) will give 7 because there are seven
letters in ‘Amstrad’. PRINT LEN(c$) also gives 7. PRINT
LEN(z$) gives 15. We might want to know the length of a word
for a variety of reasons, to enable a program to print a string
centrally on the screen for instance, for example:

10 INPUT "Enter your name: ", name$

20 IF LEN(name$))40 THEN PRINT "Name too long":B0T0 10

30

1=LEN (name%)

40 PRINT TAB(Z0-1/2) jname$: PRINT

50

GOTO 10

You will have noticed that when you print a list of numbers that
have varying numbers of digits, the numbers are printed from
the left so that all the first digits are lined up. However, when we
write lists of numbers we usually do it so that all the units, tens,
hundreds, etc., are in line. For example, you get

1

12
97
4032
255

but you want

1

12
97
4032
255

A neat way of doing this would be to find the length of the
number and then calculate a TAB position as before. Butif you

Playing with Words

try to PRINT LEN (n), where ‘n’ is our number, you will get the
message:

Type mismaton

This is because numbers are not stored in the same way as
strings and you do not have individual digits occupying one
position as is the case for string information. To get over this we
must convert our number into a string. We can do this using the
keyword STRS$:

5TR$ { (numeric expression})

We can type n$=STR$(n) and then PRINT LEN(n$) or we cando
it in one go, PRINT LEN(STR$(n)). Remember that when the
CPC464 prints a number it always puts a space in front and
behind. The space in front is actually the sign position, and is
there instead of a + sign. Negative numbers have a - sign of
course. Using STR$ automatically chops off the following space
but still leaves the sign space; thus when you find the LENgth of
a number the answer is always one more than the number of
digits. For example:

PRINT LEN(STR$(464))

gives the answer 4 not 3.

This need not cause any problems so long as you take account of
it. (Later you will find out how to chop off that leading sign
space.)

So now we can write a short program to achieve our aim:
10 INPUT "Enter a number: ", n
20 1=LEN(STR${(n))
30 PRINT TAB(20-1)3n

40 GOTO 10

STRINGY NUMBERS

All right then, we can turn numbers into strings. How about
strings into numbers? Of course!

The function VAL allows us to find the numeric value of a string.
The structure is:

VAL ({string expression))

Let’s use our variable a$ (‘Amstrad’). What VALue could that
have? Try it by entering:

Playing with Words 85

86

PRINT VAL (a$)

It has no value! This is because the string expression must be
formed from numeric characters or have numeric characters at
the beginning of the string if it is to have a value.

Type
nE="65536"
then
PRINT n%:PRINT VAL (n%)

You will get 65536 printed at the edge of the screen and
underneath 65536 printed with a space in front. VAL(n$)
becomes a number that can be operated on:

PRINT VAL (n%) /256%4
will give 1024 as the answer.

Try out VAL on these strings: ‘CPC464’, ‘464 CPC’, ‘-4 64Am’.
You should get 0, 464, -464.

How could we use this function? Well suppose we had a program
that asked for a number to be entered from the keyboard and
someone putin a letter by mistake (or perhaps deliberately). The
message:

PRedo From startg
would appear and mess up the display:

10 INPUT "Enter a number (1 to 9): "on
20 IF nd{1 OR w9 GOTO 10
30 PRINT n

40 GOTO 10

RUN this and enter a letter. See what happens? Now, if the
INPUT took a string variable instead, the error could be trapped
using VAL. Change the variable ‘n’ in lines 10 and 30 to n$ then
type:

20 IF vAL (n$) {1 OR VAL (n%$))>9 BOTO 10

Entering a letter now will not upset the program.

Suppose that the number range was not 1to9 but0 to9. Entering
a letter would give VAL(n$) the value 0, which would be valid.
How can we then tell whether 0 or a letter was entered? Here is
another keyword: ASC. It is short for ASCII which isitself short
for American Standard Code for Information Interchange.

Playing with Words

This is one of the few things that most micros have in common,
an ASCII character set. Every character the CPC464 can
generate has an ASCII value. From numbers 32 to 126 the
characters are the same as on other computers that use ASCIL

ASCII AND ASCII

Using ASC then, returns the ASCII value of the first character
in the string using the syntax:

ASC({string expression))
Type
PRINT ABC("0O")
and you get 48, the ASCII value for 0. Type

PRINT ASC("Amstrad")

and you get 65, the ASCII value for A (upper case, or capital ‘A’;
lower case ‘a’ has value 97). So we can change the1inline 20 to0
and add:

25 IF VAL (n$)=0 AND ASC (n%) (}48 GOTO 10

If you now RUN the program you will find that the numbers0 to
9 are accepted but everything else is not. This is not quite true
though.... If you enter ‘7Amstrad’ it will still accept it! How can
we prevent this? Well, we only want a single character entry so
we could put a different line 20:

20 IF LEN(n%))>1 THEN GOTO 10

Or, we could use INKEY$ to get our character instead of INPUT.
You can work out how to do that!

Two more keywords we have used here are AND and OR. Their
use is really self-explanatory, but there is just one point about
OR. In English we may say ‘if a=10 or b=20 then ¢=30’ meaning
that ¢=30 when a=10 or b=20 but not when a=10 and b=20. Such a
condition is known as an exclusive or (XOR). XOR allows us to
say: ‘if one or the other but not both then...". The line:

IF n)50 XOR v{73 THEN PRINT n

will print the value of ‘n’ if one and only one of the conditions is
true.

OR allows us to say: ‘if one or the other or both then...”. Theline:

IF)30 OR n{(73 THEN PRINT n

will print the value of ‘n’ if one or both conditions are true.

Playing with Words 87

Finally on this point, suppose we only want numbers 1 to 5 to be
entered (like a menu choice). The next four lines of program all do
the same test in different ways...

20 IF VAL n$) {1 OR VAL (n$)>S THEN...ivcorrect
20 IF VAL (n$))>0 AND VAL (n%$) (& THEN... correct
20 IF ASC(n%) (49 OR ASC(n$))53 THEN...incorrect

20 IF ASC(m%$))48 AND ASC(n%$) (54 THEN... correct

OPPOSITE NUMBERS

The opposite function of ASC is CHR$ which you have met
before. CHR$ takes a number after it and returns the character
whose ASCII code is that number:

CHR$ ({(numeric expression))

The next program prints out the entire character set:

106 FOR n=0 TO 255
20 PRINT CHR%(1) ;CHR%(n) 3

30 NEXT n

Printing CHR$(1) on its own has no effect. It is called a control
character and allows the characters whose codes are 0to31 to be
printed. They are inaccessible otherwise. A table of these control
characters can be found on page 2 of Chapter 9 in the Amstrad
CPC464 User Guide.

LEFT, RIGHT AND CENTRE

In Chapter 4 of this book is a program called DIGITALC
which prints the tens and units of the hours and minutes
separately, but does it so that they look like two-digit numbers.
Remember that ordinarily one cannot print one number right
next to another because the sign space of the second causes a
space to be put between them. We know we can use STR$ to lose
the trailing space, but how do we lose that sign space?

Here are three commands that Amstrad BASIC uses for sorting
out such things: LEFT$, MID$ and RIGHTS$. All three are used
for extracting parts of a string. LEFT$ does this from the left

88 Playing with Words

end, RIGHT$ does this from the right end and MID$ does it
anywhere. The syntax for RIGHTS is the same as for LEFT$:

LEFT$((string expression}, {integer expression))

With LEFT$ and RIGHTS$ the <integer expression>> defines the
number of characters to include, starting from the left or right
end of the string expression:

MID% ({(string expression), {int exp} [, {(int exp}l)

With MIDS$, the first integer expression defines the first
character of the substring and the second (optional) integer
expression defines the number of characters toinclude from that

first character. Here are some examples of this method of
definition (z$=“Amstrad CPC464™):

PRINT RIGHT®{(z%,3) gives 464
" RIGHT# (2%, &) gives CPC464
" RIGHT® (z$, 14) gives Amstrad CPC464
" LEFT$(z%,3) gives Ams
" LEFT$(2%,9) gives Amstrad C
" LEFT$ (2%, 14) gives Amstrad CPC464
" MID®(z%, 4) gives trad CPC464
" MID$ (z%,4,4) gives trad
u MID%$ (z%,9,3) gives CPC

Any part of any string can be extracted using these functions.
Why should we? Well that depends on what youwanttodo. Let’s
get rid of that leading sign space. If ‘n’ is a single-digit number
you could use either of these:

PRINT RIGHT#(5TR%(n), 1)
or
PRINT MID$(5TR%(n),2)

If ‘n’ is to be a multidigit number, however, you need to employ
LEN as well. Try this program:

10 CLS: PAPER 3
20 INPUT "Enter a number: " n
IO PRINT n

Playing with Words

89

90

40 PRINT RIGHT$(8TR$(n),LEN(STR$(r))}~1)

50 GOTO 20

The purpose of changing the paperisthat youcan see the spaces
more easily. In line 40, STR$(n) is the string expression and
LEN(STR$(n))-1 is the integer expression. We subtract 1
because LEN(STR$(n)) will be one more than the number of
digits in ‘n’ - remember?

The following lines of program can replace those of the same
numbers already in DIGITALC. So, load that program, then
type:

180 t=TIME

1070 LOCATE 13, 10:PRINT "O"
1080 WHILE s<{60

1090 s=INT{((TIME-t)/300)

1100 s$=8TR%$(s)

1110 LOCATE 14+(s)3),10

1120 PRINT RIGHT$ (s$,LEN(s%)-1)

1130 WEND:ig=0:t=TIME

These lines replace the seconds loop and make use of the
CPC464’s own internal clock which is accessible through the
keyword TIME.

You can see thatline 1120 chops off the leading space and that s$
has been previously defined as being equal to STR$(s) in line
1100. The variable ‘s’ represents the difference between the
actual TIME and the value of ‘t’ which was the TIME when the
clock was started (line 180). The difference increases by 300
every second, hence line 1090.

The WHILE-WEND loop ensures that ‘t’ is updated every 60
seconds to the new value of TIME.

Look at line 1110. An interesting concept is used here. The
condition in the brackets, s>9 isevaluated as being either true or
false: either ‘s’ is greater than 9 oritisnot. If true the value of the
condition is -1, if false the value is 0. The value is then used to
move the cursor to column 14 if ‘s’ is a single-digit number, or
column 13 if it is a two-digit number. All conditions are given
values of 0 or -1, depending on whether they are false or true.

Playing with Words

To prove it type the following:
v=17
then:
PRINT W a4 ;v (20;v{Z2;v)>30:v=17:v%2)50:568R(v))
Aiv/2{v/3v+3I=20
You should get
-1 -1 00 -1 0 -1 0 -1

This logical value could be very useful to you when you get better
at programming, but don’t worry too much about it now.

SEARCHING FOR WORDS

Here is another new function for you: INSTR. This enables you
to search a string for substrings. The number returned is the
position of the first character of the substring within the main
string:
INSTR(L{integer expression),l{string exp),
{(string exp))

The integer expression is optional and gives the position within
the string to start searching. If omitted it starts at the beginning.
The first string expression is the string in which to search while
the second is the string to search for. So, if z§=*Amstrad CPC
464" then PRINT INSTR(z$,“d”’) returns 7 because ‘d’ is the
seventh character of the string.

PRINT INSTR{z%,"CPC")

This returns 9 because the first character of CPC occurs at
character 9 of the searched string.

PRINT INSTR(z#%,"4")

This returns 12, the position of the first ‘4’. To get the second one
you type:

PRINT INSTR(13, z%,"4")

You now get the answer 14 because the search was begun from
the thirteenth character of z$.

