HiSoft Pascal80

HiSoft Pascal80 consists of a fast Pascal compiler and a full screen editor
together with several example programs.

How to use this manual

This manual is divided into 3 parts. The first tells you how to get started and
describes the free example programs. The second is about the particular
features of Pascal80 and the third describes the full screen editor ED80.

You should read the 'What to do first' section on the next page, then familarise
yourself with ED80 and then read the Pascal80 section.

If you get stuck read 'The questions we are asked most often' section at the
very back of this manual first.

David Nutkins.
February 1986.

HiSoft

180 High Street North
Dunstable

Beds

LU6 1AT

U.K.

Tel (0582) 696421

HiSoft Pascal80

© Copyright HiSoft 1986

First Edition Published 1981
Second Edition Published 1985
Third Edition Published February 1986

ISBN 0 948 517 03 4

All rights reserved worldwide. No part of this publication may be reproduced or -
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

It is an infringement of the copyright pertaining to HiSoft Pascal80 and
associated documentation to copy, by any means whatsoever, any part of
HiSoft Pascal80 for any reason other for the purpose of making a security
backup of the object code.

What to do First

Before you use HiSoft Pascal80 please make a backup copy; if you destroy your
master disc we will have to charge you for updating it. It is a good idea to write-
protect the disc if is not already write-protected.

Please read the relevent section below depending upon which computer you
have on the following pages and then read the section 'For all computers'. It is
essential to read this section before using the compiler.

1. Amstrad CPC 464/664

2. Amstrad CPC 6128 or 464/664 with expanded memory and CP/M Plus
3. Amstrad PCW 8256

4. MSX computers

5. Other computers

1. Amstrad 464/664

Use |CPM [ENTER] to load CP/M from your Amsoft CP/M System/utilities
disc or a copy of it. When CP/M has loaded use FORMAT to format a new disc
and then use DISCCOPY (or COPYDISC if you are lucky enough to have 2
drives) to copy the Pascal80 disc Side A onto your newly formatted disc. Side B
~ is of no use to you. Next you should use BOOTGEN and SYSGEN to copy the
system onto your disc. You will then have a working copy of Pascal80.

Reset your computer using [CTRL] [SHIFT] [ESCAPE] and type [CPM
[ENTER] with your working copy in the drive and CP/M should load.

Remember when using CP/M 2.2 that whenever you change discs you should
type [CTRL] C at the A> prompt otherwise you will get 'BDOS ERROR ON
A:R/0' errors when you write to a disc.

The version of ED80 supplied is configured for the CPC 464 screen and has
special code to give a flashing cursor; thus it will only work on CPC machines
under CP/M 2.2.

Remember not to use the SETUP command to set the mode to 'FAST'. As the
Amstrad Disc Firmware Supplement states, 'FAST' is a misnomer and should
not be used.

2. Amstrad CPC 6128 or 464/664 with expanded memory & CP/M Plus

Use |CPM to load CP/M from your Amsoft CP/M System/utilities disc Side 1 or
a copy of it. When CP/M has loaded use DISCKIT3 to copy the Pascal80 disc
Side B onto a blank disc. Side A is only for use under CP/M 2 and we
recommend that you use CP/M Plus. The version of ED80 has been configured
for the CPC6128 CP/M Plus terminal emulator.

3. Amstrad PCW 8256/8512

Load CP/M by booting with your Amsoft System/Utilities/Basic disc Side 2 and
then use DISCKIT to FORMAT a new disc. Then type PIP at the A> prompt

to load the PIP program. Place your master Pascal80 disc Side B in the drive
and type

M:=A:* *
to the * prompt. This will copy the Pascal disc to the memory drive.

Next place your newly formatted disc in the drive and type

A:=M:* *

to the * prompt. This will give you a backup copy of the Pascal80 disc. Note that

you cannot us¢ DISCKIT to copy the master disc as DISCKIT does not copy
Vendor format discs.

To use the Pascal, it is best to follow the procedure described above to copy the
Pascal backup onto the memory drive and then log into drive M by typing
M: [ENTER] at the A> prompt. As supplied the editor ED80 works on a 24x80
screen; you should run the Amstrad SET24X80 program (on the
System/Utilities/Basic disc Side 2) before running this or alternatively use the
ED8OINST program as described in the ED80 section of this manual to change
the screen size to 31x90.

4. MSX computers

Boot MSX-DOS by switching on your disc drive first. Then insert the Pascal80
master and switch on your computer. Hit ([RETURN] when MSX-DOS has
booted and asked for the date. Type

FORMAT [RETURN]

and follow the instructions to format the disc you are going to use for your
working copy.

When you have returned to MSX-DOS and the A> prompt place the Pascal80
disc in the drive and type COPY *.* B:[RETURN] and follow the instructions.

You will then have a backup copy from which you can boot.

The version of ED80 supplied has been configured for the MSX screen with 37
columns although this can be changed with the ED80 installation program. This
version of ED80 will work only on MSX computers.

5. Other computers

For most machines (and nearly all with two disc drives) you should format a
new disc and, if using CP/M 2.2, copy the system tracks using SYSGEN. If your
system accepts a number of formats note that the exact format should be
written on our master disc. Then use

PIP B:=A:*_*[ENTER]
to copy all the files onto the backup copy.

In most cases you will have to install ED80 for your screen using ED8OINST.
Your manufacturer's documentation should give you details of the screen codes.

Remember when using CP/M 2.2 that whenever you change discs you should
type [CTRL] C at the A> prompt otherwise you will get 'BDOS’ ERROR ON
A:R/0' errors when you write to a disc.

In some cases, for disc formats with low capacities, Pascal80 may be supplied
on two discs and you should backup them both.

For all computers

You should now have a backed-up copy of Pascal80 in your drive. Type DIR
[ENTER]and at least the following file-names should be listed

HP80.COM
ED8S8OINST.COM
ED8QOINST.MSG
ED80.COM
JABBER.WOK
EXTRA.WOK
PRIMES.PAS
DIS.PAS
HEX.PAS
RANDREC.PAS
BIRTHDAY.PAS

There may also be other files on disc. If you don't get a directory with the files
above then you should try again to make a back up copy ; if you have no
success please return your disc to your supplier or HiSoft.

Amongst the directory there may be a file called READ.ME. If there is you
should use

TYPE READ.ME

to read it. If there are any files with an extension of .DOC it is a good idea to
TYPE these as well.

To make sure that the compiler is working properly you should type

HP80 PRIMES
This will then create the file PRIMES . COM
To run this type

PRIMES [ENTER] at the A> prompt. This will then produce a list of prime
numbers less than 20499; there are quite a few of these!

ED80INST.COM and EDSOINST.MSG comprise the ED80 installation program
which is described in the ED80 manual. If you don't have one of the computers
listed above then you will probably need to install ED80.

Once you have a copy of ED80 installed for your system it is a good idea to
create a working disc with a HP80.COM, EDS80.COM, EDS80.HLP and in
addition the program that you use for transferring files from disc-to-disc

(normally PIP.COM). If you are using CP/M 2 remember to use a disc with
CP/M on it.

There now follows information on the various other files on the disc and a
section on the problems that people most frequently encounter.

JABBER.WOK and EXTRA . WOK are example files used in the ED80 tutorial.
DIS.PAS is an interactive Z80 disassembler intended primarily as an example
of "systems" programming in Pascal80 and as a tool for assembly language

programs. This is described in a later section.

HEX.PAS isused by DIS.PAS and contains 3 functions/procedures; it cannot
be compiled separately. The 3 functions/procedures in HEX . PAS are

1 upper
has one CHAR parameter and returns the character in upper case.
2. DUMP
The first parameter is a file to which a hexadecimal and ASCII dump

of memory between the second and third integer parameters is
sent.

e.g. DUMP (OUTPUT, 0, 128) dumps the operating system'’s base page
to the screen.

3. READHEX
has one file parameter and reads a hexadecimal number returning it

as an INTEGER. The file buffer variable is left on the terminating
character.

RANDOM ACCESS

RANDREC.PAS contains procedures and functions for random access disc files.
You should be familar with Pascal before attempting to use them.

When using READRAND and WRITERAND, files are considered to be an array of
fixed sized records known as File Components. The first record in the file is File
Component 0. Before using these routines, the file to be read/written to should
be declared as type TEXT and opened using RESET or REWRITE. If you write
to a file using WRITERAND then you must close it by calling the procedure
CLOSE. This has one parameter of type TEXT.

READRAND is a function which returns TRUE if a record can not be found on
the disc. It returns FALSE if the data was read successfully. The first
parameter is the Text File variable you wish to read. The second parameter is
the File Component you wish to read starting from 0. The third parameter is the
address of the variable you wish to read into. The fourth parameter is the size
(in bytes) of the file components.

WRITERAND is a procedure with 4 parameters: the first parameter is the Text
File variable to which you wish to write The second parameter is the number of
the File Component you wish to write. The third parameter is the address of the
variable you wish to write. The fourth parameter is the size of the components.

Note that when using these routines EOF will not give sensible results. If you
wish to use variable sized records then it is best to call the lower level routines
READR and WRITER. These have three parameters. The first is the text file to
use, the second the 128-byte record to read and the third is the address of the
128-byte record to which the read/write takes place. They return the result of
the CP/M random access call; this is 0 if there is no error.

For example: The following program creates a file TESTDATA.DAT and
writes 3 records and then reads in the second record and displays it.

PROGRAM A;
VAR F:TEXT;
S:ARRAY([1..8] OF CHAR;
DUMMY : BOOLEAN;
{SF. RANDREC.PAS }
BEGIN
REWRITE(F,' TESTDATA.DAT'):
S:='RECORD 1°';
WRITERAND (F,0,ADDR(S),8);
S:='RECORD 2°';
WRITERAND (F,1,ADDR(S), 8);
S:='RECORD 3';
WRITERAND (F,2,ADDR(S),8);

{ We have written the file - now let's read in the second
record }

DUMMY : =READRAND (F', 1, ADDR(S), 8) ;

WRITELN(S);

CLOSE (F) {We must explicitly close the file }
END.

BIRTHDAY.PAS is an example of the use of the routines in RANDREC . PAS and
manipulates the file BIRTHDAY.DAT. It can be used as the basis of your own
programs.

The following commands can be used when the program is running.
I inserts a record

D deletes a record
P prints a record
E exits

You should always use E to exit rather than CTRLC so that the file is properly
closed.

Amstrad-Specific Programs

The files FROMAMS .COM and TOAMS .COM convert files from and to the format
used by the HiSoft Pascal compiler that runs under AMSDOS.
Their syntax is

FROMAMS destfile sourcefile
TOAMS destfile sourcefile

e.g.

FROMAMS TEST.PAS TEST.AMS
TOAMS TEST.AMS TEST.PAS

These programs can be used to convert programs developed under Amsdos for
use under CP/M, or to edit programs being written under Amsdos with ED80 (or
heaven forbid another editor).

HISOFT PASCALS80 TURTLE GRAPHICS FOR THE
AMSTRAD CPC SERIES

Amstrad CPC 464/664 owners are supplied with a program called
TURTLEZ2.PAS on their disc; this is a Turtle Graphics example program which
runs under CP/M 2 and uses the Amstrad firmware. For CPC 6128 owners we
have TURTLE3.PAS which is the same as TURTLE2.PAS except for the
method used to call the firmware. The Amstrad PCW 8256 does not contain
these firmware routines so they will not run.

To compile the programs as they stand, use
HP80 TURTLE2;T,Y {ENTER]

or

HP80 TURTLE3;T, Y[ENTER]

depending on your machine.

The demonstration can then be run by typing the program's name at the A>
prompt.

To write your own programs you should make a copy of the demonstration
program, delete the parts that you do not require and then add your own
program. Note that you must use the "T' option in the command line as in the
example above.

As in the majority of Turtle Graphics implementations, HiSoft Pascal's
TURTLE creates an imaginary creature on the screen which the user can move
around via some very simple commands. This ‘turtle’ can be made to leave a
trail (in varying colours) or can be made invisible. The turtle’s heading and
position are held in global variables which are updated when the creature is
moved or turned; obviously these variables may be inspected or changed at any
time.

The facilities available are as follows:

GLOBAL VARIABLES
heading

this is used to hold the angular value of the direction in which the turtle is
currently facing. It takes any REAL value, in degrees, and may be initialised to 0
with the procedure TURTLE (see below). The value 0 corresponds to an
EASTerly direction so that after a call to the procedure TURTLE the turtle is
facing left to right. As the heading increases from zero then the turtle turns in an
anti-clockwise direction.

Xcor, Ycor

these are the current (x,y) REAL co-ordinates of the turtle on the screen. The
Amstrad graphics screen has a logical size of 640x200 pixels and the turtle may
be positioned on any point within this area; however the resolution is not one
pixel - it varies according to the screen mode as in Locomotive BASIC.

Initially XCOR and YCOR are undefined; use of the procedure TURTLE

initialises them to 300 and 200 respectively, thus placing the turtle near the
middle of his "pool.

penstatus

a BOOLEAN variable holding the current status of the 'pen’ (i.e. the trail left by
the turtle). TRUE means the pen is down, FALSE means the pen is up.

PROCEDURES

The first few procedures are general graphic utilities that you may find useful in
your own non-Turtle graphic programs. Most of the graphics features of
Locomotive BASIC are accessible in a similar manner using the firmware. See
the Amsoft Firmware Manual or equivalent documentation. The procedures
available are:

mode(m : INTEGER)

this takes an integer between 0 and 2 and puts the screen into the corresponding
mode.

ink(i,cl,c2 : INTEGER)

sets the ink i to have the colour values specified by 1 and c2. If c1=c2
then the ink will be a steady colour, otherwise the ink will be flashing.

E.g.

ink (1,12,12); setsink 1 to steady yellow

ink (0,16,21); setsink O to flashing pink and lime!
paper (i:INTEGER)

sets the background (paper) colour of the screen to the colour(s) associated
with the ink i which is an integer.

pen (i : INTEGER)
sets the turtle's pen colour to the colour(s) associated with the parameter i.
plot (x,y : INTEGER)

plots the point (x,y) on the screen.

line (x,y : INTEGER)

plots a line from the last point plotted to the absolute location (x,y) .

pendown(i:INTEGER)

sets the turtle state so that it will leave a trail in the ink colour associated with
the parameter i. This procedure assigns TRUE to penstatus.

penup

subsequent to a call to this procedure the turtle will not leave a trail. Useful for
moving from one graphic section to another. penup assigns the value FALSE
to penstatus.

sethd (angle:REAL)
takes a REAL parameter which is assigned to the global variable heading

thus setting the direction in which the turtle is pointing. Remember that a heading
of 0 corresponds to EAST, 90 to NORTH, 180 to WEST and 270 to SOUTH.

setxy (x,y : REAL)

sets the absolute position of the turtle within the graphics area to the value
(x,y). No check is made within this procedure to ascertain if (x,y) is out of
bounds; the firmware checks for this.

fwd (len : REAL)

moves the turtle forward len units in the direction of its current heading. A unit
corresponds to a graphics pixel, rounded up or down where necessary.

back (len:REAL)

moves the turtle 1en units in the directly opposite direction to that in which
it is currently heading (i.e. -180) - the heading is left unchanged.

right(angle : REAL)

changes the turtle’s heading by angle degrees without moving it. The heading
is increased in the clockwise direction.

left (angle : REAL)

changes the turtle's direction by angle degrees anti-clockwise.

arcr (r:REAL; deg:INTEGER)

the turtle moves through an arc of a circle whose size is set by x. The length of
the arc is determined by deg, the angle turned through (subtended at the centre
of the circle) in a clockwise direction. Typically = may be set to 0.5.

turtle

this procedure simply sets the initial state of the turtle; it is placed in the middle
of the screen, facing EAST (heading of 0), on a bright yellow backgound paper
and leaving a blue trail. Remember that the state of the turtle is not initially
defined so that this procedure is often used at the beginning of a program.

This concludes the list of facilities available with TOURTLE; although simple in
implementation and use you will find that Turtle Graphics are capable of
producing very complex designs at high speed. To give you a taste of this we
present some example programs below. Remember that you must edit a copy of
the example program before entering these.

Example Programs

In all the example programs given below we assume that you have already
loaded TURTLE2 .PAS and TURTLE3.PAS into the editor and deleted the text
from polyspi onwards. Now proceed with the examples:

1. CIRCLES
Add the following variable declaration:
I1:INTEGER;

and add the following main program:

BEGIN
TURTLE;
FOR I:=1 TO 9 DO
BEGIN
ARCR(0.5,360);
RIGHT (40)
END
END.

2. SPIRALS

Add the following main program:

PROCEDURE SPIRALS (L,A:REAL);
BEGIN
FWD (L) ;
RIGHT (A) ;
SPIRALS (L+1,A)
END;
BEGIN
TURTLE; :
SPIRALS (9, 95) {or (9,90) or (9,121) eee }
END.

3. FLOWER
Add the following main program:

PROCEDURE PETAL (S:REAL);
BEGIN
ARCR (S, 60);
LEFT (120) ;
ARCR (S, 60);
LEFT(120)
END;
PROCEDURE FLOWER (S:REAL);
VAR I1:INTEGER;
BEGIN
FOR I:=1 TO 6 DO
BEGIN
PETAL(S);
RIGHT (60)
END
END;
BEGIN TURTLE;
SETXY (127, 60);
LEFT (90); FWD(10);
RIGHT (60); PETAL(0.2);
LEFT (60); PETAL(0.2);
SETHD (90) ; FWD(40) ;
FLOWER(0.4)
END.

For further, extended study of Turtle Graphics we highly recommend the
excellent (if expensive) book "Turtle Geometry' by Harold Abelson and
Andrea di Sessa, published by MIT Press, ISBN 0-262-01063-1.

INTERACTIVE Z80 DISASSEMBLER

To compile this use
HP80 DIS;R,L-,C-,S-,A-[ENTER]

Note that the file HEX . PAS is 'included’ by this program and so must be on the
disc when compiling,

This program lets you disassemble a .COM and interactively set up data areas
which may be saved to disc (in a .DIS file) so they do not have to be re-entered
on subsequent sessions. Disassembly may be of all or part of the program and
sent to disc (as a .GEN file) possibly for re-assembly using HiSoft's Devpac80
or to the screen.

When compiled use
DIS filename.COM[ENTER]

to disassemble filename.COM. If you haven't disassembled this program
before then you will be prompted for:

'Run Address?'and 'End Address ?'. These values should be entered in
hexadecimal.

You can then enter commands. These consist of a single letter followed by up to
two hex numbers depending on the command.

Data Area Commands:

There are 4 sorts of data areas that may be specified; they are followed by the
start and end addresses of the data area.

Messages. Disassembled as DEFM and DEFB

Byte Data. Disassembled as DEFB

Word data. Disassembled as DEFW - useful for jump tables etc
Space. Disassembled as DEFS - avoids disassembling junk.

n = 0 X

Dissassembly commands:

L list to screen optionally followed by start and end address
-if they are not specified the whole of the file is disassembled.

G dissassemble to disc again optionally followed by a range.
Other commands:
D display the currently defined data areas

K kill (remove) a data area. Followed by the number as displayed by
the D command. Note that this is in decimal rather than hex.

P save the data areas to disc in a .DIS file so you don't have to type
them in again.

R read the .DIS file from disc. Useful if you mess things up.

E, X return to CP/M. This must be used rather than {CTRL] C to ensure that
all files are closed.

H Help. Prints a short list of the commands available.

Some of the techniques used in this program are very machine specific and it is
not an example of how to program in Pascal in general but it does show how to
use the HiSoft Pascal extentions to provide a systems programming tool of
practical use.

If there is a feature that you dislike or think should be added, then please feel
free to improve it, and tell us about it.

CONTENTS

SECTION 0 PRELIMINARIES P-1
0.0 Introduction P-1
0.1 Scope of this Manual P-1
0.2 Compiling and Running P-2
0.3 Strong TYPEing P4

SECTION 1 SYNTAX AND

SEMANTICS P-7
1.1 IDENTIFIER P-7
1.2 UNSIGNED INTEGER P-7
1.3 UNSIGNED NUMBER P-7
1.4 UNSIGNED CONSTANT P-8
1.5 CONSTANT P-9
1.6 SIMPLE TYPE P9
1.7 TYPE P-9
1.7.1 ARRAYs and SETs P-10
1.7.2 Pointers P-10
1.7.3 FILES P-11
1.7.4 RECORDs P-12
1.8 FIELD LIST P-12
1.9 VARIABLE P-13
1.10 FACTOR P-14
1.11 TERM P-14
1.12 SIMPLE EXPRESSION P-14
1.13 EXPRESSION P-15
i.14 PARAMETER LIST P-15
1.15 STATEMENT P-16
1.16 BLOCK P-18
1.17 PROGRAM P-19

HPv1.0

SECTION 2

NN
R

~N
.
.&
[T Vg g GG Wy —

—exunihhivi~

NN N NDNNNDNNNNNDND
N

PREDEFINED
IDENTIFIERS

CONSTANTS
TYPES

VARIABLES
PROCEDURES AND
FUNCTIONS

File Handling Procedures

Preamble - the Buffer Variable

PUT
REWRITE
WRITE
RWITELN
PAGE
GET
RESET
READ
READLN

File Handling Functions

EOLN
EOF
INCH

Transfer Functions

TRUNC
ROUND
ENTIER
ORD
CHR

Arithmetic Functions

ABS
SQR
SQRT
FRAC
SIN
CcoSs
TAN
ARCTAN
EXP

LN

P-21

pP-21
P-21
P-21

P-21

P-30
P-30
P-30
P-30
P-30
P-31

HPv1.0

SECTION 3

3.1
3.2

APPENDIX1
All

A.1.2

APPENDIX 2

A2.1
A.2.2
A2.3

HPv1.0

Further Predefined Procedures P-31

NEW P-31
MARK P-31
RELEASE P-31
INLINE P-31
USER P-32
HALT P-32
POKE P-32
ouT P-32
PRON P-32
PROFF P-32
RANSEED P-33
Further Predefined Functions P-33
RANDOM P-33
SUCC P-33
PRED P-33
OoDD P-33
CPM P-33
ADDR P-34
PEEK P-34
COMMENTS AND