This command is very useful in the program HANGMAN which
we saw in Part 1 of this Tutorial Guide. The following program
illustrates the way INSTR was used:

10 CLS
20 LOCATE 1,1: INPUT "Type a word: ", ws$

Playing with Words

91

30 we=UPPERS (w$)

40 LOCATE 1,3: PRINT "Guess a letter: ¥
30 1$=INKEY%

60 IF 1s="" (GOTO 350

70 1%=UPRPER%(1%)

80 LOCATE 1,3: PRINT SPACE#(16)

30 p=1

100 p=INSTR(p,w$, 1%)

110 IF p=0 GOTO 40

120 LOCATE 10+p, 10: PRINT MID$(w$,p, 1)

130 p=p+1: GOTO 100

Note that this program will not stop even when you have got all
the letters. You can work out how to get it to stop. There is
another new keyword here - UPPERS$ - which converts all lower
case alpha charactrs (a-z) within the following string
expression to upper case (capitals).

Back to front

The final program below demonstrates some more string
chopping. This time, whatever you type in is printed in reverse.
You should be able to work out how it is done.

10 PRINT "Type a string: "

20 INPUT w#

30 FOR n=LEN{(w$) TO 1 STEP -1
40 be=b$+MIDE (wE, n, 1)

S0 NEXT

60 PRINT " “:b%: PRINT: b$=""
70 6070 10

Try entering ‘evil rats on no star live’.

92 Playing with Words

PLAYTIME
Our game this time is very appropriate. It is an aid to those
newspaper word games where you have to make up lots of

different words from the letters of one long word. So load up
WORDPUZL and enjoy yourself for a while.

TESTING

Now run SAT7. You never know, but you might be able to write
a program for solving The Times crossword puzzle.

Playing with Words

93

Chapter 8

MOVING PICTURES

The principle of making ‘moving pictures’ has been around for a
long time. One displays a ‘still’ picture, then quickly replaces it
with another that has some slight differences, then replaces that
with another and so on. If this is done rapidly and evenly the
differences between each of the ‘frames’ appears continuous and
animation is achieved.

FLASHY PROGRAMMING

One of the simplest ways of adding action to a screen message or
graphic display is to use an INK command which specifies two
colours. The syntax is as follows:

INK {ink rnumber), {(colouvrd [, {(colour)]

When this second <colour> is included, the CPC464 will then
alternate the INK between the two colours.

Try entering this directly after a general reset or power on:
INK 1,24,1

It gives you a flashing display, doesn’t it? This is because the

second colour is the same as that used in the default INK

specified for the PAPER. It isn’t that the display is ‘turned off’

for half the time - it’s just that you are writing with a blue PEN

on blue PAPER! Any two colours can be specified so if you try

entering different pairs of your own choice it will be obvious
what is happening.

The speed at which the two colours alternate can be changed by
a new keyword: SPEED INK. Here is the syntax:

SPEED INK ({integer expression), {(integer
expression’

95

96

The first argument specifies the length of time that the first
colour of the INK should appear on the screen, and the second
argument that of the second colour. These <integer
expressions> are in steps of 0.02 second.

Here is a short program thatillustrates the use of flashing INKs:
INKs:

10 rem Flashy Message program
20 cls

30 mode O

40 ink 1,24,1

S0 for a=50 to 1 step -1

60 locate 3,12

70 speed ink a,a

80 print "FLASHY MESSAGE"

90 for x=1 to 200Inext

100 next a

110 goto 10

Flashing text or graphics are immensely useful when you want
to draw attention to a particular part of the screen display.

In MODE 0, INKs 14 and 15 flash by default; 14 alternates
between blue and bright yellow and 15 alternates between sky
blue and pink.

ANIMATION

When you are writing games programs, the really essential
ingredient is movement. Flashing graphics and text may also be
used but the whole essence of most arcade-type programs is the
battle between graphically displayed elements that the player
can control and those that he can’t. So we need to know how to
get our graphics to move around on the screen.

To animate a picture, one need not replace the entire picture
every time. Only the parts that are moving need to be changed
between frames. Computer animation works in this way. The
entire picture is not redrawn every time part of it changes, rather

Moving Pictures

only the moving part is changed. Movement is achieved by
erasing the old position of whatever is moving and then
redrawing it in a new position.

Another way of achieving the impression of movement is to
draw the moving character in all its positions but do it in such a
way that it cannot be seen, e.g. make it the same colour as the
background. Then, when the movement is required, each
position can be ‘switched on’ and then ‘off’ in turn, not by
redrawing it, but by changing the colour of the ink used to draw
it in the first place. This can be demonstrated if you now type in
the program that appears on page 32 of Chapter 3.

Make sure that it works in MODE 0 then type in the following
extra lines (easier in MODE 1 or 2):

110 FOR n=2 TO 15
120 INK n, 1

130 NEXT n

140 FOR n=1 TO 15

150 INK n, 24

160 INK n-1,1

170 FOR x=1 TO 80: NEXT x
180 NEXT n

130 INK 15,1

200 GOTO 140

Make sure you are in MODE 0 when you RUN the program. You
should see the disks drawn as usual, then all but the first will
disappear and then the first will appear to move across the
screen rapidly over and over.

When you get fed up and press ESC twice you will more than
likely have blue text on blue paper. Carefully type INK 1,24 and
the text should appear. Now study the listing. Y ou should be able
to understand how it works but if you don’t, just change a value
here and there and see what happens! Doing this should make
things clear.

Because of the way the CPC464 organises its colours, youcando
this with any PRINTed and PLOTed character or picture.

Moving Pictures

97

98

Twinkletoes

The only problem with the colour switching method of
animation is that you are limited to some extent by the number of
INKs available. Also you must be careful not to draw over an
unseen character that you will want to use later. For these
reasons PRINTing characters and erasing them again is the
preferred method of getting things to move.

Let’s start with the simplest sort of movement, a little man
dancing across the screen.

The CPC464 is supplied with four characters which can be used
directly for this purpose. They are given by ASCII codes 248-251,
inclusive, as shown in the Amstrad CPC464 User Guide,
Appendix III, pages 12 and 13. Here is an extremely simple
example of how they can be used:

10 rem Dancer program

20 clsimode O

30 data 248, 250,249,251

40 for a=1 to 4:read dance(a) inext

50 b=1

60 for c=1 to 4

70 locate b, 12

80 print chr$(dance(c));

90 for x=1 to 300inext

100 locate b, 1Z:iprint " ";

110 b=b+1

120 next c©

130 if b{20 then goto 60

140 goto 30
The first thing we do is to load an array, ‘dance(a)’, with the
ASCII value of the characters. This is done in the order in which

they are to be used. Then, within the loop of ‘b’ going from1 to 20,
we have a nested FOR-NEXT loop which provides the next value

Moving Pictures

of the array. This is printed at the next ‘x’ co-ordinate of the
screen by using the current value of ‘b’ in the LOCATE
command.

After printing the characters given by the current value
provided by the array, there is a delay loop of x=1 t0500. A blank
is then printed in the same position to wipe the character out
before moving on to the next one.

When you have entered and run the program, remove line 100
and run it again. This will show you why we had to include it in
the first place. You could also experiment with the duration of
the delay loop in line 90.

Where did they all come from?

Part 1 of this course had a zapping game called BOMBER which
was designed to teach you the basics of co-ordinate geometry by
getting you to estimate the position of an alien invader. If you
remember, the little creature kept appearing at different places
on the screen by means of the RND command. This command is
essential for providing an element of unpredictability in the
movements of characters and graphics.

The following few lines will make the biggest space fleet you
have ever seen appear on your screen.

10 rem Space Invasion

20 clsimode O

30 locate 19%rnd+1, 24%rnd+1
40 print chr$(239):

30 for delay=1 to 999%rnd
60 next

70 goto 3J0

The interesting thing here is that the spaceships also appear at
random intervals thanks to the inclusion of RND in the delay
loop of line 50.

Note that you have to add ‘1’ to both arguments of the LOCATE
command. Otherwise, the product of 19%rnd or 24 %rnd could be
less than 1 and the CPC464 would stop the program, giving an
‘Improper Argument’ error message, since LOCATE can only
accept arguments greater or equal to 1.

Moving Pictures

99

100

One over the eight

Suppose our little dancer had been a bit over-indulgent, butis
still trying to keep a straight line across the screen. We can
simulate this by adding to the program:

65 d=int (F¥rnd+3)

As you will remember, the INT keyword ensures that the result
of the numeric expression in its argument is a whole number by
truncating any decimal part. The manipulations of RND by

Moving Pictures

multiplying by 3 and adding 5 are only there to get the resulting
expression within the desired range.

This new variable, ‘d’, can now be added to the program to give
the second argument for the two LOCATE commands as
follows:

10 vrem Drunkard program
20 clsimode O

30 data 248,250,249, 251
40 for a=1 to 4:read dance(a) inext
350 b=1

680 for c=1 to 4

65 d=int (3*¥rnd+3)

70 locate b,d

80 print chr${dance(c));
30 for x=1 to S500inext
100 locate b,diprint " "3
110 b=b+1

120 next o

130 if b(20 then goto &0

140 goto S50

If you run this modified program you will find that our danceris
now a little unsteady on its feet!

ANOTHER BRICK IN THE WALL

One of the original computer arcade games was called
‘Brickout’. The player had to move a ‘bat’ back and forth across
the bottom of the screen to deflect a ‘bouncing ball’ upwards
against a ‘wall’ to knock out the ‘bricks’. We will now develop
this program to some extent to demonstrate some principles of
programming an arcade game and introduce some new
keywords as we do so.

Moving Pictures

101

102

Make sure you have reset your CPC464 and have some blank
tape to save the program on.

The first thing to doisdraw the boundary to our screen. We could
just use the border, but for reasons that will become clear later
and for effect, we won’t. The line numbers are deliberate, sodon’t
change them yet:

10 MODE 1:CLS:GBOTO 200

200 LOCATE 1,1t PRINT CHR$(136):
210 FOR ec=2 TO 39

220 LOCATE c,1: PRINT CHR$(140):
230 NEXT

240 LOCATE 40,1: PRINT CHR$(132):
250 FOR 1=2 TO 24

260 LOCATE 1,1: PRINT CHR$(138):
270 LOCATE 40,1: PRINT CHR$(133):
280 NEXT

300 LOCATE 1,25: PRINT CHR$(130):
310 FOR c=2 TO 39

320 LOCATE c,25: PRINT CHR%(131):
330 NEXT

340 LOCATE 40,25 PRINT CHR$(129);

350 LOCATE 1,1

Line 350 has been put there as a temporary measure to stop the
screen scrolling.

You should have no problems with this. At the moment the
Ready message gets in the way but it won’t later on. What we
want now is a bouncing ball.. .:

20 x=1: y=—1

30 c=INT (RND*37+2)

Moving Pictures

40 1=INT (RND*2Z+2)

50 IF c+x)39 OR c+x {2 THEN x=—x
€0 IF 1+y)24 OR 14y ({2 THEN y=-y
80 LOCATE c,1: PRINT " "

90 c=c+uil=l+y

100 LOCATE c, 1t PRINT CHR$(224):

110 6OTO S50

330 B0OTO 20

When you RUN the program, you should get a ‘ball’ bouncing
around inside the boundary. Quite fast isn’t it? If you want to
slow it down a bit you can insert a temporary line:

105 FOR d=1 TO 50: NEXT

Lines 20 to 40 set up initial values for variables ‘x’ and ‘y’ (used to
move the ball) and ‘¢’ and ‘I’ (the ball’s position). Lines 50 and 60
find out whether or not the next position of the ball will be
outside the boundary. (We are using columns 2 to 39 and lines 2
to 24.) If it will be, then the relevant increment, ‘X’ or ‘y’, is
inverted.

Line 80 erases the old position of the ball by PRINTing a space
over it, line 90 calculates its new position and line 100 PRINTs
the new ball. Line 110 completes the loop. Quite simple isn’t it?

If you are able you should now SAVE this program because we
are going to change it now, but change it back again later....

Smoothing the way

Each new position of the ball is necessarily a whole character
square from the old position. While the speed of the ball helps the
movement to appear smooth, it is not as smooth as one might
like. To get smoother movement we would need to PRINT the
ball at half-character intervals or less. This can be done using
TAG.

Remember that TAG allows you to PRINT at the graphics cursor
instead of the text cursor. The graphics cursor can be moved to
any of 640 positions horizontally and 400 positions vertically. (It

Moving Pictures

103

104

can be moved further butit will be off the screen!) Remember also
that in MODE 1 each pixel can be referred to by four sets of co-
ordinates (two vertically and two horizontally, see Chapter 3).
This means that to move a character the equivalent of one
character square we must move the graphics cursor 16 positions
one way or the other.