COMPILER OPTIONS P-35
Comments P-35
Compiler Options P-35
ERRORS : P-39
Error Numbers Generated by the

Compiler P-39
Runtime Error Messages P-40
RESERVED WORDS

AND PREDEFINED
IDENTIFIERS P-43
Reserved Words P-43
Special Symbols P43
Predefined Identifiers P43

APPENDIX 3

[

A
w [7%)
o —
o =

S dd e
(9] W W e W W
T
ok ie

o

APPENDIX 4

DATA REPRESENTATION
AND STORAGE

Data Representation

Integers
Characters, Booleans and other

Scalars

Reals

Records and Arrays
Sets

Files

Pointers

Variable Storage at Runtime

SOME EXAMPLE
HISOFT PASCAL
PROGRAMS

P-45
P-45
P-45
P-45
P-46
P-47
P-48
P-48
P-49

P-49

P-51

HPv1.0

IMPORTANT NOTE FOR AMSTRAD USERS

We have packed so many files onto the Pascal80 disc now that it is not possible to make a
back-up on a PCW8256 by PIPing all the files onto the RAM (M:) disc and from there
onto your 3" back-up disc. This now has to be done in two stages. We are supplying a free
utility called WP.COM to facilitate this process. To make a back-up of the Pascal80 on a
PCW8256 we recommend that you proceed as follows:

1. Format, using DISCKIT, a new disc in A to be used for the back-up.
2. Put the Pascal80 master in drive A (B side uppermost) and type:
WP A: M: [ENTER]

you will be prompted, one file at a time, with all the files on the Pascal80 master disc;
answer Y to all of them except the ones ending in .PAS, answer N to these. This has
copied the files onto the RAM disc.

3. Now put your backup disc in A and type:

M:WP M: -Q [ENTER]
WD M: [ENTER]

and then

A
when asked which files to delete.
4. Next, put the Pascal80 disc back in drive A (B side uppermost again) and type:
WP A:*_.PAS M: -Q [ENTER]
5. Finally, put your backup disc in drive A and type:
WP M:*.PAS A: -Q [ENTER]
and you have now backed up the Pascal80 master disc. We apologise for any
inconvenience this process may cause but it is simpler for us (and ultimately you) to

supply our software in 6128 format rather than 8256/8512 format because we do not
always know which machine you have; this necessitates the above procedure.

Pascal80 Version of 30 May 1986

A new procedure has been added to Pascal80 (version of 30 May 1986) to allow the chaining
of programs (Pascal or otherwise) from within Pascal80 object code. The new procedure
CHAIN (filename) is described below:

CHAIN(filename)

Invoking the procedure CHAIN causes the current object code to be discarded and a new
program with the name filename to be loaded into the TPA. The Pascal80 program'’s
global data are maintained but the runtime stack and heap are lost.

Filename must be a string of 14 characters (ARRAY[1..14] OF CHAR) of the form:
'A:TESTFILE.COM'

padded with spaces where necessary to keep a length of 14 characters e.g.
' TEST .COM!

to load TEST.COM from the default drive.

The procedure is very simple but potentially very useful; imagine a menu object module
invoking the relevant files on the menu with each file either invoking another file or bringing
back the menu, all through the use of CHAIN.

You can use a Pascal global variable in the program that CHAINS and the program that is
CHAINed as long as the definition of the global and all the previous definitions are the same
in both programs. The best way to ensure that these declarations are the same is to store
them in a file and then use the $F compiler include option when compiling. You must also
always use the same V option (the one that sets the top of the runtime stack) when
compiling if you want more than one program to share global variables.

Remember, CHAIN keeps the global data of the program that uses it but corrupts the local
variables and the heap. Use it carefully!

MSX DISC PASCALS0

Pascal80 running under MSXDOS now comes complete with a Turtle Graphics package
(TURTLE.PAS) and two example programs (GRAPH1.PAS and GRAPH2.PAS). The
documentation for the turtle graphics package is the same as that for the Amstrad Turtle
Graphics routines which can be found in the Pascal80 manual. To compile the example

programs type, for example:

HP80 GRAPH1;L-,T [ENTER]

New features of the Pedigree version of HiSoft Pascal80

This document describes the extra features of the latest (from 1st September
1986) version of HiSoft Pascal80. Perhaps the biggest improvement for users
who are learning Pascal or writing 'quick and dirty' programs is the Menu
facility, which is described in a separate section.

The other improvements are as follows:
1. English Errors messages:

If the file HP80.ERR from your master disc is present on the logged-in drive
then the compiler will display the reason for the error rather than the error
number. Hitting 'E' will now invoke the editor as described in the Menu section,
[CTRL] -C returns to CP/M immediately whilst hitting any other key continues
the compilation. In addition the line numbers displayed in the compilation listing
now refer to the line number in the file rather than the compilation. Thus the line
number displayed can be used to find a source line with the editor's Go to
line command.

2. Variant records:

The variant part of records is now supported as in Jensen and Wirth. However
the procedure NEW can only have one parameter.

3. Non-text files:
Files other than type TEXT are now supported. The operations RESET,

REWRITE, GET, PUT, READ, WRITE and EOF are all supported. The
non-standard buffer size parameter is not supported.

4. Bigger programs can be compiled.

The compiler now saves the object code to disc while it is compiling so the size
of progam you can produce is bigger. The compiler's symbol table can now be
about twice as large as before. Of course, you may not be able to run the large
program you produce because there is insufficient memory to load your program
or to store your variables.

The maximum size of each procedure/function and the main program is the size
of your TPA -24K. Thus if you have a TPA of 38K (as on the Amstrad CPC
464/664) then the maximum size of code for each procedure is 38-24 =14K. On
a 61K TPA machine this maximum is 61K-24K= 37K. If you write in a modular
fashion then this will not be a problem. If you are writing procedures this large
then split them up into smaller ones. As a result your code should be much
easier to understand.,

5. Lower case reserved words:

Reserved words and predefined identifiers (like WRITE) can now be entered in
lower case. As a result case is not significant in all identifiers, so that FRED,
fred and Fred are now treated as the same identifier. If you have an existing
program that uses the same name in different case as two different identifiers
then either change one name or use the new ‘U’ option described below.

6. New compiler options:

Compiler options may now be entered in lower-case and those that previously
had to appear on the command line can now appear at the start of your program
so long as they appear before the word PROGRAM. So if you normally want to
delete the old object file and have the compilation listing switched off, start your
programs with:

{8y, 1-

}

PROGRAM myfile;

The following compiler options have been added:

U

Dxxx

Gxxxx

if this option is used then upper and lower case are treated as different
by the compiler; otherwise upper and lower case are treated as the
same in reserved words and identifiers.

if this option is used then after a successful compilation the compiler
will load and run the code you have just compiled. This only works if
you have used if you have not specified different object and source file
names. '

This option is followed by a four digit hexadecimal number and is used
to generate programs that can run in different size TPAs whilst using all
of the available memory for the heap and run-time stack. This is useful
when developing programs that will be run on more than one machine
or for running under CP/M plus in conjunction with RSXs such as
SUBMIT and GSX. At the end of each compilation the compiler prints a
message of the form:

Minimum value for the D option: XXXX

This is the value that should be used when generating production
programs. Whilst programs are under-development it is easiest to
embed a D option at the front of your program with a larger value.

Use of this option moves the programs global variables from the top of
memory to after the end of the program code and before the heap. In
general it is best to use the D option in place of the V option.

This option finds a run-time error in a program. This is normally used by
the menu system; however'it can be useful if a run-time error occurs
when the compiler and editor are not on the current disc. Say the
run-time program stops with the message

Overflow at PC=1234

and the editor and compiler are not available; then subsequently running
the compiler with the same options as it was originally compiled with
the addition of G1234 will cause compilation to stop with the message

Runtime error

just after relevant piece of code is reached. Hitting 'E' will then load
the editor and place the cursor accordingly.

7. DISPOSE and MemAuvail

DISPOSE is now implemented as in Jensen & Wirth so that indivual dynamic
variables may be deleted. MARK and RELEASE may still be used. These
procedures may be mixed. However if a call to RELEASE may not remove all
the variables allocated since the corresponding MARK if DISPOSE was called
before MARK. MemAvail is a parameterless function which returns the free
space between the top of the heap and the stack. It returns an integer and can
be used to detect if a program is about to run out of memory and so take
corrective action. Note that for small programs the ammount of free space may
be 32K or more. This is represented as a negative number when returned from
MemAvail. Also it may be possible to create a dynamic variable that is larger
than MemAvail would suggest since there may be sufficient free space within
the heap where space has been freed using DISPOSE.

SECTION 0 PRELIMINARIES

0.0 Introduction

HiSoft Pascal is a fast, easy-to-use and powerful version of the Pascal language
as specified in the Pascal User Manual and Report (Jenson/Wirth Second
Edition). The only important omission from this standard is that PROCEDUREs
and FUNCTIONSs may not take procedures and functions as parameters,

Many extra functions and procedures are included to reflect the changing
environment in which compilers are used; among these are POKE, PEEK, CPM
and ADDR together with register variables e.g RHL, RIY etc.

The compiler occupies approximately 14K of storage while the runtimes take up
roughly 5K. Both are supplied on disk in one package.

0.1 Scope of this manual

This manual is not intended to teach you Pascal; you are referred to the
excellent books given in the Bibliography if you are a newcomer to programming
in Pascal.

This manual is a reference document, detailing the particular features of HiSoft
Pascal.

Section 1 gives the syntax and the semantics expected by the compiler.

Section 2 details the various predefined identifiers that are available within
HiSoft Pascal, from CONSTants to FUNCTIONS,

Section 3 contains information on the various compiler options available and
also on the format of comments.

The above Sections should be read carefully by all users.

HPv 20 P-1

Appendix 1 details the error messages generated both by the compiler and the
runtimes.

Appendix 2 lists the predefined identifiers and reserved words.

Appendix 3 gives details on the -internal representation of data within HiSoft
Pascal - useful for programmers who wish to get their hands dirty.

Appendix 4 gives some example Pascal programs - study this if you experience
any problems in writing HiSoft Pascal programs.

0.2 A Quick Program

When writing a Pascal program for use with HiSoft Pascal you can type in your
source text using a text editor, like Ed80 or a wordprocessor that produces
ASCII files or you can use the built-in, interactive editor supplied with Pascal80.
This latter approach will speed-up program development because of the ease
with which errors can be detected and corrected. To whet your appetite, do the
following.

First, make a back-up of your Pascal80 disc as described at the front of the
manual and put the backed-up disc in drive A of your computer.

Make sure the editor (HPE.COM) is configured for your terminal by running
ED8QINST.COM as described in the INSTALLING EDS80 section of this
manual. Answer Y to the first question and then type HPE when prompted to
Enter Filename. Amstrad owners need not bother to run EDS80OINST.COM
since the editor is already configured for their system.

Once you have configured HPE . COM for your computer type:

HPE [ENTER]

from the CP/M A> prompt. A menu will appear that looks like the one on the
next page ...

P2 HPv 20

HiSoft Pascal80 Menu Selection

Start editing
Compile

Run

eXecute

Quit

Edit file:

Main file:

Now type E to Edit a file, watch the cursor move down to the Edit file: line
and type FACT.PAS [ENTER]. After some disc access the editor will appear;
you can now type your program in directly. Let's enter a program with a
deliberate mistake. Type the following ending each line by hitting the [ENTER]
key:

PROGRAM FACT (INPUT,OUTPUT)
VAR I:INTEGER;
FUNCTION FACT (N:INTEGER) :REAL;
BEGIN '
IF M>1 THEN FACT:=N*FACT (N-1) ELSE FACT:=1
END;
BEGIN
REPEAT
WRITE ('FACTORIAL: '):
READLN;READ (I) ;
WRITELN('IS',FACT(I)):
WRITELN
UNTIL I=0
END .<ENTER>

Now type: <CTRL>K X <ENTER> to save the text to disc from the editor and
the menu will reappear. Press C to Compile your program; the compiler will be
loaded and the program compiled. This will cause a compiler error because on
line 5 of the program we deliberately used the variable M instead of N (look on
line 5, M>1 should be N>1). The compiler has spotted this, placed an arrow at
the point where it realised there was an error (this is always just after the real
cause of error) and told you that there is an Undeclared identifier here.

HPv20 P-3

Now press E; the editor is loaded again and the cursor is placed at the point in
your program where the error was spotted. To correct it in this case type:

[CTRL]~-S [DEL] N
and then:

[CTRL]-K X [ENTER]

to save your program and go back to the menu. This time type X from the menu
to compile and run the program; the compilation should be successful and the
program will automatically run asking:

FACTORIAL:
Type a number to find its factorial or 0 to end and return to the menu.

Programs can be created, modified, compiled and run in this interactive mode or
from within CP/M. The next two sub-sections describe these 2 ways of
development.

0.3 Interactive Editing, Compiling & Running
When you type:
HPE [ENTER] or HPE filename [ENTER]

then the first thing that appears on the screen is the Pascal80 menu which looks
like:

HiSoft Pascal80 Menu Selection
Start editing
Compile
Run
eXecute
Quit
Edit file:

Main file:

From here you can type S, C, R, X, Q, E or M i.e. the non-highlighted letters on the

P-4 ' HPv20

menu. These have the following effects:

Edit file

Having pressed E you should now type in the name of the file that you wish to
edit. You can omit the .PAS extension since this will be supplied automatically.
Having typed in the filename press [ENTER]; the file will be loaded and the
editor will take control. The editor behaves exactly like ED80 and you should
consult the ED80 manual for details of the editing process.

Main file

Press M to specify the filename for compiling and running; filename.PAS will
be compiled when you press C or X and filename.COM will be executed when
you press R or X. The Edit file command will automatically set up the Main
file if there was no Main file to start with, otherwise, the two filenames and the
two commands (E and M) are regarded as independent so that you can be
editing one file (say an include file) while compiling and running another file.

Start editing

Press S to begin editing the current Edit file; if there is no Edit file then you will
be prompted to enter a filename.

Compiling

Compile the Main file. Pressing C loads the compiler (HP80.COM) into memory
and compiles the file shown by Main file:. Compiler options may appear at
the start of the program; see below for full details of the options available.

Compiler errors

If the compiler detects an error during compilation then it will pause, display the
line in error with an up-arrow (T) pointing at the symbol just after the eror
occurred and either print an error message or an error number. Error messages
will be shown if the file HP80.ERR is on the logged-in disc which is normally the
same disc as the compiler, otherwise error numbers will be displayed; refer to
Appendix 1 for an explanation of these numbers. Once the display has paused
like this, you may press E to return to the editor with the cursor positioned near

HPv 20 P-5

the error, [CTRL-C] to return to CP/M or any other key to continue the
compilation.

Compiler Options

There are many one-letter options that can be used to control the compilation
process; some of them can be used throughout your program and these are
described in Section 3 of this manual, others can only appear at the start of the
program and these are described here. Options described in Section 3 may be
used anywhere in the program.

A list of options must begin with a $ and must be enclosed within comment
delimiters (ie. (* *) or { }). The options that are available only at the start
of your program are:

option effect

N - don't produce any object code.

Y - delete any existing object code before compiling.

T - include trig routines and EXP,LN, RANDOM and FRAC in
the runtimes. '

R - do not include REAL routines in the run-times.

X - compile & then run the object after a successful compilation,

u - do not treat upper and lower case as equivalent.

Vnnnn - set the runtime stack to nnnn (hexadecimal).

Gnnnn - Goto runtime error close to runtime address nnnn.

Dnnnn - move global variables to beneath nnnn.

The T and R options can be used to keep the runtimes fairly small if REALs or
trigonometric functions are not used. If the latter are used without including
them in the runtimes then an Undeclared identifier error is given. Please
use the R option with care since the compiler makes no checks.

U makes the compiler accept upper and lower case letters as being different so

that the identifiers Loop, LOOP, LooP are 3 separate identifiers; without the U
option these 3 would be converted to one identifier LOOP by the compiler. When

P-6 HPv20

using U you must make sure that all reserved words and pre-defined identifiers
are in upper case.

The G option allows you to go back into the editor on the source line at which a
runtime error was detected. The interactive editor makes automatic use of this
feature; you can use it manually by using the G option with the address at which
the runtime error occurred immediately after the G in hexadecimal.

The D option lets you move your global variables to grow down towards the
code from address nnnn with the heap growing above nnnn and the stack
growing down from the top of the computer's TPA. This is useful if you wish to
run the compiled code on machines with different-sized TPAs. It is also needed
if you are running compiled code from within SUBMIT files under CP/M Plus.

The compiler tells you, at the end of a compilation, the minimum value that nnnn
can take without the variables hitting the compiler by displaying the message:

Minimum D option value:nnnn.
The V option allocates the global variables downwards from nnnn with the
stack growing down beneath the variables and the heap growing up from the
end of the code. This is useful if you wish to place machine code or other data

in the space between nnnn and the top of the TPA.

The following diagrams illustrate the effects of the D and V options.

HP v 2.0 P_7

Compiler Listing
The compiler generates a listing of the form:

XXxx nnnn text of source line

where xxxx is the address where the code generated by this line begins.
nnnn is the line number with leading zeroes suppressed.

Line numbers are shown relative to the start of the file being compiled so that
when a file is included (with the $F option) then the line number is set to 1 at the
beginning of the compilation of the included file.

The listing may be directed to a printer, if required, by the use of option P+(see
Section 3).

You may pause the listing at-any stage by holding the [CONTROL] key down
and the S key down at the same time; use [CONTROL] and C to retumn to
CP/M or any other key to restart the listing.

If the program terminates incorrectly (e.g. without END.) then the message No
more text will be displayed and control returned to the menu.

If no errors are detected a COM file is generated (unless you use option N) ready
for direct execution from CP/M or from within the menu. The COM file contains
the object code produced by the compilation and, automatically, the runtime
support routines. Remember that you can cut down the size of these runtime
routines by using options in the command line - see above.

Run

Typing R from the menu display will run the COM file corresponding to the
filename shown as the Main file on the menu. If no such COM file exists then the
menu will reappear immediately. After the execution is complete control returns
to the menu through the prompt:

Hit any key for menu

During a run of the object code various runtime error messages may be
-generated (see Appendix 1); you can return to the source file at the position of

P-8 HPv 2.0

the runtime error by pressing E or e when the error is reported. Otherwise,
pressing [CTRL]-C will return you to CP/M while hitting any other key will
return you to the menu.

You may suspend a run while it is outputting to the screen or printer by using
[CONTROL] and S; subsequently use [CONTROL] and C to abort the run and
retun to CP/M or any other key to resume the run. If you have keyboard
checks on (compiler option $C+) then you can abort the run by typing
[CONTROL]~C at any time; this produces a Halt message, press any key to
return to the menu or CP/M.

eXecute

The X command from the menu simply compiles the current Main file and, if
there were no compilation errors, runs it immediately.

Quit

The O command quits to CP/M.

0.4 Non-interactive Edit / Compile / Run

There may be occasions when you don't want to use the interactive editor when
compiling a program. For example, you may want the object program to have a
different filename from the source program or perhaps you are compiling many
programs one after the other and don't want to load the interactive editor after
every compilation. To help you with this we supply an alternative, non-
interactive, version of the editor on your master disc, it is called EDSO .COM. You
should configure this for your terminal as described in the section
INSTALLING ED80 (it comes pre-installed on Amstrad computers). The
development cycle using this editor is described below.

Editing
To create or change a program simply type:

ED80 filename.PAS [ENTER]

You will now be able to type in new lines, amend existing text etc. as described
in the ED80 manual within this binder. Remember that you can change the
command keys by using the ED80INST program; sce INSTALLING ED$0.

HPv20 P-9

When you have finished editing leave the editor, initially the command to do this
is set to [CTRL]-K X, and you will be back in CP/M with the familiar A>
prompt. You can now compile your program.

Compiling
To compile a program from within CP/M type:
HP <objectfile> sourcefile <;opt ion<, option...> > [ENTER]

The items enclosed in < > are optional, do not type the < and >!

objectfile is the name that you want the object code to have, an extension
of .COM is assumed. '

sourcefile is the name of the Pascal program that you want to compile, an
extension of .PAS is assumed. This filename must be present, if it isn't the
compiler will tell you what the usage is and return to CP/M.

option is any of the compiler options described under Compiler Options in
the interactive section above, both the options that can only appear at the start
of your program and the options that may appear anywhere in the program are
allowed here, separated by commas.

So, some examples of compiling non-interactively are:

HP TEST PRIMES;L-~,R [ENTER]
creates the file TEST . COM by compiling PRIMES . PAS with
no compiler listing (L~) and not including the REAL routines in
the runtimes (R).

HP PRIMES;L-,R,Y,0-,C-,S-,A~- [ENTER]
creates the file PRIMES . COM by compiling PRIMES . PAS with
all runtime checks off (0-, C-, S—, A-), not including the
REALS in the runtimes (R), automatically deleting any
pre-existing object code (Y) and with no compiler listing (L-).
You might use these options for compiling a benchmark
program.

P-10 HPv20

HP DIS;P+,N [ENTER]
compiler DIS .PAS, with a compiler listing to the printer (P+)
but not producing any object code (N).