Let’s change the program now. The first thing to do is switch on
TAG, so insert this line:

45 TAG

The range of numbers you can PRINT is now much greater so
you must change lines 50 and 60 appropriately.

30 IF c+x)>609 OR c+x {16 THEN x=-x
60 IF 1+y>383 OR 1+y<{(30 THEN y=-y

Lines 30 and 40 must also be changed to give a valid initial
position for the ball:

30 c=INT (RND#592+16)

40 1=INT (RND*337+42)

When TAG is in force LOCATE has no effect so we mustchange
LOCATE to MOVE:

80 MOVE c,1: PRINT " "

100 MOVE c,1: PRINT CHR$(224):

If you did put line 105 in, now is the time to take it out.

The first thing that strikes you is how slow it is. This is because
the program references every pixel position twice. The speed can
be doubled with no change to the smoothness by doubling the
increments ‘x’ and ‘y’:

20 x=2: y=-2

RUN the program again to see the improvement. If you are not
sure what a particular line or variable does, change it and try to
understand the effect this has.

Bat’n’ball

When you have finished experimenting with version two of
the ball program, if you SAVEd the original, load it. If you
didn’t, change the program back to what it was. Now is the time

Moving Pictures

to include a ‘bat’ (not the flying kind) routine in our program.
The bat will move back and forth across the screen where the
lower edge of the boundary is at present.

First, then, delete the lines that draw the lower edge of the
boundary, 300-340. (The ball will still bounce off, of course.) Now
what we want is a bat. We will use three CHR$(131)s for this
purpose. The PRINTing of the bat must occur within the main
loop of the ball program so we will do this after the ball has been
PRINTed in line 100. Only the horizontal position of the bat will
change, so only one variable is needed.

To PRINT three CHR$(131)s you could type:
PRINT CHR#%(131) :CHR$(131) :CHR% (131)
But remember the STRING$ function from Chapter 7:
STRING® (3, 131)

Now insert lines:

4 bat$=" "+STRING$ (3, 131)+" "
109 LOCATE b, 25: PRINT bats$:

The spaces before and after the bat are to erase the ‘old’ bat as it
moves. We now need to change the value of variable ‘b’ in the
range 1 (left) to 36 (right). It has to be 36 because the bat,
including spaces, is 5 characters long and column 36 is as far
right as it will go without going off the edge.

We can test whether or not a key is being pressed by using the
keyword INKEYS$. Let’s choose a key for left, say Q, and one for
right, say P. You will have to make sure that CAPS LOCK is off
to get ‘q’ and ‘p’ and not ‘Q’ and ‘P’. You can type the following:

101 kys=INKEYS$
102 IF ky$="q" THEN b=b-1
103 IF ky%$="p" THEN b=b+1

Clearly, ‘b’ could increase or decrease too much and cause the
program to crash, so you should add:

104 IF bY»36 THEN b=36&

105 IF b{l THEN b=1

And give ‘b’ an initial value at line 20:

20 x=1: y=-1: b=18

Moving Pictures

105

106

If you now RUN the program you will find that the ball bounces
as usual and you can move the bat by pressing key Q or key P
(but not both). The bat does not respond particularly well to the
INKEY$ command so there is another way.

The keyword INKEY is very similar to INKEY$ but reads the
keyboard differently and doesn’t wait for the keyboard to repeat.
The syntax is

INKEY ({integer variable))

where the variable is a key number as on page 16 of Appendix 3
in the User Guide. You will see that the Q key is number 67 and
the P key is number 27.

Type in these changed lines:
101 (this deletes it!)
102 IF INKEY(67)=0 THEN b=b-1
103 IF INKEY(27)=0 THEN b=b+l

You will now find that the bat responds better than before. The
following line can replace lines 102, 103, 104 and 105 and is a
much neater way of doing the same thing:

102 b=b+{INKEY(67)=0 AND b) 1)-(INKEY (27)=0
AND b<{3&)
It works by making use of the logical value of the condition

within the brackets. The value is 0 if the conditionis false and -1
if it is true (see Chapter 7).

Now the bat moves more quickly we can insert a line or two to
detect when the ball hits it. The ball will be touching the bat
when the next line value of the ball is 25 AND when the next
column value is equal to b+l, b+2 or b+3. (The bat is three
characters long.)

You could type the line:

IF 1+y=25 AND (c=b+1 OR c=b+Z 0OR c=b+3)
THEN. ... a hit

Instead type these lines:
60 IF l+y(2 THEN y=-y
£5 IF l+y)24 THEN y=-y:1IF c)b AND c{b+4 THEN
s=g+1 ELSE s=5-5

The variable ‘s’ is to be used to keep the score. If you hit the ball

Moving Pictures

then your score is increased. Every time you miss, your score
drops by 5 points!

Insert this line to display the score:
106 LOCATE 16,1: PRINT "SCORE =":s;

The program is getting quite complex now, and the ball is
slowing down a bit. That’s why using TAG is impractical where
speed is required.

Collisions, collisions

So far, we have used our knowledge of where the boundaries and
bat are to detect when the ball hits them. In fact, the boundary
and bat need not be there at all and the ball would still bounce
off, because the conditions dictate the collision, not what is
actually there on the screen. What if some random character
were introduced into the arena? How could we detect a collision
without knowing where it was before hand?

Clearly we must know what we are looking for, or at least know
something about it; its shape or colour for example. The CPC464
does not have any keyword facility for testing the conditions
within a particular whole character square, i.e. testing for the
character or colour. Instead there is a keyword for testing the
colour of a specific co-ordinate. This is, appropriately, TEST,
which has the structure:

TEST ({integer expression), {integer
expression?)

where the first <integer expression> is the ‘x’ co-ordinate and
the second <integer expression> is the ‘y’ co-ordinate, PRINT
TEST (100,100) will return a number whose value is that of the
INK colour at 100,100.

So, if you did PLOT 150,300,3 and then PRINT TEST (150,300)
you would get the answer 3. In order to detect the presence of a
character within a character square one would first have to
convert the column and line values into ‘x’ and ‘y’ co-ordinate
values, and then do the test. Doing the conversion takes a little
thinking about, especially in the vertical direction, since lines
are numbered top to bottom and ‘y’ co-ordinates numbered
bottom to top. The more mathematical minded you are the easier
it will be for you.

One way out of the dilemma is to use a two-dimensional array
that is dimensioned to the column and line values. For example
you could type DIM a(40,25). Each subscripted variable would
then be a ‘shadow’ of the screen. If, for instance, you did:

Moving Pictures

107

108

LOCATE 15,7: PRINT"%": LOCATE 34,13:
PRINT "O"

then you would also fill the array thus:

a(ld,7)=1: a(34,13)=2
where the numbers 1 and 2 signify a particular character.
You could use the ASCII value if you wished:

a(ils, 7)=ASC("*") :a (34, 13)=ABC("0™)

To detect a collision on screen you would constantly check the
contents of the array. We will now add and change some more
lines as follows:

5 DIM a(40,25)

40 1=INT(RND*10+13)

107 IF a(eg, 1)=1 THEN a(c,l)=0is=s+lix=—xiy=-y

300 PEN 3

310 FOR 1=8 TO 12

320 FOR c=2 TO 39

330 LOCATE e,1: PRINT CHR$(143);

340 a(e,1)=1

350 NEXT o

360 NEXT 1

370 PEN 1

380 GOTO 20
Lines 300 to 360 set up the wall and the ‘shadow’ array which is
dimensioned in line 5. Line 40 ensures the ball always starts

below the wall. If a collision does occur, the ball’s direction is
reversed and your score is increased by 1.

Moving Pictures

DIY

The game, as it is, can hardly be said to be ‘exciting’ but then the
intention was not to write an exciting game. The intention was
to show how a simple game can be developed and expanded upon.
Also itis hoped you have a greater understanding of some of the
processes and problems involved in writing a program. Now it’s
up to you to have a go. Here are some suggestions for
improvements:

00 Make the ball disappear when it misses the bat and replace it
with a new one.

O Change the direction variables to allow the ball to move at
angles other than 45 degrees.

O Get the ball to bounce off the corner of the bat in the manner
you would expect it to.

O Make the ball bounce off the wall according to the angle at
which it strikes.

0 Add some beeps and burps.
O Add some more obstructions in the field of play.

PLAYTIME

The next program on Datacassette A is BLITZ. Here is a game
which will let you release all those pent-up destructive impulses.
Your aircraft is steadily losing height over the city, and is likely
to crash into one of the buildings. Your only way of getting down
safely is to bomb the whole lot flat!

Happy landings.

TESTING

You have probably tired yourself out with all that bombing so it
might be a good idea to have a short rest before running SATS.

Moving Pictures

109

Chapter 9

SOUND FX

When we explored the sound commands in Part 1 of this course,
it was necessary to restrict theinformation to simple forms only.
As you will have gained a lot more knowledge and confidence by
now, we can go into things in much more detail and study a lot of
aspects that were previously left out. Using our new notation,
the SOUND command is described by:

SOUND {chanmnel status), {(tone period)
[,{duration) [, {volume) [, {(volume envelope)
[,{tone envelope)l, (noise)11111]

All the arguments are integer expressions. Don’t be confused by
the number of brackets. What they meanisthatyoucan leave off
arguments, starting at the right-hand end, but you can’t leave
any out in the middle.

CHANNELS

The <channel status> argument is the most complicated part of
the SOUND command. In the User Guide you will see thatitcan
be an integer between 1 and 255! Don’t be frightened though, for
the moment we will justlook athow the CPC464’s three channels
are selected.

These channels are called A, B and C, and can be entirely
independent of one another, with their own tone and volume
envelopes. However, more than one channel can be specifiedina
SOUND command, as shown in the following table:

111

112

Channel
status Channel(s)

A only

B only

A and B

C only

A and C
Band C
A, Band C

This might seem a little odd but it works!

You can also plug your Amstrad Hi-Fi Tower System into the
back of your CPC464 to get stereo sound. Channel A is left,
channel C is right, and channel B gives you a bit of both left and
right.

SNO O W+

ENVELOPES

Volume envelopes change the level of sound specified by
<volume> in the SOUND command, and tone envelopes change
the note or pitch specified by <period>. These changes can be
dynamic during the time the sound lasts, as specified by
<duration>. You already know that you can have up to 15
volume envelopes and 15 tone envelopes in one program. What
you may not know is that each envelope can have up to five
sections! Read on!

Volume envelopes

A five-section envelope is a pretty daunting prospect at first
sight, so we’ll have a look at some three-section ones to start
with. Load the program, ZOUNDS, from Datacassette A, and
RUN it. Ignoring the tone envelope for the moment, you can see
that you are given a choice of three things called ‘attack’,
‘sustain’ and ‘decay’. The diagram shows what these words
mean.

It’s a bit like a story which has a beginning, a middle and an end.
Unlike a story, however, it is often the beginning and the end
which are the most interesting. If you keep using the ZOUNDS
program you can compare the differences in the sounds
produced by different types of attack, sustain and decay.

A typical sound with a fast attack is that of percussive musical
instruments such as a guitar. Other examples of sounds with a
fast attack are thunderclaps, drum beats and explosions. A slow

Sound FX

volume

attack sustain decay

volume

time

attack, however, is more characteristic of alarge organ pipe,ora
brass instrument, such as a tuba. Conversely, once you stop
blowing a tuba the sound stops immediately (fast decay),
whereas the sound from a guitar dies away gradually (slow
decay).

So you can see how a multisection volume envelope enables us to
mimic the natural sounds we hear around us. Nowwecanhavea
look at the ENV statement again:

ENV {(envelope number)[, (envelope sections)]
As you already know, each <envelope section> comprises
{(step count), (step size), (pause time)

and as you have recently found out, you can have from one to five
of them.