When compiling non-interactively everything happens just as described in the
interactive section above; you can get a Compiler Listing, which may be
paused, and Compiler Errors will be detected and displayed as detailed in the
previous section. In fact, if you have the interactive editor (HPE.COM) present
on your disc and you press E or e after an error has been detected, then you will
enter interactive mode and continue in it until you Quit. However, if HPE.COM is
not on your disc, then pressing E or e after an error will return you straight to
CPM as will [CTRL]-C. Hitting any other key will continue the compilation.
Remember to have HP80.ERR on your disc if you want error messages rather
than error numbers.

Running

If a compilation ends successfully with no errors then the compiler will have
created you object code on the disc under the name you asked for or, by
default, sourcefile.COM. You can run this from CP/M simply by typing the
name of the file. You can pause runtime output as described in Run above and
you may goto runtime error by pressing E or e after an error has been detected,
but only if you have HPE.COM on your disc and then you will be in interactive
mode again.

HP80.COM

You will notice that, in addition to HPE.COM and HP.COM, you also have
HP80.COM on your disc. This is supplied for people that want extra fast
compilation and minimum run-time overheads. HP80 is compatible with previous
versions of Pascal80 and it does not support the new features like variant
records, files of any type etc. In particular, the compiler options U, G, X and D
are not supported, reserved words must be in upper case and procedures are
not automatically dumped to disc as they are compiled; this gives a quicker
compilation. Also the runtimes are more compact because they do not include
code for the new features present in HP . COM.

In general, we do not recommend the use of HP80 and it is supplied mainly for
the convenience of existing users of Pascal80.

HPv 20 P-11

SECTION 0 PRELIMINARIES.

0.0 Introduction.

HiSoft Pascal is a fast, easy-to-use and powerful version of the Pascal
language as specified in the Pascal User Manual and Report (Jensen/
Wirth Second Edition). Omissions from this specification are as follows:
Only FILEs of CHAR are allowed.

A RECORD type may not have a VARIANT part.

PROCEDUREs and FUNCTIONS are not valid as parameters.

Some extra functions and procedures are included to reflect the changing
environment in which compilers are used; among these are POKE,
PEEK, CPM and ADDR.

The compiler occupies approximately 12K of storage while the runtimes
take up roughly 4K. Both are supplied on disk in one package.

0.1 Scope of this manual.

This manual is not intended to teach you Pascal; you are referred to the
excellent books given in the Bibliography if you are a newcomer to

programming in Pascal.

This manual is a reference document, detailing the particular features of
HiSoft Pascal.

Section | gives the syntax and the semantics expected by the compiler.

Section 2 details the various predefined identifiers that are available
within HiSoft Pascal, from CONSTants to FUNCTION:S.

Section 3 contains information on the various compiler options-available
and also on the format of comments.

The above Sections should be read carefully by all users.

Appendix | details the error messages generated both by the compiler
and the runtimes.

Appendix 2 lists the predefined identifiers and reserved words.
Appendix 3 gives details on the internal representation of data within

HiSoft Pascal — useful for programmers who wish to get their hands dirty.

HPv1.0 P-1

Appendix 4 gives some example Pascal programs - study this if you experience
any problems in writing HiSoft Pascal programs.

0.2 Compiling and Running.

When writing a Pascal program for use with HiSoft Pascal you can type in your
source text using a text editor, like ED80 or a wordprocessor that produces
ASCII files.

For example type the following:
ED80 FACT.PAS <ENTER>

PROGRAM FACT;
VAR LINTEGER;
FUNCTION FACT(N:INTEGER):REAL;
BEGIN
IF N>1 THEN FACT:=N*FACT(N-1) ELSE FACT:=1
END;
BEGIN
REPEAT
WRITE('FACTORIAL:");
READLN; READ(I);
WRITELN('IS' ,FACT(I));
WRITELN
UNTIL FALSE
END.<ENTER>

Now type: <CTRL>K X <ENTER> to save the text to disc from ED80 and
then, when you are back in CP/M:

HP80 FACT<ENTER>

The source code will be compiled and assuming no errors are detected an object
file named FACT.COM will be created. This can be run by simply typing FACT
to the CP/M prompt. If there are any errors you should hit 'E’ to exit the compiler.
Then use ED80 to edit the program and correct the typing mistake.

. When this program is run it will prompt you to enter numbers and give the
factorial of each number input until you type <CTRL/C> which will return you to
CP/M.

In the example above we used the simplest form of command line.

P-2 HPv1.0

The full form looks like this:
HP80 < file1> file2 <;option <, option,...> >
where:

file2 is the source file which must have extension of PAS.
If this file does not exist then an error message is given.

file1 is an optionally different obect file (with extension COM).

option is an ordinary compiler option (see Section 3.2) or one of the
following:

— don’t produce any object code.

— delete any existing object code.

— include trig routines and EXP,LN and FRAC in the runtimes.
—do not include REAL routines in the run-times.

Vnnnn -set the runtime stack to nnnn (hexadecimal).

HA<Z

The textfile should be standard CP/M ASCII text. That is lines are
terminated by CR,LF and the file is terminated with a CTRL/Z. If you
have a wordprocessor that normally uses the top bit of characters you
should make sure that this feature is disabled.

The T and R options can used to keep the runtimes fairly small if REALs
or trigonometric functions are not used. If the latter are used without
including them in the runtimes then an *ERRORx* 3’ is given. Please
use the R option with care since the compiler makes no checks.

Options within the source program override those specified in the
command line. The N, Y, T, R, and V options are not available within
the program.

Some example command lines are given below:

HP80 HILBERT;P+N

get a compilation listing (to printer) of a program.

HP80 BYTE;R,Y,0-,C-S-A-

turn off all checks; say for a benchmark.

HP80 OBJ1 SCE1;R,L-

compile the program SCE1.PAS to produce the file OBJ1.COM with no
compiler listing (to make compilation faster) and not including REAL

routines with the object file.

HP v1.0 P-3

The compiler generates a listing of the form:
XXXX nnnn text of source line

where: xxxx is the address where the code generated by this line begins.
nnnn is the line number with leading zeroes suppressed.

If a line contains more than 80 characters then the compiler inserts new-
line characters so that the length of a line is never more than 80
characters.

The listing may be directed to a printer, if required, by the use of option
P+ (see Section 3).

You may pause the listing at any stage by holding the CONTROL key
down and the ‘S’ key down at the same time; use CONTROL and ‘C’ to
return to CP/M or any other key to restart the listing.

If an error is detected during the compilation then the message
‘*ERROR«" will be displayed, followed by an up-arrow (‘I"), which
points after the symbol which generated the error, and an error number
(see Appendix 1). The listing will pause; hit ‘E’ to return to CP/M tidily
(deleting the object file), CONTROL and ‘C’ to abort, or any other key
to continue the compilation.

If the program terminates incorrectly (e.g. without ‘END.") then the
message 'No more text’ will be displayed and control returned to
CP/M.

If a compilation contains any errors then the number of errors detected
will be given and any object code produced will be deleted. Otherwise a
COM file will be generated (unless you use option N) ready for direct
execution from CP/M. The COM file contains the object code produced
by the compilation and, automatically, the runtime support routines.
Remember that you can cut down the size of these runtime routines by
using options in the command line - see above.

During a run of the object code various runtime error messages may be
generated (see Appendix 1). You may suspend a run while it is out-
putting to the screen or printer by using CONTROL and ‘S’;
subsequently use CONTROL and ‘C" to abort the run and return to
CP/M or any other key to resume the run.

0.3 Strong TYPEing.
Different languages have different ways of ensuring that the user does not
use an element of data in a manner which is inconsistent with its

definition.

P—4 HPv1.0

At one end of the scale there is machine code where no checks whatever
are made on the TYPE of variable being referenced. Next we have a
language like the Byte ‘Tiny Pascal’ in which character, integer and
Boolean data may be freely mixed without generating errors. Further up
the scale comes BASIC which distinguishes between integers and strings
and, sometimes, between integers and reals (perhaps using the ‘%’ sign to
denote integers). Then comes Pascal which goes as far as allowing
distinct user-enumerated types. At the top of the scale (at present) is a
language like ADA in which one can define different, incompatible
numeric types.

There are basically two approaches used by Pascal implementations to
strength of typing; structural equivalence or name equivalence. HiSoft
Pascal uses name equivalence for RECORDs and ARRAYs. The
consequences of this are clarified in Section 1 - let it suffice to give an
example here; say two variables are defined as follows:

VAR A: ARRAY['A"."C’] OF INTEGER;
B: ARRAY['A'."C’] OF INTEGER;

then one might be tempted to think that one could write A:=B; but this
would generate an error #«(ERROR=* 10) under HiSoft Pascal since two
separate ‘“TYPE records’ have been created by the above definitions. In
other words, the user has not taken the decision that A and B should
represent the same type of data. She/He could do this by:

VAR A,B: ARRAY['A’.’C’'] OF INTEGER;

and now the user can freely assign A to B and vice versa since only one
*‘TYPE record’ has been created.

Although on the surface this name equivalence approach may seem a

little complicated, in general it leads to fewer programming errors since it
requires more initial thought from the programmer.

HPvl1.0 P-5

P-6

HPvi.0

SECTION 1 SYNTAX AND
SEMANTICS.

This section details the syntax and the semantics of HiSoft Pascal -
unless otherwise stated the implementation is as specified in the Pascal
User Manual and Report Second Edition (Jensen/Wirth).

1.1 IDENTIFIER.

-
=

Only the first 8 characters of an identifier are treated as significant. These
first 8 characters must not constitute a reserved word (see Appendix 2).

\

Identifiers may contain lower or upper case letters. Lower case is not
converted to upper case so that the identifiers HELLO, HELlo and hello
are all different. Reserved words and predefined identifiers may only be
entered in upper case.

1.2 UNSIGNED INTEGER.

Y

Y

Integers have an absolute value less than or equal to 32767 in HiSoft
Pascal. Larger whole numbers are treated as reals.

HPv1.0 P-7

The mantissa of reals is 23 bits in length. The accuracy attained using
reals is therefore about 7 significant figures. Note that accuracy is lost if
the result of a calculation is much less than the absolute values of its
arguments e.g. 2.00002 - 2 does not yield 0.00002. This is due to the
inaccuracy involved in representing decimal fractions as binary
fractions. It does not occur when integers of moderate size are
represented as reals e.g. 200002 - 200000 =2 exactly.

The largest real available is 3.4E38 while thesmallest is 5.9E-39.

There is no point in using more than 7 digits in the mantissa when
specifying reals since extra digits are ignored except for their place value.

When accuracy is important avoid leading zeroes since these count as
one of the digits. Thus 0.000123456 is represented less accurately than
1.23456E-4.

Hexadecimal numbers are available for programmers to specify memory
addresses for assembly language linkage inter alia. Note that there must
be at least one hexadecimal digit present after the *#°, otherwise an error
(*ERRORx* 51) will be generated.