Here is an example:

time

Sound FX

113

The coding for this is:
ENV 1, 3,5,2, 1,-4,1, 4,-2,5, 1,0,5, 3,-1,10

If this envelope is used with a SOUND command whose initial
volume is zero, the effect on the volume will be as follows:

Section

number Effect

1 Medium attack to maximum volume
2 Fast decay to level 11

3 Medium decay to level 3

4 Short sustain

5 Slow decay to level 0

You can see that the sustain is produced by specifying a single
step of zero change in volume - the <period>giving the length of
the sustain.

Now is the time for you to experiment with volume envelopes of
your own. If your SOUND command is given a <duration> of
zero, it means that the duration of the sound is controlled
entirely by the ENV statement. You can see this from the
following listing of ZOUNDS. Try adding your own envelopes
for ENV 13, ENV 14 and ENV 15.

100
110

130
140 °
150 CLEAR

Zounds @ Envelope demonstrations

120 * by George Tappenden
> amended by DR 25/9/84

160 DEF FNt (x$)=INSTR{"FELMH" »x%$)-1

170 FOR i=0

180 READ e%,

120

TO 4:READ n$ (i) :NEXT
a%, 5%, dé, t$

200 * Screen

z2io
220 MODE =2

230 INK 0,26

240 PBAPER ©

230

BORDER 26
INK 1,0
PEN 1

ZE0 7 Descriptive Layout

270 7

280 PRINT STRING$ (13, "#") ;" VOLUME ENVELOPES ";STRING®

(1:1 "y .

230 PRINT SPACES(8) :STRINGS (4, "*") 1" TONE ENVELDPES *:
STRINGS (4,"%")

300 PRINT ¢

PRINT

310 PRINT e$,a%,s$,d%,e$, 1%

114

Sound FX

JI20 PRINT

330 FOR i=1 TO 12

340 RERD a%,b%,c$

I80 a=FNt (a$) tb=FNt (b$) to=FNt (%)
J60 PRINT i,n%{(a),n%(b), n%(c)

370 NEXT

Z8O FOR i=1 TO 4

390 READ tn%

400 LOCATE 53, 4+i%2 3 PRINT i

410 LOCATE 66, 4+i%2 PRINT tn%
420 NEXT

430 7

440 ° VYolume Envelopes

450 7’

460 ENV 1,1,15,1,1,0,40,1,-15,1
470 ENV 2,1,15,1,1,0,40,15, 1.4
480 ENV 3,1,15,1,1,0,5,15,-1,4
490 ENV 4,1,15,1,1,0,5,1,-15,1
SO0 ENV 5,5,3,1,1,0,40, 1 -15,1
510 ENV 6,5,3,1,1,0,40, 15 -1.4
520 ENV 7,5,3,1,1,0,5,1, - 15,1
530 ENV 8,5,3,1,1,0,5,15,-~-1,4
540 ENV 9,15,1,2,1,0,40,1,-15,1
330 ENV 10,15,1,2,1,0,40,15,~1,4
560 ENV 11,15,1,2,1,0,5,1,-15,1
S70 ENV 12,15,1,2,1,0,5,15,-1,4
580

390 7 Tone Envelopes

600 7

605 ENT -1,1,0,1

610 ENT —-2,2,1,2,2,-1,2

620 ENT 3,100,1,2

630 ENT 4,100,-1,2

650 7

660 * User choice

&70 °

680 WHILE (=0)} AND (t)>=0)
&390 7

700 LDCATE 10,22 &+ PRINT " ¢
710 LOCATE 10,23 @ PRINT * *®

720 LOCATE 1,20
T30 PRINT
740 INPUT "volume "in

DRINT "Type in the envelope number”

750 INPUT "tone -
760 7

770 " Play it

780 °

790 FOR times=1 TO 3

800 LOCATE 6, (n+35) I PRINT "%%%%%"
810 LLOCATE 5B, (Z%*t+4): PRINT "*#¥%x”
820 SOUND 7,200,0,0,n, ¢

Sound FX 115

830 FOR delay = 1 TO 1300 : NeXT
840 LOCATE &, (n+D) I OPRINT SPRCES (D)
850 LOCATE 58, (2*t+4): PRINT [0RCES(D)
860 FOR delay = 1 TO 500 @ NEXT

870 NEXT

880 -’

B30 WEND

00 END 7 of program

3107

320 ' Data for descriptive layout
30

940 DATA Fast, Slow, Long, Medium, Bhort

950 DATA Envelope, Attack, Sustain, Decay, Type
960 DATA F,L,F,F,L,8,F,H,5,F, 4, F

970 DATH M, L, F, M L, S, M H F # = 5

380 DATA 5,L,F,5,L,8,8,H,F,6,H,5

990 DATA steady,vibrato, falling, rising

Tone envelopes

Much of what is said about the structure of volume envelopes
also applies to tone envelopes. This time, though, itis the pitch of
the sound that can be changed during the execution of a SOUND
command. Their main use in sound effects is to simulate the
noise made by fast-moving craft or vehicles.

When a jet fighter passes overhead, the noise it makes gets
louder and louder until it is directly above, and then it gets softer
as it goes away. The pitch also changes because of something
called the Doppler effect - it falls continually from the time the
aircraft is directly overhead until it is completely out of earshot.
You can hear a speeded-up version of this in the ZOUNDS
program if you use ENV 5 and ENT 3. This type of effectis much
used in arcade games to provide realism and to add excitement.

The opposite effect is necessary when you simulate an aircraft
taking off, when the pilot has to gun the engines to give
maximum power. The pitch of the sound then increases
continuously until the turbines reach their maximum speed. You
can get an idea of a rising pitch by using ENT 4 with any of the
longer volume envelopes provided by the ZOUNDS program.
Note that the ENT statement has no effect on the length of the
sound (unlike ENV), only on the pitch.

As we saw for the volume envelope, the structure is:

ENT {envelope number), {(envelope sections)

where <envelope number> is from one to fifteen, and <envelope

116 Sound FX

section> can be from one to five. Each <envelope section>
comprises:

(step count), {(step size’, (pause time)

All of these are integer expressions. The <step size> is the
required change in the tone period of the pitch yourequire, and is
positive if you want the pitch to go down, and negative if you
want the pitch to go up. If you think aboutit, this isthe right way
round!

If you put a minus (-) sign in front of the <envelope number> it
will keep repeating until the end of duration given in the
SOUND command. This is useful for things like vibrato.

PLAYTIME

If you would like to hear some of the possibilities for sound
effects on the CPC464, load the next program from Datacassette
A,ZAPPOW2, and runit. This programisnot listed here, but you
can put it up on the screen if you wish.

Our favourite is the train!

TESTING

Many aspects of the SOUND commands will already be familiar
to you from the work we did on them in Part 1. The really clever
bit about them, however, is the way you can fit the different
elements together to produce the sound that you want. Run
SAT9 to check how well you have grasped the principles of
multisection envelopes.

Sound FX

117

Chapter 10

MUSIC

Before you start reading this chapter it is worth reflecting that
there are four sorts of people in this world. There are those who
can program computers and read music; those who can’t
program computers but can read music; those who can program
computers but can’t read music; and those who can neither
program computers nor read music.

It is only fair to tell you that if you really can’t read musical
notation, it is going to be a bit difficult to understand what
follows. So, it would be entirely understandable if you skipped to
the next chapter.

BOGEY MAN

In Part 1 we gave you a dozen lines of programming which you
could enter to make the CPC464 play ‘A Familiar Tune’. The
tune, as you will all have found out, was Colonel Bogey. Since
then you may well have tried out a few more tunes yourself. To
remind you of the original, however, here it is again:

10 REM A Familiar Tune

b3

O SOUND 1,213

30 SOUND 1, 253,60
40 SOUND 1,0, 40
50 SOUND 1,253

60 SOUND 1,239

70 SOUND 1,213

Music

119

120

80 SOUND 1,127, 40
90 SOUND 1,0, 1

100 SOUND 1,127, 40
110 SOUND 1, 159, 60

120 END

But this is a very clumsy way of programming music - especially
if it is a fairly long tune. Now that you know how to use the
DATA and READ commands you can learn the more elegant
and economical methods for programming your CPC464 to play
music.

Rather than having a series of SOUND commands, it is much
better to use variables as arguments. For example:

SOUND ch, per,dur, vol, ev, et, nse

You can now put all the values into DATA statements and use
the READ command to update the variables before executing
the sound command.

Let’s go back to Colonel Bogey again. For simplicity’s sake we
will leave off the volume, envelope and noise arguments, and use
channel 1 only. Our main loop then becomes:

10 FOR count =1 to 10
20 READ per,dur

30 SOUND 1, per,dur

40 NEXT count

50 END

As you can see, this routine will play any tune that comprises 10
notes since all the music is contained in the constants in the
DATA statements. To finish off our new-look tune program you
must therefore enter:

60 DATA 213, 20, 253, 60, 0, 40, 253, 20, 239, 20,
213,20,127, 40,0, 1, 127, 40, 159, 60

If you run this program it will sound (if you haven’t made any
mistakes) exactly like our original version of Colonel Bogey. But
why, you ask, go to all this bother? Well, there are many
advantages. One is that it is much easier to change individual

Music

constants in the DATA statements than wading through
endless SOUND commands, let alone having to enter them in
the first place. Another is that you can easily change certain
arguments for all or part of the tune. Try changing, for example,
the SOUND command in the new tune program as follows:

30 SOUND 1, per#*2,dur

There couldn’t be a simpler way of shifting a sound by one
octave.

ORANGES AND LEMONS

Now let’s get back to music and have a look at a new tune - a
waltz this time:

Oranges and Lemons Traditional

e

et
-

o oD QE#D

-

[

e N

™
=

Y.

-
~
-

N

r— s

Like many tunes this is made up of a series of four-bar phrases,
but the interesting thing is that there are only two basic patterns
of notes in all six phrases. The first two phrases are, of course,
identical. But the third phrase is also the same only it is

Music

121

transposed down by three semitones. The fourth phrase uses the
second pattern although it is only slightly different to the first
one, but the fifth phrase is the first pattern again. Finally, the
sixth phrase is the same as the fourth one but transposed up five

semitones.

The tune in BASIC

100 "oranges and lemons

110 *

120 FOR phrase=1 to 6

1307

140 IF phrase=1 then restore 360

150 IF phrase=2 then restore 360

160 IF phrase=3 then restore 360

170 IF phrase=4 then restore 410

180 IF phrase=3 then restore 360

190 IF phrase=& then restore 410

200 °

210 FOR note=1 to 12

220 READ pitch,duration

230 °

240 IF phrase=1 then period=pitch

250 IF phrase=2 then period=pitch

260 IF phrase=3 then period=pitch*l.335
270 IF phrase=4 then period=pitch

280 IF phrase=3 then period=pitch

290 IF phrase=6 then period=pitch/1.333

300

122 Music

310 SOUND 7, period,duration
320 NEXT note

330 NEXT phrase

340 END

350

360 *first pattern

370 *

380 DATA 159, 40, 190, 40, 159, 40, 190, 40, 239, 40, 213, 20

390 DATA 190, 20, 179, 40, 213, 40, 159, 40, 190, 40, 239, 80

400 °
410 *second pattern

420 7

430 DATA 213, 40, 253, 40, 213, 40, 319, 40, 319, 40, 284, 20

440 DATA 253, 20, 239, 40, 284, 40, 213, 40, 319, 80, 319, 40

As you can see, this program consists of one loop that plays the
notes in a phrase nested inside a second loop that selects the
phrase to be played. The phrase selector uses the RESTORE
command to set the pointer to the appropriate block of data
statements, so that the READ command in line 220 can put the
appropriate data into the variables ‘pitch’ and ‘duration’. The
correlation between musical notes and the figures in the data
statements read into ‘pitch’, is given in Appendix VII of the
User Guide.

The intermediate variable, ‘pitch’, is then used to generate the
variable ‘period’ according to a second phrase test. An
approximation of the five semitone transpositions are achieved
by multiplying and dividing ‘pitch’ by 1.335.

We now arrive at our solitary SOUND command in line 320. You
will notice that the channel value is 7, so that all three channels
function simultaneously.

If you look at the music a few pages back, you will notice that the
second pattern doesn’t have12 notes at all;itonly has10. Sohow
come we have 12 constants in the DATA statements? If youlook
closely, you will see that what we have done is to break both the
two long Gs into two.

Music

123

124

Further development

Our melody above was kept deliberately simple so that you could
understand the general principles involved. No attempt was
made to vary the volume between phrases, and the tone and
volume envelopes were ignored completely. So why not try
modifying the program to include these things? You could also
nest the main loop inside a further one which repeated the tune a
certain number of times. How about a different volume envelope
for each time round the loop?

Another thing would be to plug your hi-fi into the stereo
connection at the back of the CPC464 (the minijack socket
marked ‘1/0’). You could then change the channel value between
phrases so that yougeta ‘call and answer’ effect between the two
stereo channels.

Anyway, you should now know enough to program almost any
single-part melody into the CPC464 and are probably quite
capable of making good use of the creative effects possible with
the SOUND commands in Amstrad BASIC.

SERIOUS STUFF

The next program on Datacassette A is MINUET by J. S. Bach.
It is unlikely that any other composer has had his music
transposed for so many different instruments. Even when he
originally wrote a piece for harpsichord, it may well have since
been adapted for piano, organ, guitar, orchestra, or brass band.
So here we have a continuation of the trend - a version for the
Amstrad CPC464 Colour Personal Computer.

Apart from being a very good rendering of the piece, there are

Musice

some details of this program that are worth discussing - before
or after you have played it!

Our intention is to show you quite how good a piece of serious
music can sound on the CPC464. However, it was necessary to
use commands and techniques that you won’t find explained
in this part ot the course. But there is nothing to stop youhaving
a look at it on the screen if you wish.

The first thing you will notice about it is that three voices are
used to give melody, accompaniment and bass lines. This
requires a fairly detailed description of the more subtle
operations of the three sound channels, and will have to wait
until Part 3 of this course. You may also find unfamiliar
commands used here and there. Again, unless you want to teach
yourself from the User Guide, these will have to wait.

Having said all this, it is worth listing the program on the screen
to see how it was put together.

TESTING

Don’t worry, this isn’t a test of musical knowledge. Run SAT10
to check up on your understanding of the keywords and
techniques used in this chapter.

Music

125

Chapter 11

ADVENTURE

One of the most popular sorts of computer game is the adventure,
in which you enter into a world of fantasy that only exists in the
mind of the programmer. By typing in commands and
information you become an integral part of a saga that the
computer creates by telling (through the screen) where you arein
time and space, what your surroundings are and the latest event
in the story. The fascination lies in the fact that you can
influence the course of events and that the game is played out
differently every time.

Most adventure games are based on the idea of a maze, or a
building with lots of rooms, which you have to find your way
around in search of various useful or valuable objects. There
may also be traps and hazards or even (in the story) mortal
danger. The ultimate aim is usually the retrieval of a particular
object and successful escape.

Load the next program from Datacassette A, ADVENTUR. It
is the example we are going to use for teaching you how to write
your adventure games.

ROLAND IN THE HOUSE

ADVENTUR is very typical of this sort of program. The story
is that you want to spend a quiet afternoon programming on
your CPC464, but someone has left all the bits you need in
different rooms of the house. The objectis to find them all and set
up your system somewhere without interruptions.

127

128

There are three sorts of command:

O Direction commands:

n = north
e = east
s = south
w = west
u = up
d = down
O One-word commands:
help
look
list
quit
O Two-word commands:
get....
drop....
open....
close.....
pull....
plug ..

Whenever you get the prompt sign (), enter one of the above

commands. You can always type ‘help’if you get really confused.

PLAYTIME

This is where you take some time off and just enjoy playing the
game. Even a simple adventure like this can be quite addictive,
so don’t be surprised if youdon’t get back to this book for a while.

JUST TO RECAP

When you have played this adventure a few times and have
found out where everything is and what you need to complete the
game, you may have several ideas about how you would like to
change it. Perhaps you would like to add some more rooms and
objects, or perhaps you would like to rename all the rooms to
make them into caves. Whatever yourideas, you will be unable to
make any changes until you understand how the program has
been put together.

When you study the listing later in this chapter you may be
totally put off by its apparent complexity. Please don’t be; you
will soon see how simple it really is and should be able to
recognise the commands used, all of which have been explained
in previous chapters.

Adventure

There are, however, a few points that you need to know about
before you begin.

A few points

You will have noticed some variables with a percent sign, %,
after them. The first of these occurs on line 500:

FOR i%* = 0 TO S

This percent sign tells the CPC464 to handle the variable in a
special way.

When the CPC464 is dealing with numbers it uses whatis called
‘floating point’ arithmetic when performing calculations and
storing the numbers. This is very sensible really since it allows
you to use numbers that have a fractional part, i.e. lots of
decimal places, like pi, (3.1415926). Numbers such as these are
called ‘real’, because they are!

It was explained in Part 1 of this course that despite the
cleverness of the CPC464 it is possible to end up with an answer
that is not quite what you expected. For example, suppose you
had performed a calculation which you have worked out should
give the answer 5. You have put in a program line:

IF x=5 THEN GOTO 2000

However, you find that the CPC464 refuses to go to line 2000 so
you get it to print the value of ‘x’ and you get the answer
4.9999999. What happened is that somewhere in the working a
very small inaccuracy got multiplied enough forit to matter. You
don’t believe it can happen? Try this:

10 FOR n=1 TO 10 STEP .15
20 PRINT n

30 NEXT n

Bearing such things in mind, you know that you can overcome
such problems by using keywords like ROUND or INT.

Prevention is better than cure though and you can prevent
decimal errors by telling the CPC464 to treat a number as an
integer. That is what the percent sign is for. You see, even when
calculating 5+4, the CPC464 still uses floating point like this:

5.0000000 + 4.0000000 =9.0000000

You or I would not do that. When we see an integer number we
use integer arithmetic, when we see a fractional number we use

Adventure

129

130

floating point arithmetic. The CPC464 hasto be told everything.
In an adventure game there is little or no need of fractional
numbers 8o we can work in integers, thus ensuring that errors do
not occur and sometimes making calculations faster.

True or false?

As you looked through the listing you may have thought that
some of the IF statements looked incomplete, for instance, line
1010:

IF INSTR({inv%$,command®%) THEN GOSUB 1730

The INSTR function is not compared to anything, so how can a
decision be made? In Chapter 7 brief mention was made about
the logical value of a condition. It will have a value of -1 if true
and 0 if false. In the line:

IF x=35 THEN...

the condition is x=5. You can find out whether or not it is true by
entering:

PRINT x=95

You can do this for any condition because the answer can only be
true or false. Fair enough you might say, but what about this
line:

IF x THEN...

If ‘x’ what? The logical value of the condition ‘x’ depends on the
actual value of ‘x’. The condition ‘x’ will be true if ‘x’ is not zero
and false if it is. It’s as simple as that. The keyword INSTR
returns a number that gives the position of the first character
of the searched-for string in the search string. If the searched-for
string is found, the result will be non-zero (true); if not it will be
zero (false).

Now you should be able to understand how line 1010 (and all the
others like it) are able to work. It is a very useful concept.

DESIGN OF ‘ADVENTUR’

Imagine you had to design an adventure game from scratch
(don’t worry, you won’t have to here). In Part 1 of this tutorial
guide (Chapter 9) a programming technique called
Programming Development Language, or PDL for short, was
introduced as a method of training you to think in a logical,
structured way. We gave an example of a postman delivering
mail to a street of houses.

Adventure

The rest of this chapter will now show you:

O How the PDL translates into a working program
O How to modify the program to change the story

A little PDL

There are many ways of writing PDL, and no-one ought to say
that their way is better than anyone else’s. Apart from the
limited number of keywords used, the main objectis to make sure
that the routines and subroutines are nested in logical structures
- hence the term (which you may have already heard) structured
programming.

Below is the PDL of our adventure game, and you can see that
although the BASIC takes 10K of memory, the PDL outline is
very compact.
If cowmand entered
Then make sense of command
move command-
If direction not allowed
Then give message
Elgg change location
action command-
If action not possible
Then give message
Else carry out action
instruction (help, list, quit, look)
carry out instruction
If end of game conditions satisfied
Then congratulations

Else wait for command

Adventure

131

Obviously, this is a broad outline and does not include the
detailed subroutines necessary to carry out the detailed tasks.
But it gives a nice, clear overview of the program and can be used
as an ‘index’ to the different tasks to be carried out.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
2930
300
310
320
330
340
350
360
370
380
390
400
410
420
430

440

are
450
460
470
480
430
S00
510
520

132

Arnold Adventure
DA 30/9/84
Initialise

CLEAR
scrwidth=40 °* or change to 80 and use MODE 2

MODE scrwidth/40-0.25

BORDER 24

INK 0,3 INK 1,24

PAPER O: PEN 1

LOCATE 12,85

PRINT"Arnold Adventure"

LOCATE 1,8

PRINT" In this adventure you are trying to"
PRINT" have a quiet afternoon playing on your®
PRINT" CPC464 but someone has left all the"
PRINT" things you need lying around the house"
PRINT

PRINT" The object is to find thewm all and set"
PRINT" up your system somewhere without any"
PRINT" interruptions. Beware of the cat!"

PRINT

PRINT" Press any key to start"
WHILE INKEY#$="" 1 WEND

CLS

BORDER 23:INK 0,23
INK 1,1:INK 2,5:INK 3,8

' Read map

rooms=1l1 & items=11 ’rumber of rooms and items(-1)
fixed=7 * the first (fixed—1) items are movable, rest
not

held=0theldmax=4 ' max number of objects holdable
goes=0 ' number of goes

7

DIM ex$(5) * optional
FOR i%=0 TO S
READ ex%(i%x) 1 NEXT

¥

Adventure

530 ' Read roows
540 7
5930 DIM loc$(rooms),dir$(rooms),dest$({rooms)
S60 FOR i%=1 TO rooms
570 READ loc$(i%),dir$(i%),dest$(i%)
380 NEXT
590 7
600 ' Read objects
£10 7
620 DIM object$({items),objloc(items)
630 FOR i%=0 TO items
640 READ object%(i®t),abjloc(i%)
650 NEXT
660
670 closed=—-iiopen=0ionn=—1:gff=0
&80 backdeoor=closed:frontdoor=closed
630 switch=off:plugged=off
700 DIM swH(l) : swd{(O)="off" : sws(l)="on"
710 position=3 "initial position
720 direction$="NSEWDU"
730 gets="GETPICKTAKELIFT"
740 put$="DROPUTLEAVE"
730 pul$="PULLPUSHPRESSTURN"
760 inve="INVENTORYLIST"
770 clos="SHUTCLOSE"
780 opes="0PEN"
790 loo%="LOOKWHEREEXAMINE"
BO0 gui$s="GUITENDSTOPFINISH"
810 plus="PLUGCONNECT"
820 hel$="HELP"
830 nul$=CHR%(0) * for blanking
B4O
850 GOBUR 2140 : REM look (for starters)
80
870 ' Main loop
880 ?
830 PRINT
900 INPUT ™Y, command$
910 IF cowmmand$="" THEN 830
320 IF LEFT$(command$, 1)=" " THEN command$=MID$ (command®,
2) + BOTO 910
330 command$=UPPER$ (Command$)
340 goes=goes+i
ki

950

960 ' Mow parse the string
370 7

380 ° one word

330 °

1000 IF LEN(command#)=1 THEN GOSUR 1270 @ GOTO 1190 :REM
move

1010 IF INSBTR{inv$, command$) THEN GOSUR 1730 : GOTO 1190 =
REM inventory

Adventure 133

1020 IF INSTR(loo%, command$) THEN GOSUB 2120 : GOTO 1190
REM look

1030 IF INSTR(qui$, command$) THEN GOSUR 2070 @ GOTO 1190
REM quit

1040 IF INSTR(hel$,command$) THEN GOSUEB 2380 : GOTO 1130
REM help

1050 7

1060 ' two words

1070 °

1080 d#%*=INSTR(command$, " ")