1.4 UNSIGNED CONSTANT.

:I identifier 1 — y - -
| S |

unsigned number

O 10

Note that strings may not contain more than 255 characters. String types
are ARRAY [1..N] OF CHAR where N is an integer between 1 and 255
inclusive. Literal strings should not contain end-of-line characters
(CHR(13)) - if they do then an ‘*ERROR=* 68’ is generated.

The characters available are the full expanded set of ASCII values with
256 elements. To maintain compatibility with Standard Pascal the null
character is not represented as ¢’ ; instead CHR(0) should be used.

P_g HP v1.0

1.5 CONSTANT.

s

o O

The comments made in Section 1.4 concerning strings apply here.

L

number

|
i!

;

1.6 SIMPLE TYPE.
- (O -0
()
./

\j

Scalar enumerated types (identifier, identifier,) may not have more
than 256 elements.

1.7 TYPE.
—{ Simpletype | —
r

HPv1.0 P-9

The reserved word PACKED is accepted but ignored since packing
already takes place for arrays of characters etc. The only case in which
the packing of arrays would be advantageous is with an array of Booleans
—but this ismore naturally expressed as a set when packing is required.

1.7.1 ARRAYs and SETs.

The base type of a set may have up to 256 elements. This enables SETs
of CHAR to be declared together with SETs of any user enumerated
type. Note, however, that only subranges of integers can be used as base
types. All subsets of integers are treated as sets of 0..255.

Full arrays of arrays, arrays of sets, records of sets etc. are supported.

Two ARRAY types are only treated as equivalent if their definition
stems from the same use of the reserved word ARRAY. Thus the
following types are not equivalent:

TYPE
tablea= ARRAY[1..100] OF INTEGER;
tableb = ARRAY[1..100] OF INTEGER:

So a variable of type tablea may not be assigned to a variable of type
tableb. This enables mistakes to be detected such as assigning two tables
representing different data. The above restriction does not hold for the
special case of arrays of a string type, since arrays of this type are always
used to represent similar data.

1.7.2 Pointers.

HiSoft Pascal allows the creation of dynamic variables through the use of
the Standard Procedure NEW (see Section 2). A dynamic variable,
unlike a static variable which has memory space allocated for it through-
out the block in which it is declared, cannot be referenced directly
through an identifier since it does not have an identifier; instead a pointer
variable is used. This pointer variable, which is a static variable, contains
the address of the dynamic variable and the dynamic variable itself is
accessed by including a ‘1" after the pointer variable. Examples of the use
of pointer types can be studied in Appendix 4.

There are some restrictions on the use of pointers within HiSoft Pascal.
These are as follows:

Pointers to types that have not been declared are not allowed. This does
not prevent the construction of linked list structures since type
definitions may contain pointers to themselves e.g.

P-10 HPv1.0

TYPE

item =RECORD
value : INTEGER;
next:litem
END;
link =titem:

Pointers to pointers and pointers to files are both not allowed.
Pointers to the same type are regarded as equivalent e.g.

VAR
first : link;
current : Titem;

The variables first and current are equivalent (i.e. structural equivalence
is used) and may be assigned to each other or compared.

The predefined constant NIL is supported and when this is assigned to a
pointer variable then the pointer variable is deemed to contain no
address.

1.7.3 FILEs.

HiSoft Pascal supports FILEs OF CHAR. Files are sequential and are
thought to be made up of lines, separated by a line separator; the lines are
physically separated by the codes CRLF (i.e. CHR(13), CHR(10)) but
only the CR is treated as a line separator, the LF is ignored and skipped.
The end of a file is detected by the presence of a CTRL/Z (CHR(26))
character.

The buffer variable construct is supported — see Section 2 for more
details.

The Standard Type TEXT is defined as FILE OF CHAR so that the
declarations

file1: FILE OF CHAR;
file2 : TEXT;

are equivalent.

Two files are predefined viz. INPUT and QUTPUT. These are textfiles
which represent the standard I/O media of the computer i.e. the
keyboard (via CP/M routine 10) and the CRT (via CP/M routine 2).
They are the default values in any textfile operations e.g. WRITE(value);
is equivalent to WRITE(OUTPUT,value);. Note that INPUT is
considered to begin with a blank line — see Section 2.

HPvl1.0 P-11

The procedures RESET and REWRITE are provided to open files while
the procedures GET and PUT allow primitive operations on files. More
details of these procedures and file handling in general may be found in
Section 2. An example of the use of files may be tound in Appendix 4.

Restrictions on the use of files follow:

Files may not be components of structured types.

Files cannot be declared as local variables, only global.
Pointers to files are not allowed.

Files may be used as variable parameters but not as value parameters -
this is Standard Pascal.

1.7.4 RECORDs.

The implementation of RECORDs, structured variables composed of a
fixed number of constituents called fields, within HiSoit Pascal is as
Standard Pascal except that the variant part of the field list is not
supported.

Two RECORD types are only treated as equivalent if their declaration
stems from the same occurrence of the reserved word RECORD see
Section 1.7.1 above.

The WITH statement may be used to access the different fields within a
record in a more compact form.

See Appendix 4 for an example of the use of WITH and RECORD:s in
general.

1.8 FIELD LIST.

- O
[" ‘@"’@"E K >

Used in conjunction with RECORDs see Section 1.7.4 above and
Appendix 4 for an example.

P-12 HPv1.0

1.9 VARIABLE.

(1

\]

Two kinds of variables are supported within HiSoft Pascal; static and
dynamic variables. Static variables are explicitly declared through VAR
and memory is allocated for them during the entire execution of the
block in which they were declared.

Dynamic variables, however, are created dynamically during program
execution by the procedure NEW. They are not declared explicitly and
cannot be referenced by an identifier. They are referenced indirectly by a
static variable of type pointer, which contains the address of the dynamic
variable.

See Section 1.7.2 and Section 2 for more details of the use of dynamic
variables and Appendix 4 for an example.

When specifying elements of multi-dimensional arrays the programmer
is not forced to use the same form of index specification in the reference
as was used in the declaration.

e.g. if variable a is declared as ARRAY[1..10] OF ARRAYT[!..10] OF
INTEGER then either a[l][1] or a[l,]1] may be used to access element
(1,1) of the array.

HPv1.0 P-13

1.10 FACTOR.

O O e O

Q™
A\

See EXPRESSION in Section 1.13 and FUNCTIONSs in Section 3 for
more details.

1.11 TERM.

09866

The lowerbound of a set is always zero and the set size is always the
maximum of the base type of the set. Thus a SET OF CHAR always
occupies 32 bytes (a possible 256 elements — one bit for each element).
Similarly a SET OF 0..10 is equivalent to SET OF 0..255.

1.12 SIMPLE EXPRESSION.

P-14 HPv1.0

The same comments made in Section 1.11 concerning sets apply to
simple expressions.

1.13 EXPRESSION.

P rmwrapeaperyw |

g muasien A

5353860

When using IN, the set attributes are the full range of the type of the
simple expression with the exception of integer arguments for which the
attributes are taken as if [0..255] had been encountered.

Y

The above syntax applies when comparing strings of the same length,
pointers and all scalar types. Sets may be compared using >=, <=, <>
or =. Pointers may only be compared using=and < >.

1.14 PARAMETER LIST.

(M=
\/

A type identifier must be used following the colon - otherwise
*ERROR= 44 will result.

Variable parameters as well as value parameters are fully supported.
Procedures and functions are not valid as parameters.

Files can only be designated variable parameters not value parameters.

HPv1.0 P-15

1.15 STATEMENT

Refer to the syntax diagram on Page 14. -

Assignments:

See Section 1.7 for information on which assignment statements are illegal.
CASE statements:

An entirely null case list is not allowed. i.e. CASE OF END; will generate an error
(*ERROR * 13) and you should not have a semicolon before the END of the CASE
statement.

The ELSE clause, which is an alternative to END, is executed if the selector
(‘expression’ overleaf) is not found in one of the case lists (‘constant’ overleaf).

If the END terminator is used and the selector is not found then control is passed to
the statement following the END.

FOR statements:

Control variables must cither be defined in the same procedure/function that they
are used or in the outer level of the program. This is half way between the ISO and
Jensen and Wirth definitions.

GOTOQ statements:

It is only possible to GOTO a label which is present in the same block as the GOTO
statement and at the same level. You must not jump out of FOR loops.

Labels must be declared (using the reserved word LABEL) in the block in which
they are used; a label consists of a least one and up to four digits. When a label ia
used to mark a statement it must appear at the beginning of the statement and be
followed by a colon .

WITH statements:

WITH statements must not be used recursively.

P-16 HP v1.1

STATEMENT.

HPv1.0 P-17

1.16 BLOCK

identifier e

PROCEDURE identifier J———{ parameterfist | -—————

identifier Hparametorlist o
—C (e D——

O
o/

Note that, when a file variable is declared, then it may be followed,
optionally, by a constant with a value between 1 and 255 inclusive
enclosed in square brackets. This constant specifies the buffer size to be
used for this file, in 128 character units. For exampile if you require the
file filel to have a buffer size of 2K (2048 characters) then the declaration
should look like:

VAR file1 : FILE OF CHAR [16];

or
CONST filesize=16;
VAR file1 : TEXT[filesize];

pP-18 HPv1.0

Forward References.

As in the Pascal User Manual and Report (Section 11.C.1) procedures
and functions may be referenced before they declared through use of the
Reserved Word FORWARD e.g.

PROCEDURE a{y:t);

FORWARD; {« procedure a declared to be «)

PROCEDURE b(x:t); (= forward of this statement =)
BEGIN

.éi;.)); {« prodedure a referenced. »)
END;

PROCEDURE g; (= actual declaration of procedure a. »)
BEGIN

b(q);
EN D;
Note that the parameters and result type of the procedure a are declared

along with FORWARD and are not repeated in the main declaration of
the procedure. Remember, FORWARD is a Reserved Word.

1.17 PROGRAM.

(o) — e (Do a((w0)+(O)

Note that the ‘microcomputer standard’ form is used i.e. there are no
formal parameters of the program and any file operations, on default of
the file name, refer to the predefined file identifiers INPUT and
OUTPUT depending on the type of file operation. See Section 1.7.3 and
Section 2.

HPv1.0 P-19

P-20 "~ HPvLO

SECTION 2 PREDEFINED
IDENTIFIERS.

2.1 CONSTANTS.
MAXINT The largest integer available i.e. 32767.

TRUE, FALSE The constants of type Boolean.

2.2 TYPES.

INTEGER See Section [.3.

REAL See Section 1.3.

CHAR The full extended ASCII character set of 256 elements.

BOOLEAN (TRUE,FALSE). This type is used in logical operations
including the results of comparisons.

TEXT This equivalent to the type FILE OF CHAR;,.

2.3 VARIABLES.

INPUT,OUTPUT.
The default file identifiers used in all file operations.
INPUT is set to read data through CP/M routine 10 —
read console buffer.

OUTPUT is set to write data through CP/M routine 2 -
normally the CRT.

2.4 PROCEDURES AND FUNCTIONS.
2.4.1 File Handling Procedures.

2.4.1.1 Preamble - the Buffer Variable f1.

Whenever a textfile fis declared then a variable f1, the buffer variable, is
also created. {1, of type CHAR, can be thought of as a window through
which we can access a component of the file — all data transfers to or from
the file occur through f1. The buffer variable may be assigned or appear
in an expression provided type compatibility is maintained.

HPv1.0 P-21

The standard procedures GET and PUT are provided to handle the
buffer variable on a primitive level while the procedures READ(LN) and
WRITE(LN) allow more sophisticated input and output such as
conversion of numbers to strings etc.

Before data is transferred between the file and the buffer variable, in
either direction. the file must have been opened through the use of
RESET (for reading) or REWRITE (for writing). These procedures
provide the only method of opening a file.

The buffer size is, by default, 128 characters; this may be increased, in
units of 128 characters, by enclosing a constant (giving the number of
128 character units) in square brackets after the declaration of the file f—
see Section 1.16.

2.4.1.2 PUT(f)

PUT(f) appends the value of {1 to the file f provided that EOF is TRUE.
After completion of the operation EOF remains TRUE and the buffer
variable fT becomes undefined. Note, therefore, that it is possible only to
append a value to a textfile within HiSoft Pascal files must be written
sequentially.

Before PUT is used on a file, the file must have been opened for writing
by the use of REWRITE - the exception to this is if the file is the default
file OUTPUT which is considered already open on entry to the program;
a REWRITE must not be issued on the file OUTPUT.

2.4.1.3 REWRITE(,fn)

REWRITE is used to open a textfile for writing. f specifies the file
variable that is to be used within the program - this should have been
declared in the outer block e.g. VAR filel : FILE OF CHAR;

remember that file variables may only be global. fn is ARRAY][1..14] OF
CHAR and denotes the actual CP/M file specification under which the
file is to occur on the diskette. Note that fn must contain 14 characters
1.e. 1 character for the drive name, then a colon, then 8 characters for the
filename, then a period and finally 3 characters for the file extension; the
drive name and colon may be replaced by 2 spaces in which case the
default drive name is used. Examples:

REWRITE(file1,’A:TESTFILE.DAT');
creates (‘makes’) the file TESTFILE.DAT on drive A of the disk system.

REWRITE(file2,” LETTER .TXT');
creates the file LETTER.TXT on the default drive.

REWRITE causes any existing file fn to be deleted from the diskette’s
directory — EOF(f) becomes TRUE and the buffer variable {1 is
undefined.

p-22 HPv1.0

2.4.1.4 WRITE

The procedure WRITE is used to append structured data to a textfile.
The default textfile is the predefined file QOUTPUT which is normally
the standard output device of the computer. When the variable e to be
written is simply of type character then WRITE(f,e) is exactly equivalent
to: BEGIN f1:=e; PUT(f) END;.

Generally though, if fis a textfile:
WRITE({f}P1,P2,......Pn); is equivalent to:
BEGIN WRITE({f}P1); WRITE({f}P2);, WRITE({f }Pn);
The write parameters P1,P2,......Pn can have one of the following forms:
<e> or or <e:m:n> or <e:m:H>
where e, m and n are expressions and H is a literal constant.
We have 5 cases to examine:
1] e is of type integer: and either <e> or <e:m> is used.

The value of the integer expression e is converted to a character string
with a trailing space. The length of the string can be increased (with
leading spaces) by the use of m which specifies the total number of
characters to be output. If m is not sufficient for e to be written or m is
not present then e is written out in full, with a trailing space, and m
is ignored. Note that, if m is specified to be the length of e without the
trailing space then no trailing space will be output.

2] e is of type integer and the form < e:m:H> is used.

In this case e is output in hexadecimal. If m=1 or m=2 then the value (e
MOD 16™m) is output in a width of exactly m characters. If m=3 or m=4
then the full value of e is output in hexadecimal in a width of 4
characters. If m>4 then leading spaces are inserted before the full
hexadecimal value of e as necessary. Leading zeroes will be inserted
where applicable. Examples:

WRITE(1025:m:H);

m=1 outputs: |

m=2 outputs: 01
m=3 outputs: 0401
m=4 outputs: 0401
m=5 outputs: 0401

3] e is of type real. The forms <e>, <eim> or <e:m:n> may be
used.

HPvl1.0 P-23

The value of e is converted to a character string representing a real
number. The format of the representation is determined by n.

If n is not present then the number is output in scientific notation, with a
mantissa and an exponent. If the number is negative then a minus sign is
output prior to the mantissa, otherwise a space is output. The number is
always output to at least one decimal place up to a maximum of 5
decimal places and the exponent is always signed (either with a plus or
minus sign). This means that the minimum width of the scientific
representation is 8 characters; if the field width m is less than § then the
full width of 12 characters will always be output. If m>=8 then one or
more decimal places will be output up to a maximum of 5 decimal places
(m=12). For m> 12 leading spaces are inserted before the number.
Examples:

WRITE(-1.23E 10:m);

m=7 gives: -1.23000E+10
m=8 gives:-1.2E+10

m=9 gives: -1.23E+10
m=10 gives: -1.230E+10
m=11 gives: -1.2300E+10
m=12 gives: —.23000E+10
m=13 gives: -1.23000E+10

If the form <e:m:n> is used then a fixed-point representation of the
number e will be written with n specifying the number of decimal places
to be output. No leading spaces will be output unless the field width m is
sufficiently large. If n is zero then e is output as an integer. If ¢ is too large
to be output in the specified field width then it is output in scientific
format with a field width of m (see above). Examples:

WRITE(1E2:6:2) gives: 100.00
WRITE(1E2:8:2) gives: 100.00
WRITE(23.455:6:1) gives: 23.5
WRITE(23.455:4:2) gives: 2.34550E+01
WRITE(23.455:4:0) gives: 23

4] e is of type character or type string.

(If e is of type character then WRITE(f,e); is exactly equivalent to
BEGIN f1:=¢; PUT(f) END;.)

Either <e> or <e:m> may be used and the character or string of
characters will be output in a minimum field width of 1 (for characters)
or the length of the string (for string types). Leading spaces are inserted if
m is sufficiently large.

P-24 HPv1.0

5] e is of type Boolean.

Either <e> or <e:m> may be used and ‘TRUE’ or ‘FALSE”’ will be
output depending on the Boolean value of e , using a minimum field
width of 4 or 5 respectively.

2.4.1.5 WRITELN
WRITELN({(f)} appends an end of line marker to the textfile f.

WRITELN({f}P1,P2,......P3); is equivalent to:
BEGIN WRITE({f}P1,P2......P3); WRITELN{(f)} END;

The default file identifier fis the file OUTPUT. Remember that, for any
WRITE or WRITELN on a textfile (other than OUTPUT) to be
successful, then the file must first have been opened for writing through
the use of REWRITEC(f).

2.4.1.6 PAGE{(D)}

The procedure PAGE{(D)} causes an ASCII form feed character (4#0C) to
be written to the file f. If fis absent then the file OUTPUT is assumed;
this will normally cause the video screen to be cleared.

2.4.1.7 GET(f)

GET(f) advances the file window for textfile f by one position and then
transfers one element of data from the textfile f to the associated buffer
variable f1.

If EOF(f) is TRUE after the window has been advanced then the value of .
f1 after the GET(f) is CHR(26) and EOF remains TRUE.

Before GET(f) is used on a file the file must have been opened for reading
through the use of RESET(f); the only exception is if the file is the default
file INPUT which is considered already open on entry to the program — a
RESET should not be issued on the file INPUT.

2.4.1.8 RESET(f,fn)

RESET(f,fn) is used to open a file for reading - the file identifier f, which
should have been declared as a global variable, is associated with the
CP/M diskfile fn which must already exist. See Section 2.4.1.3 for details
of the syntax of fn.

RESET(f,fn) opens the file f for reading and, if the file is not empty the
first component of the textfile is assigned to the buffer variable ft and
EOF(f) becomes FALSE. If the file f is empty before the RESET(f) is
issued then 7 is left undefined and EOF(f) becomes TRUE.

HPvi.0 P-25

If the file is already open when RESET(f) is issued then the file is first
closed before being opened for read operations.

RESET must not be used on the default tile INPUT - this file is already
open on entry to the program.

2.4.1.9 READ

The procedure READ is used to access data from textfiles. If the variable
V to be read from the textfile f is simply of type character then
READ({,V), is exactly equivalent to: BEGIN V := ft; GET(f) END;. In
general though:

READ({fIV1,V2,....Vn); is equivalent to:
BEGIN READ({f}V1); READ({f}V2),; READ({f}Vn) END;
where V1, V2 etc. may be of type character, string, integer or real.

The default value of f is INPUT which is normally assigned to the
system’s keyboard.

The statement READ({f }V); has different effects depending on the type
of V. There are 4 cases to consider:

1] V is of type character.

In this case READUf}V); is exactly equivalent to: BEGIN V := {1}
GET(f) END; and a character is effectively read from the buffer
and assigned to V. If the text window on the file is positioned on a
line marker (a CHR(13) character) then the function EOLN(f)
will return the value TRUE and the buffer variable fT will contain
the value CHR(13). When a read operation is subsequently
performed on the file the file window will be positioned at the
start of a new line.

Important note: the default file INPUT initially contains a blank
line so that EOLN is TRUE at the beginning of the program. This
means that if the first read on the file INPUT is of type character
then a CHR(13) value will be returned followed by the reading in
of a new line from the keyboard; a subsequent read of type
character will return the first character from this new line,
assuming it is not blank. See also the procedure READLN below.

2] V is of type string.

A string of characters may be read using READ and in this case a
series of characters will be read from the file until the number of
characters defined by the string has been read or (EOLN) OR
(EOF) = TRUE. If the string is not filled by the read (i.e. if end-of-

P-26 HPv1.0

line or end-of-file is reached before the whole string has been
assigned) then the end of the string is filled with null (CHR(0))
characters ~ this enables the programmer to evaluate the length of
the string that was read.

The note concerning the file INPUT in 1] above also applies
here.

3] Vis of type integer.

In this case a series of characters which represent an integer as
defined in Section 1.3 is read. All preceding blanks and end-of-
line markers are skipped (this means that integers may be read
immediately from the default file INPUT cf. the note in 1]
above).

If the integer read has an absolute value greater than MAXINT
(32767) then the runtime error ‘Number too large’ will be issued
and execution terminated.

if the first character read, after spaces and end-of-line characters
have been skipped, is not a digit or a sign (‘+ or ‘-’) then the
runtime error ‘Number expected® will be reported and the
program aborted.

4] V is of type real.

Here, a series of characters representing a real number according
to the syntax of Section 1.3 will be read.

All leading spaces and end-of-line markers are skipped and, as for
integers above, the first character afterwards must be a digit or a
sign. If the number read is too large or too small (see Section 1.3)
then an ‘Overflow’ error will be reported, if ‘E’ is present without
a following sign or digit then ‘Exponent expected’ error will be
generated and if a decimal point is present without a subsequent
digit then a ‘Number expected’ error will be given.