1090 IF d%=0 THEN PRINT" I don’t understand that":607T0 1210
1100 noun$=MID$ (command$,d%+1) ! command$=LEFT$ (command®,
d%—-1)

1110 IF INSTR(noun$,” ") THEN P$="Only two words at a time
please" :GOSUB z680: GOTO 830

1120 IF INSTR(get$,command$) THEN GOSUB 1380 : GOTO 1130 :
REM get

1130 IF INSTR(put#%, command®) THEN GOSUB 1520 : GOTO 1190 =
REM put

1140 IF INSTR(pul$, commands) THEN GOSUER 1&50
REM pull

1150 IF INSTR(clo%,command$) THEN GOSUR
REM close

1160 IF INSTR(ope%, command$) THEN GOSUB 1950
REM open

1170 IF INSTR(plu#,command$) THEN GOSUE 2270
REM plug

1180 PRINT "I don’t know how to do that";
1190 °

1200 GOSUB 2470 * is adventure complete

1210 7

1220 GOTO 890

1230 7

1240 7

1230 * Move

1260 °

1270 d#%=INSTR(direction$, command$)

1280 IF d#*=0 THEN P%="1 don’t know what you mean":G0OS5UR
2680: GOTO 1340

1290 d%=INSTR(dir#$(position), commands$)

1300 IF d%*=0 THEN P$="You can’t go in that direction”:G0S5UR
2680 : G0OTO 1340

1310 IF (position=4 OR (position=3 AND d%=1)) AND backdoor=
closed THEN P$="The back door is closed":G0SUB 2680: GOTO
1340

1320 IF (position=1 OR (position=2 AND d#%=2)) AND frontdoor=
closed THEN P$="The front door is closed":GOSUR 2680: GOTO
1340

1330 position=ASC(MID$(dest®(position),d%,1))-&4

GOSUB 2140

=

6OTO 1190

GOTO 1190

H
®
B
[e

GOTO 11390

GOTO 1190

134 Adventure

1340 command®=rul$: RETURN

1350 7

1360 * get

1370 7

1380 o%=0

13390 FOR i%=0 TO items

1400 IF INSTR(UPPER% (object$(i%)),noun$) THEN o%=o%+1 1
BOSUR 1440 @ BGOTO 1430

1410 NEXT

1420 IF o%=0 THEN P$="1 don’t know what that is":G05UB 2680
1430 command$=nul$: RETURN

1440 IF i%=fixed THEN P$="You can’t take the "+object$(i%)
:B08BUER 2680: GOTO 1480

1450 IF held=heldmax THEN p$="Your hands are full®":G0SUB
2680:50T0 1480

1460 IF objloc(i¥)=position THEN P#%= "Got it":GOSUR 2680:
held=held+l:objloc(i%)=0 & GOTO 1480

1470 IF objloc(i%)=0 THEN P$="You’ve already got it":B0SUR
2680 ELSE P$="It"s not here":GOSUBR 2680

1480 RETURN

1430 7

1500 * put

1510 7

1520 o%=0

1330 FOR i%=0 TO items

1540 Ffu=0

1550 IF INSTR(URPER$ (object$(i¥%)),noun$) THEN o%=o%+1 @
G0SUR 1600

1560 IF o0%)0 THEN i%=items

1570 NEXT

1580 IF o%=0 THEN P#%="I don’t know what that is":G0OSUB 2680
1390 command$=nuls : RETURN

1600 IF objloc(i%)=0 THEN P$="You drop the “"+object$(ix):
GOSUR 2680:held=held~litobjloc(i%)=position ELSE P$="You
haven’t got a " +object$(i%) :GOSUER 2680

1610 RETURN

1620 7

1630 7 pull

1640 7

1650 d%=INSTR ("HANDLEDOOR" , nouns$)

1660 IF d%=0 THEN P#%="No point":GOSUR 2680: GOTO 1630
1670 IF d%=7 THEN ' goto the open door routine

1680 IF position=2 THEN switch=-{l+switch): P$="The handle
clicks into the "+ew$(ABS(switch))+" position”:GOSUE 2680
ELSE P#$="1 see no handle":G0S5UR 2680

1690 comwmand$=nul$: RETURN

1700 7

1710 7 inventory

1720 7

1730 temp=0

1740 P$="You are carrying ":GOSUE 2680

Adventure 135

1750 o0%=0

1760 FOR i%=0 TO items

1770 IF objloc(i%)=temp THEN P$="a "+object$(id)+" "z
GOSUB 2680: o%=o%+l

1780 NEXT

1790 IF o%=0 THEN P$="nothing ":60SUB 2680

1800 command$=nrul$: RETURN

1810 °

1820 * close

1830 °

1840 d#%=INSTR("DOOR", rioun%$)

1850 IF d%{()1 THEN P%="] can’t close that":B0O5UB 2680:
G0T0O 1910

1860 IF position)4 THEN P$="What door?":GOSUR 2680: GOTO
1310

1870 IF (position=1 OR position=2Z) AND frontdoor=closed
THEN P%= "The front door is already closed":GOSUBR 2680:

G0TO 1210
1880 IF (position=3 OR position=4) AND backdoor=closed

THEN P$="The back door is already closed":B08UB 2680:

GOTO 1910

1890 IF (position=1 OR position=2) THEN P$="You have closed
the front door":G0SUR 2680: frontdoor=closed

1900 IF (position=3 OR position=4) THEN P$="You have closed
the back door*:B0OSUB 2680: backdoor=closed

1910 command$=nul% : RETURN

1920 °

1930 ' open

1940 °

1950 d#*=INSTR({"DOOR", noun$)

1960 IF d®{}1 THEN P%="] can’t open that":G0OSUR Z&80: GOTO

2030
1970 IF position’4 THEN P$="What door?":G0OSUB 2680: GOTOD

2030

1980 IF (position=1 OR position=2) AND frontdoor=open THEN
pg="The front door is already open":GOSUBR 2680: GOTO 2030
1990 IF (position=3 OR position=4) AND backdoor=open THEN
P$="The back door is already open':GOSUB 2680: GOTO 2030
2000 IF (position=1 AND frontdoor=closed) OR (position=4
AND backdoor=closed) THEN P$="Hard luck. You have locked
yourself out":B05UB 2680:60T0 2380

2010 IF position=2 THEN P$="You have opened the front door":
G0SUB 2680: frontdoor=open

2020 IF position=3 THEN P$="You have opened the back door®
:60SUB 2680: backdoor=open

2030 command$=nulsiRETURN

2040 °

2030 ' quit

2060 °

2070 P%="Do you really want to stop (Y/N) ":GOSUER 2680
2080 INPUT "", command$

136 Adventure

2090
2100

2110

2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
stop
2280

IF URPER% (command$)="Y" THEN END
commandb=rnuls : RETURN

1

* look

P$="You are in the "+loct(position) :GOSUR 2680
Pe=", Exits lead ":G508UR 2680

FOR i%=1 TO LEN(dir$(position))

tempd=MID$ (dir%(position),i%, 1)

Pe=epxd (INSTR(direction$, tempk)-1)+", ":1G0GUER 2680
NEXT

Pé="and you can see ":GB0OSUB 2680

temp=position

GOSUB 1730

commands=rnul$: RETURN

3

' plug 1in

IF position=5 THEN P#%$="Your family are watching TV and
you. ":B0SUE 2680:60T0 2340

IF ebjloc(l) (10 THEN p$="The monitor isn’t here”:

GOSUB 2680:60T0 2340

2290

iIF objloc(3) (310 THEN p$="The computer isn’t here":

GOSUR 2680:60TO 2340

2300

IF position(i0 THEN P#%="There’'s no socket in here.":

GOSUR 2680: GOTOD 2340

2310

IF INSTR("CTM&4OMONITORAMSTRADCPCA4E4COMPUTER" , noun%$)

=0 THEN P$="I can’t plug that in.":60SUB 2680: GOTO 2340

2320
2330
ELSE
2340
2350
2360
2370
2380
23530
2400
2410
2420
2430
2440
2450
2460
2470
2480
2430
=fr)

2500

2510

plugged=onn

IF switch=off THEN P$="Nothing happens.":B0SUB 2680
Pé="Your computer springs into life.":GOSUB 2680
command$=nuls : RETURN

¥

' help

RESTORE 3130

p$="The commands are " ' GOSUR 2680
FOR hl=0 TO 25

READ p%:ps=" "+p$:G0SUB ZEBO

NEXT

command$=nuls ¢ RETURN

¥

T "finished?"

fr=10 *"finish room

IF position{()fr THEN RETURN

ready=(objloc(1)=Ffr) AND (objloc(3)=fr) AND {(objloc(4)
AND (objloc(5)=fr) AND (objloc(&)=fr)

ready=ready AND switch AND plugged
catout=((objloc{(0)=4} OR (objloc(Q)=1)) AND backdoor

=closed AND frontdoor=closed

Adventure 137

2520 IF NOT catout AND objloc(3)=Ffr AND objloc (D) (O THEN
pe=" The cat keeps jumping on the keyboard":GOSUE 26803
obiloc(O)=Ffr

2530 ready=ready AND catout

2540 IF NOT ready THEN RETURN

2550 PRINT

2560 p$="Well done. You have completed the adventure in":
GOSUER 2680

2570 p$=8TR$ (goes)+" goes. Now you can enjoy a quiet
afternoon’s computing® :GOSUR 2680

2380 PRINT:PRINT

2990 P#="Do you want to play again? (Y/N) ":G0OSUR Z&80
2600 INPUT "', command$

2610 IF UPPERS (command$)="Y" THEN RUN

2620 END
2630 7
2640 Printing routine

2650 7 Enter with Pé=text to be printed

2660 7 Return with cursor in following position
2670 7 therefore CRLF needed before ?

2680 pe=ps+" O

2690 In=LEN(p%) : xp=P0OS (#0)

2700 IF INSTR{(p%," "“)=0 AND (In+xp)) (scrwidth—-2) THEN
PRINT :xp=0

2710 FOR pr¥%=1 TO In-1

2720 sp=INSTR(pr%,p%," ")

2730 IF sp+xp) (scrwidth—2) THEN PRINT Ixp=xp-scrwidih
2740 PRINT MID$(ps, pr4, 1)

2730 NEXT

2760 RETURN

2770 7

2780 7

2790 ' Directions

2800 7

2810 DATA North, South,East, West, Down, Up

2820 7

2830 7 Locations No? (rooms)

2840 ' name,directions out, resp. room numbers out (A=1
B=Z. ..)

2850 °

2860 DATA front garden,N,B

2870 DATA hall, NSEU, CAEH

2880 DATA kitchen, NS, DB

2890 DATA back garden,5,C

Z300 DATA lounge, W, B

2910 DATA bathroom, E,H

2920 DRATA front bedvoom,N,H

2930 DATA bedroom landing, NSEWUD, IGJFKE

2940 DATA back bedroom, 8, H

2950 DATA box room,W,H

2960 DATA attic,D,H

138 Adventure

2970

~ M ow

2980 Objects Noi(itews+l)
2930 name, init pos { {(=rooms)
3000 7

010 DATA black cat, 2

3020 DATA CTMEAC wonitor,3

JO30 DATA TV set,S

3040 DRTA Amstrad CPC4&E4L cowmputer,?
I050 DATA work table, il

Z060 DATA kitchen chair, 3

070 DATA computer manual,?

J080

3090 * fixed objects from wo.7
2100 7

3110 DATA red handle, 2

J120 DATA power socket, 10

3120 DARTA bed of roses, 1

3140 DATA rusty dustbin, b

3150 DATA priceless old painting, 11

3160
J170 7 Help cowmand
3180 7

3190 DATA CLOSE, CONNECT, DROP, END, EXAMINE
3200 DATA FINISH, GET, HELP, INVENTORY, LEAVE, LIFT
3210 DATA LIST,LOOK, OPEN, PICK, PLUG, PRESS, PULL

3220 DATA PUSH, PUT, QUIT, BHUT, STOR, TAKE, TURN, WHERE

Putting it into BASIC

If you have already studied and understood the listing of the
adventure then you can skip this section, otherwise read on. The
program begins at the beginning and prints the title page. It
waits for you at line 360. Pressing any key starts the program
proper.

Lines 430-460 set some variables whose purpose will become
clear later. Lines 490 to 510 read the first six items from the data
list (line 2810) in array ‘ex$’. Lines 550 to 580 read the next 33
data items (3%11, lines 2860 to 2960) into arrays ‘loc$’, ‘dir$’ and
‘dest$’, respectively. Lines 620 to 650 read the next 24 data items
into arrays ‘object$’ and ‘objloc’. From line 670 more variables
are set up, including 11 curious string variables. Each of theseis
formed from a number of words which can all mean the same
thing and will be used in the main loop of the program to help the
CPC464 to work out what your commands mean.

Let’s pause here for a recap on arrays, previously discussed in
Chapter 2. Arrays allow you to access ‘lists of things’ much more

Adventure

139

140

easily. To illustrate this, RUN the adventure and press ESC
when you get the command prompt.

Now type in the following lines:

3000 FOR n=0 TO 11
S010 PRINT n3" "slocs(n)

5020 NEXT n
Do not RUN this or all the variables will be lost. Instead type:
CL5:60T0 S000

You will get a list of all the data items, called elements, of array
‘loc$’. Try it with the other arrays. All of these are one-
dimensional arrays and are the basis of the entire program.
Using these arrays the CPC464 can keep track of whatis where
and in what condition.

Back to the listing now. Messages are printed on the screen by
the subroutine that begins at line 2680. What is to be printed is
assigned to variable ‘p$’. At line 2140 we find that ‘p$’ is formed
from two strings that are joined end to end. The first string is a
standard one, ‘You are in the’, and the second will depend upon
your position. Initially your position is in the kitchen, because
variable position was set to three atline 710 and element three of
array ‘loc$’ is ‘kitchen’.

The subroutines at 2150 and 2200 put ‘p$’ together in the same
way to print out the exits and contents of the location,
respectively. Once that is done it is up to you to input your
commands.

When you do this, whatever you type in is given the variable
name ‘command$’. This then has to be analysed and checked
before any instruction can be carried out. This ‘making sense’ of
a string is called ‘parsing’, hence the programmer’s comment on
line 960. Here the INSTR function demonstratesits worth. If line
1000 is passed over then the following lines search your input to
find out if there are any recognisable words within it. Any that
are recognised (those contained in those curious variables on
lines 720 to 820) are acted upon: otherwise you get a comment
back. Each action is performed on its own subroutine and each
of these is clearly marked on the listing.

Only when you get all the correct objects in the correct room and
some other conditions are met does the game end. By studying
the routine beginning at line 2470 you can find out what you
need to do in order to end the game. (If you want to find out by
playing the game and not cheating, then skip the next three
paragraphs!)

Adventure

Begin at line 2470. The finish room is room 10, i.e. the room that
is the tenth element of array ‘loc$’. This is the box room. At line
2480 a test is made to see if your current position is room 10, i.e.
variable position=10. If it is not, then the game continues.

If it is the correct room, we move on to line 2490 which looks
complex but isn’t really. The value of the variable ‘ready’ will
depend upon the values of the five conditions in the line. If
‘ready’ is to be true, all five conditions must be true. These five
conditions are simply elements of array ‘objloc’, which are the
objects you have to collect and put in the room. If you look
through the data list (lines 3010 to 3070) you will see that
elements 1, 3, 4, 5 and 6 are the CTM640 monitor, Amstrad
CPC464 computer, small work table, kitchen chair and computer
manual. The number after each item in this list is the number of
the room it is in to start with. Itis thisnumber that mustequal 10
at the end.

Variable ‘ready’ does not depend only on the objects being
correct. You can see at line 2500 that ‘ready’ also depends upon
variables ‘switch’ and ‘plugged’ being true. These are set from
lines 1650 and 2270, respectively. And finally, at line 2530 you
see that ‘ready’ also depends on ‘catout’ which is set atline 2510.
In order for ‘catout’ to be true, element 0 of array ‘loc$’ (the cat)
must either be in location 1 or 4 (front or back garden) and both
doors must be shut. If not, and you are not holding the cat (line
2520), then the cat jumps on the keyboard.

Adventure

141

142

To sum up, when you have the monitor, CPC464, manual, chair
and table in the box room, turned the big red handle, plugged in,
put the cat in the garden and closed the front and back doors,
that is the end of the game!

This is the substance of this adventure game. As you move
around, pick things up and change the states of things like
doors, then the arrays and other variables are altered and
updated. If you look back a few pages, you will see thatisexactly
how our original PDL design was structured.

YOUR HOUSE COULD BE A CASTLE

To further aid your efforts in understanding how this adventure
works, we will now make some modifications to the program.
Another location will be added, more objects too, and another
object to get to the box room. Interested? Then read on...

How about a garage to the east of the front garden? The first
thing to do is change the variable ‘rooms’ on line 430 from 11 to
12. This alters the DIMensioning of the arrays later. Next,add a
twelfth DATA statement to the list beginning line 2860. Each
line has three pieces of data. First the name of the location -
garage. The second part is the direction(s) out of the location.
This will be west into the front garden - W. Finally, a code letter
for the location(s) adjoining. The locations are coded A to K for
elements 1 to 11 of array ‘loc$’. The front garden is element 1 so
the letter is A. Enter this line:

2970 DATA garage,W,R

Now we must alter the data concerning the front garden. Either
EDIT or retype line 2860 to read:

2860 DATA front garden, NE, BL

The E is added because you can now go east out of the garden
and the L is added because being the twelfth element of the array
the garage has code letter L (twelfth letter of alphabet).

If younow RUN the program you will be able to gointo and out of
the garage, but of course there is nothing there.

So, now to put something in the garage. A car seems like a good
idea! First you need to change the variable ‘items’ on line 430
from 11 to 12, then add a twelfth DATA line to the objects list
beginning at line 3010. Note that some objects are movable but
others are not. The number of movable objects is determined by
the variable ‘fixed’ on line 440. At present this has value 7 which
means that the first 7 items can be moved; the rest cannot. We
don’t want to be able to move the car, so don’t change ‘fixed’. And

Adventure

we must make sure that our new DATA line does not become one
of the first seven. Enter the following line:

3160 DATA second hand car, 12

The 12 is the location number of its position, the garage - when
you RUN the program there will be a car there!

Now let’s put something in the garage that youcan takeaway - a
bicycle. Once again change variable ‘items’ (line 430), this time
to 13. Now change variable ‘fixed’ from 7 to 8.

Our DATA line must now be one of the first eight, so we enter:
2080 DATA brand new bicycle, 12

Now RUN. You should be able to pick up the bike, but not the car.

Finally we can alter the finishing conditions so that you need a
datacassette in the boxroom before the game will end.

First, increase variables ‘items’ and ‘fixed” by one again, then
add another new line:

3075 DATA datacassette,3

The 9 is the number of the back bedroom, the ninth element of
array ‘loc$’. To make the datacassette one of the items you must
collect, you must add it to the line that checks if variable ‘ready’
is true. So, to the end of the line 2490 add:

AND (objloc(7)=fr)

The datacassette is the seventh element in its array and now
must be in the finish room. RUN the program to make sure it
works!

By now you should have a good idea of how the program works.
So why not add more rooms, a cellar, or a shed, or, better still,
why not change your house into a castle with banqueting halls,
dungeons, towers, maidens to be rescued, and dragons to be
fought. It is quite feasible. Just take your time, think logically,
step by step. Even if you are not sure, have a go.

Adventure

143

The best way to learn is by experiment. Learning is an adventure
too!

TESTING

Having had your wits tested by playing ADVENTUR, itis now
time to have your memory tested by running SAT11.

144 Adventure

Chapter 12

WHAT NEXT?

ADVANCED AMSTRAD

Long, long ago (back in Part 1, in fact) there was a hint that the
numeric keyboard on the right of your CPC464 keyboard could
be persuaded to produce effects other than merely making life
more easy for the typing-in of numeric values. You probably
already use the CTRL-ENTER short-cut for loading and
running programs; what you are about to learn is how you can
put your own time-saving, single-key functions into the CPC464
to suit the type of programs that you write most often, or a
particular one you are developing at a given moment.

One of the defaults that operate on initial power-on of the
CPC464 is the definition of which characters are generated
when the keys are pressed on the numeric keypad. You can
modify this at any time. First of all press the zero key on the
numeric keypad. You get a zero on the screen, don’t you? Now try
entering the following:

REY 128, "hello"

Surprise, surprise, when you press the zero key again you now
get ‘hello’, instead of zero. Our new keyword, KEY, allows you to
assign whatever string you wish to any of the 12 keys of the
numeric keypad. The command structure is:

KEY (key number?, {(string expressiom

The argument <key number>is an integer between 128 and 140,
which refers to actual key positions as shown in the following
diagram.

145

146

You will notice that the numbers only go up to 139 and not 140.
The thirteenth key is our old friend ENTER which, with CTRL,
you know very well gives:

run”

So the <string expression> can therefore be a command for
direct execution during program input. Enter the following:

KEY 129, "mode 2"
If you now press the ‘1’ key you will see:
mode 2

come up on the monitor. If you now press the RETURN key, the
command will be executed exactly as though you had typed it in
directly.

And this isn’t all! You can also type in:
KEY 129, "mode 2"+chr$(13)

Remember this number. It is the ASCII code for CR, or, in plain
English, Carriage Return (the carriage referred to is that of
the electromechanical typewriters which used to be the only way
of talking to computers). As you may have realised, this is
exactly what you get when you press the ENTER key. So by
pressing key ‘1’ on the numeric keypad the command is executed
immediately and you are automatically put into MODE 2. Try it
for yourself.

Here is an example of a short program you might like to puton a
special ‘program development’ cassette, along with the setting
up of values for your favourite BORDER, PEN, PAPER and

What Next?

INK:

10 key 128, "mode O"+chr$(13)
20 key 129, "mode 1"+chr#(13)
30 key 130, "mode 2Z"+chrs(13)
40 key 131,"list"

S0 key 132,"list"+chr$(13)
€0 key 133, "save""

70 key 134, "renum”

80 key 133, "auto"

When you are writing and debugging a long program, having
these functions on single keys will save a lot of tedium. Youmay
find that different types of program require different functions.
If there are a lot of screen messages, for example, youmay like to
assign ‘print’ to a key to save you having to type itin every time.

FAST LOADING

Another one of the CPC464’s power-on defaults is the speed at
which programs are written onto the datacassette. For
maximum reliability, both the datacassettes that accompany
this course are written at this speed (1000 baud for the
technically minded). It is possible to double the writing speed
by entering:

SPEED WRITE 1t

Any subsequent SAVE command will then write the program at
this new speed (2000 baud).

When programs written at 2000 baud are loaded by the CPC464,
it automatically adjusts its reading rate. In fact, you can mix
programs written at different speeds on the same cassette. If you
use top-quality cassettes and keep the reading head clean, there
is little likelihood of any reading problems.

To change the speed back you enter:
SPEED WRITE ©

What Next?

147

148

HARD COPY

‘Hard copy’ is computer jargon for computer output or program
listings which are printed on paper. This section is intended for
anyone who has bought an Amstrad DMP-1 dot matrix printer
so that they can get printed output from their CPC464.

If you plug the printer into the connection port at the rear of your
CPC464, turn on the power and issue PRINT or LIST
commands, nothing will happen. This is because all input and
output data is handled in ‘streams’, and the printer stream has
not been specified. There are 10 of these streams, numbered 0 to
9, but we won’t be looking at them in detail until Part 3 of this
course. For the moment we will limit ourselves to the streams
numbered 0 and 8.

The stream is an optional argument in PRINT and LIST
commands, and the defaultis 0. For example:
LIST Z2000-

will produce an output on the screen of all the program lines from
number 2000 onwards, since 0 is a screen stream. If, however,
you enter:

LIST 2000-, #8
all the lines from 2000 onwards will be sent to the attached
printer rather than to the screen.