Reals, like integers, may be read immediately from the default
file INPUT; see 1] and 3] above.

2.4.1.10 READLN 7
READLN({f}V1,V2......Vn); is equivalent to:
BEGIN READ({f}V1,V2,.....Vn); READLN END;

READLN{(f)} positions the file window over the component
past the next end-of-line marker and assigns to ft the value of

HPv1.0 P-27

this next component. Thus EOLN{(f)} becomes FALSE after the
execution of READLN{(D)} unless the next line is blank.

The default value of t1s INPUT.

READLN may be used to skip the blank line which is present at
the beginning of the file INPUT i.e. for the file INPUT only,
READLN has the effect of reading in a new buifer. This will be
useful if you wish to read a component of type character from the
beginning of INPUT - it is not necessary if you are reading an
integer or a real from the first line in INPUT (since end-of-line
markers are skipped) or if you are reading characters from
subsequent lines.

2.4.2 File Handling Functions.

2.4.2.1 EOLN{(f)}

The function EOLN is a Boolean function which returns the value
TRUE if the file window of file fis currently positioned over an end-of-
line character (CHR(13)). Otherwise the function returns the value
FALSE.

The default value of fis the file INPUT.

When EOLN{(f)} is TRUE then the value of the associated buffer variable
f1is CHR(13).

2.4.2.2 EOF{(}

This is a Boolean function which returns the value TRUE when an end-
of-file character (CHR(26)) appears under the file window of the file f.
Otherwise EOF{{f)} returns the value FALSE.

The default value of fis the file INPUT.

Note: EOF will become TRUE and remain TRUE when a CHR(26)
character appears under the text window of any file but this will not
prevent the action of any subsequent GET requests; this enables any
spurious end-of-file markers within a file to be skipped.

EOF can also be used to detect abnormal conditions during the
writing of a file. During the writing of a file f then EOF({) is normally
TRUE. However if an abnormal condition, such as a full disk or
directory, occurs then EOF(f) will become FALSE and the user can
detect this.

2.4.2.3INCH
The function INCH causes the standard input device (normally the

P-28 HPv1.0

keyboard) using CP/M call 6 of the computer to be scanned and, if a key
has been pressed, returns the character represented by the key pressed. If
no key has been pressed then CHR(0) is returned. The function therefore
returns a result of type character. You should use the compiler option C-
with this function. (See Section 3).

2.4.3 Transfer Functions.

2.4.3.1 TRUNC(X)

The parameter X must be of type real or integer and the value returned
by TRUNC is the greatest integer less than or equal to X if X is positive
or the least integer greater than or equal to X if X is negative. Examples:

TRUNC(-1.5) returns-1 TRUNC(1.9) returns 1

2.4.3.2 ROUND(X)

X must be of type real or integer and the function returns the ‘nearest’
integer to X (according to standard rounding rules). Examples:

ROUND(-6.5) returns—-6 ROUND(11.7) returns 12
ROUND(-6.51) returns—7 ROUND(23.5) returns 24
2.4.3.3 ENTIER(X)

X must be of type real or integer - ENTIER returns the greatest integer
less than or equal to X, for all X. Examples:

ENTIER(-6.5) returns=7 ENTIER(11.7) returns 11

Note: ENTIER is not a Standard Pascal function but is the equivalent of
BASIC’s INT. It is useful when writing fast routines for many mathe-
matical applications.

2.4.3.4 ORD(X)

X méy be of any scalar type except real. The value returned is an integer
representing the ordinal number of the value of X within the set defining
the type of X.

If X is of type integer then ORD(X) = X ; this should normally be
avoided.

Examples:
ORD(‘a’) returns 97 ORD{’ ’) returns 64

2.4.3.5 CHR(X)

Xmust be of type integer. CHR returns a character value corresponding
to the ASCII value of X. Examples:

HPv1.0 P-29

CHR(49) returns*1° CHR(91) returns [

2.4.4 Arithmetic Functions.

In all the functions within this sub-section the parameter X must be of
type real or integer.

2.4.4.1 ABS(X)

Returns the absolute value of X (e.g. ABS(—4.5) gives 4.3). The result is of
the same type as X.

2.4.4.2 SQR(X)

Returns the value XX i.e. the square of X. The result is of the same type
as X,

2.4.4.3 SQRT(X)

Returns the square root of X — the returned value is always of type real. A
‘Maths Call Error’ is generated if the argument X is negative.

2.4.4.4 FRAC(X)
Returns the fractional part of X: FRAC(X)= X - ENTIER(X).

As with ENTIER this function is useful for writing many fast mathe-
matical routines. Examples:

FRAC(1.5) returns 0.5 FRAC(-12.56) returns 0.44

2.4.4.5 SIN(X)

Returns the sine of X where X is in radians. The result is always of type
real.

2.4.4.6 COS(X)

Returns the cosine of X where X is in radians. The result is always of
type real.

2.4.4.7 TAN(X)

Returns the tangent of X where X is in radians. The result is always of
type real.

2.4.4.8 ARCTAN(X)

Returns the angle, in radians, whose tangent is equal to the number X.
The result is of type real.

2.4.4.9 EXP(X)

Returns the value etX where e = 2.71828. The result is always of type
real.

P-30 HPv1.0

2.4.4.10 LN(X)

Returns the natural logarithm (i.e. to thebase e) of X. The result is of type
real. If X <=0 then a ‘Maths Call Error’ will be generated.

2.4.5 Further Predefined Procedures.

2.4.5.1 NEW(p)

The procedure NEW(p) allocates space for a dynamic variable. The
variable p is a pointer variable and after NEW(p) has been executed p
contains the address of the newly allocated dynamic variable. The type
of the dynamic variable is the same as the type of the pointer variable p
and this can be of any type except FILE.

To access the dynamic variable pt is used — see Appendix 4 for an
example of the use of pointers to reference dynamic variables.

To re-allocate space used for dynamic variables use the procedures
MARK and RELEASE (see below).

2.4.5.2 MARK(v1)

This procedure saves the state of the dynamic variable heap to be saved
in the pointer variable v1. The state of the heap may be restored to that
when the procedure MARK was executed by using the procedure
RELEASE (see below).

The type of variable to which vl points is irrelevant, since vl should
only be used with MARK and RELEASE never NEW.

For an example program using MARK and RELEASE see Appendix 4.

2.4.5.3. RELEASE(v1)

This procedure frees space on the heap for use of dynamic variables. The
state of the heap is restored to its state when MARK(v1) was executed —
thus effectively destroying all dynamic variables created since the
execution of the MARK procedure. As such it should be used with great
care.

See above and Appendix 4 for more details.

2.4.5.4 INLINE(C1,C2,C3,.........)

This procedure allows Z80 machine code to be inserted within the Pascal
program; the values (C1 MOD 256, C2 MOD 256, C3 MOD 2586,
.......) are inserted in the object program at the current location counter
address held by the compiler. C1, C2, C3 etc. are integer constants of
which there can be any number. Refer to Appendix 4 for an example of
the use of INLINE.

HPv1.0 P-31

2.4.5.5 USER(Y)

USER is a procedure with one integer argument V. The procedure causes
a call to be made to the memory address given by V. Since HiSoft Pascal
holds integers in two's complement form (see Appendix 3) then in order
to refer to addresses greater than # 7FFF (32767) negative values ofV
must be used. For example #C000 is 16384 and so USER(-16384);
would invoke a a call to the memory address # C000. However, when
using a constant to refer to a memory address, it is more convenient to
use hexadecimal.

The routine called should finish with a Z80 RET instruction (#C9) and
must preserve the IX register.

2.4.5.6 HALT

This procedure causes program execution to stop with the message "Halt
at PC=XXXX" where XXX X is the hexadecimal memory address of the
location where the HALT was issued. Together with a compilation
listing, HALT may be used to determine which of two or more paths
through a program are taken. This will normally be used during
de-bugging.

2.4.5.7 POKE(X,V)

POKE stores the expression V in the computer’s memory starting from
the memory address X. X is of type integer and V can be of any type
except FILE or SET. See Section 2.4.5.5 above for a discussion of the use
of integers to represent memory addresses. Examples:

POKE(4 6000, A’) places #41 at location 3 6000.
POKE(-16384,3.6E3) places 00 OB 80 70 at 4 C000.
2.4.5.80UT(i,c)

The procedure OUT has one parameter of type integer, i, and one of type
char, c. The character ¢ is output directly to the Z80 port number i.
Example:

OUT(23,’A’) outputs the value ‘A’ to port 23.

2.4.5.9. PRON

The parameterless procedure PRON causes output to be directed to the
printer instead of the console. This simply uses CP/M function 5 instead
of 2.

2.4.5.10 PROFF

The parameterless procedure PROFF causes output to be directed to the
console using CP/M call 2.

P-32 HPv1.0

2.4.5.11 RANSEED(X,Y,Z)

This procedure has three INTEGER parameters which are used as seeds for the
random numbers produced by RANDOM (See section 2.4.6.1). These integers must
be between 1 and 30000.Normally the same random numbers are used for each run of
a program,; this procedure can be used to give different numbers.

To use RANSEED you must use the command line T option. See section 0.2 for
details.

2.4.6. Further Predefined Procedures
2.4.6.1. RANDOM

This returns a pseudo-random REAL number between 0.0 and 1.0.

The algorithm used is based on that of B.A. Wichmann and LD. Hill (NPL Report
DITC 6/82). Normally the same random numbers are used for each run of a
program.The seeds may be changed using the procedure RANSEED described above.

To use RANDOM you must use the command line T option. See section 0.2 for
details.

2.4.6.2. SUCC(X)

X may be of any scalar type except real and SUCC(X) returns the successor of X.
Examples:

SUCC('A’) returns 'B'. SUCC('S') returns '6".
2.4.6.3. PRED(X)

X may be of any scalar type except real; the result of the function is the predecessor
of X Examples:

PRED('j') returns 'i'. PRED(TRUE) returns FALSE.
2.4.6.4. ODD(X)

X must be of type integer. ODD returns a Boolean result which is TRUE if X is odd
and FALSE if X is even.

2.4.6.5. CPM(VL,V2)

This useful function has two integer parameters (V1 and V2) and returns an integer
result. The effect is as follows: the Z80 register C is loaded with the value (V1 MOD
256) and the Z80 register pair DE is loaded with the value V2 and then a CALL § is
executed; this is a subroutine call to CP/M with the routine number contained in the
register C and any extra information required by the routine in the register pair DE.
Any result returned by the CP/M routine will be returned as the result of the function
CPM. For example:

CP/M function 14 selects the disk drive whose number is contained in the register E
(0= drive A,l1= drive B etc). Thus to select drive B from within a HiSoft Pascal

program you can use:
dummy:=CPM(14,1).

HPv1.0 P-33

CP/M routine 25 returns the currently selected disk number so that to
obtain this number in the Pascal variable disk you could use:

disk = CPM(25,0);.

For further information on the CP/M routines see the relevant CP/M
Interface Guide.

2.4.6.6 