Similarly, you can enter:
PRINT #8,"This is an example of printer oubtput”
and the string will be sent to the attached printer.

If you turn back to the ESTIM program listing in Chapter 5, the
subroutine for printing out the estimate appears to have an
unused variable ‘ # str’. If you look at the print statements in this
subroutine you will see that this is really the variable ‘str’ in the
stream position of the PRINT command, and, since it was never
set to anything, it stays at zero - the screen stream. So set ‘str=8’
and you will get your printed estimate.

DATABASE
Our last program on Datacassette A is possibly the best of the
lot.

If you want to catalogue your record collection, your favourite
recipes, or the names and addresses of your friends, this is a
program for you. Itislike an electronic filing cabinet, except that

What Next?

you can use lots of different labels at the same time. Once you
have built up your database file you can look it up under lots of
different headings. Soups, for example, or reggae, or whatever.

There is an example of a database file recorded after
DATABASE on the cassette. When the main menu asks what
option you want, type R; it will then ask for a file name. Enter

Countrys

and learn a bit about geography.

TESTING

This final test, SAT12, will go through all the topics covered in
this part of the course. As we said before, it isn’t an exam, it’s
merely an aid for you to check that there isn’t anything you
should go back over to make sure that you understand before
going on to the next stage.

The next stage from now is Part 3 of this course. From now on
you will start having to learn about the strange world of binary
arithmetic, hexadecimal numbers and interrupts. Good luck!

What Next?

149

LIST OF

PROGRAMS

Datacassette A contains the following programs in the same
order that they are referred to in this book. Datacassette B
contains the Self-Assessment Test (SATs) which the reader
should complete at the end of every chapter except Chapter 5.

Chapter 1
SHEP

Chapter 2

CHATEAU
VILLAGE

Chapter 3
SINCOS
PIECHART
Chapter 4
DIGITALC
ALARM
Chapter 5
ESTIM

Chapter 6
FLIGHTPL

Chapter 7

WORDPUZL

Chapter 8
BLITZ

Chapter 9
ZOUNDS
ZAPPOW2
Chapter 10
MINUET

Chapter 11
ADVENTUR

Chapter 12

DATABASE
COUNTRYS

151

LIST OF
KEYWORDS

The following is a list, chapter by chapter, of all the Amstrad
BASIC keywords covered in this book. Not all the variations and
extensions have been dealt with since, although this is not a
beginners book, knowledge of the CPC464’s internal procedures
1s necessary for correct understanding.

The keywords marked with an asterisk (*) were introduced in
Part 1, but are given a more thorough treatment here.

Chapter 2 Chapter 4

DIM FOR-NEXT#*

READ IF.-THEN-ELSE*

DATA WHILE-WEND

AUTO

RENUM

RESTORE Chapter 5

DELETE

LIST* ZONE
PRINT*
PRINT USING

Chapter 3 SPACES$
STRING$

PEN* SPC

PAPER* TAB

INK* INPUT*

PLOT*

DRAW*

ORIGIN*

CLG

TAG

TAGOFF

153

154

Chapter 6

SIN

COS
TAN
DEG

SQR
ABS

Chapter 7

INSTR
ASC
VAL
LEN
LEFT$
RIGHT$
MID$
STR$
TIME*
CHR$
AND
OR
XOR
UPPERS$

List of Keywords

Chapter 8

SPEED INK
RND*

INT
LOCATE*
TEST
INKEY

Chapter 9

SOUND*
ENV*
ENT*

Chapter 12

KEY

PRINT #8
LIST #8
SPEED WRITE

INDEX

A Familiar Tune, 119
ABS, 79
ADVENTUR, 127
modifications, 142
Adventure games, 127
Aircraft navigation, 74
ALARM, 49
American Standard Code for
Information
Interchange, see ASCII
Amstrad DMP-1 dot matrix
printer, 66, 148
AND, 87
Animation, 96
Apostrophe, 22
Arcade games, 101
Arctangent, 72
Arrays:
one-dimensional, 21, 24
two-dimensional, 24, 107
Arrays, 24
ASC, 86
ASCII, 86, 87
ATN, 69, 72
Attack, 112
AUTO, 19

Bat’n’ball, 104

BLITZ, 109

Brackets, 13

Brickout, 101

Business programming, 51

Channels, sound, 111
Characters, control, 88
CHATEAU, 17, 21

CHRS, 88
CLS, 29, 35, 36
Colonel Bogey, 119, 120
Colours, 27
table of, 28
Command:
descriptions, 12
glossary, 13
example of a typical, 14
Computer animation, 96
Concatenation, 83
Conditional multistatement
lines, 48
Control characters, 88
COS, 69
Cosine, 71
rule, 73
Countrys file, 149
Current graphics pen, 39
Cursor, graphics, 35

DATA, 23, 120
Database file, 149
DATABASE, 149
Decay, 112
Defaults, 13

INK, table of, 31
DEG, 37, 69
Delay loop, 44
DELETE, 18
Design, screen, 52
DIGITALC, 46, 88, 90
DIM, 25
Display, flashing, 95
Dot matrix printer, Amstrad

DMP-1, 66

155

156

Element, 25
ENT, 116
ENTER, 146
ENV, 113
Envelopes:
volume, 112
multisection, 113
tone, 116
Error, syntax, 12
ESTIM, 52, 55, 148
User’s Guide, 65
Example of a typical
command, 14
Exclusive OR, 87
Expression:
integer, 14
numeric, 14
string, 14

Fast writing and loading of

programs, 147

File:

Countrys, 149

Database, 149
Flashing:

display, 95

graphics, 96

text, 96
FLIGHTPLAN, 77
Floating point, 129
FOR-NEXT, 43, 46
Format:

field specifiers, 55

template, 55
Functions, trig, 69, 71

Games:
adventure, 127
arcade, 101
Glossary, command, 13
GOTO, 46
Graphics:
cursor, 35, 38
flashing, 96
pen, current, 39
window, 35, 37

Hard copy, 148

Index

Horizon, 80
HOUSE, 21
How to use this book, 11

IF-THEN-ELSE, 47, 48
INK, 27, 28, 31
INKEY, 106
INKEYS, 105
INPUT, 52
INSTR, 91, 130
INT, 100
Integer:
expression, 14
number, 14
numeric variables, 20
Integers, 20

KEY, 145
Keypad, numeric, 145
Keyword, 14
LEFTS, 88
LEN, 84, 89
Lines, conditional
multistatment, 48

LIST, 17, 148
List variables, 20
List, print, 53, 54
LOCATE, 38, 39,99
Logical values, 91, 130
Loops, 42

delay, 44

nesting, 44

MANSION, 21

MIDS$, 88

MINUET, 124

Mode, 27, 29

Modifications to
ADVENTUR, 142

MOVE, 38

Moving pictures, 95

MOVR, 38

Multisection volume
envelope, 113

Multistatement lines,
conditional, 48

Music, 119

Musical notation, 119

Navigation, aircraft, 74
Nesting loops, 44
Numbers:
integer, 14
prime, 81
real, 14
Numeric:
expression, 14
keypad, 145
variables:
integer, 20
real, 19

One-dimensional array, 21, 24
OR, 87

Oranges and Lemons, 121
ORIGIN, 33, 34, 35

Output, printed, 66

PAPER, 27, 28

Parsing, 140

PDL, 130

PEN, 27, 28, 32

Pen, current graphics, 39

Pictures, moving, 95

PIECHART, 39

PLOT, 30

Prime numbers, 81

PRINT, 53, 148

Print list, 53, 54

PRINT USING, 54

Printed output, 66, 148

Printer, Amstrad DMP-1 dot
matrix, 66, 148

Programming Development
Language, see PDL

Programs, fast writing and
loading, 147

RAD, 69
READ, 23, 120, 123
Real:
numbers, 14, 19, 129
numeric variables, 19
REM, 22
RENUM, 18
RESTORE, 23, 123
RIGHTS, 88

RND, 99
Roland in the house, 127

SATI1, 16
SAT2, 26
SATS3, 42
SAT4, 50
SAT®6, 82
SAT?7, 93
SATS, 109
SAT9, 117
SATI10, 125
SAT11, 144
SAT12, 149
Scientific notation, 76
Screen design, 52
Self-assessment Tests, see
SATs
Separators, 14
SHEP, 15
SIN, 69
SINCOS, 36
Sine, 71
rule, 73
Software, see Programming
Solving triangles, 71
SOUND, 111, 120
Sound:
channels, 111
FX (effects), 111
SPACE$, 54
SPC, 53
Specifiers, format field, 55
SPEED INK, 95
SPEED WRITE, 147
Speed, writing, 147
SQR, 72
Square root, 72
STEP, 43
STRS, 85
String expression, 14
STRINGS, 54, 105
Strings, 83
Structured programming, 131
Subscripted variables, 20, 24
Sustain, 112
Syntax, 12
error, 12

Index 157

158

TAB, 53

TAG, 37, 38

TAGOFF, 39

TAN, 69

Tangent, 71

Template, format, 55

TEST, 107

Text at graphics cursor, 38

Text, flashing, 96

TIME, 49, 90

Tone envelopes, 116

Triangles, solving, 71

Trig functions, 69, 71

Trigonometry, 69

Two-dimensional array, 24,
107

UPPERS$, 92

User’s Guide, ESTIM, 65
VAL, 85, 86

Value, logical, 91, 130

Index

Variables, 19
integer numeric, 20
list, 20
real numeric, 19
subscripted, 20
Vectors, 74
VILLAGE, 26
Volume envelopes, 112
multisection, 113

WHILE-WEND, 45, 46, 90
Window, 36

graphics, 35, 37
WORDPUZL, 93
Writing speed, 147

XOR, 87

ZAPPOW2, 117
ZONE, 54
ZOUNDS, 112,114
ZOUNDS, 114

	pag 001
	pag 002
	pag 003
	pag 004
	pag 005
	pag 006
	pag 007
	pag 008
	pag 009
	pag 010
	pag 011
	pag 012
	pag 013
	pag 014
	pag 015
	pag 016
	pag 017
	pag 018
	pag 019
	pag 020
	pag 021
	pag 022
	pag 023
	pag 024
	pag 025
	pag 026
	pag 027
	pag 028
	pag 029
	pag 030
	pag 031
	pag 032
	pag 033
	pag 034
	pag 035
	pag 036
	pag 037
	pag 038
	pag 039
	pag 040
	pag 041
	pag 042
	pag 043
	pag 044
	pag 045
	pag 046
	pag 047
	pag 048
	pag 049
	pag 050
	pag 051
	pag 052
	pag 053
	pag 054
	pag 055
	pag 056
	pag 057
	pag 058
	pag 059
	pag 060
	pag 061
	pag 062
	pag 063
	pag 064
	pag 065
	pag 066
	pag 067
	pag 068
	pag 069
	pag 070
	pag 071
	pag 072
	pag 073
	pag 074
	pag 075
	pag 076
	pag 077
	pag 078
	pag 079
	pag 080
	pag 081
	pag 082
	pag 083
	pag 084
	pag 085
	pag 086
	pag 087
	pag 088
	pag 089
	pag 090
	pag 091
	pag 092
	pag 093
	pag 094
	pag 095
	pag 096
	pag 097
	pag 098
	pag 099
	pag 100
	pag 101
	pag 102
	pag 103
	pag 104
	pag 105
	pag 106
	pag 107
	pag 108
	pag 109
	pag 110
	pag 111
	pag 112
	pag 113
	pag 114
	pag 115
	pag 116
	pag 117
	pag 118
	pag 119
	pag 120
	pag 121
	pag 122
	pag 123
	pag 124
	pag 125
	pag 126
	pag 127
	pag 128
	pag 129
	pag 130
	pag 131
	pag 132
	pag 133
	pag 134
	pag 135
	pag 136
	pag 137
	pag 138
	pag 139
	pag 140
	pag 141
	pag 142
	pag 143
	pag 144
	pag 145
	pag 146
	pag 147
	pag 148
	pag 149
	pag 150
	pag 151
	pag 152
	pag 153
	pag 154
	pag 155
	pag 156
	pag 157
	pag 158

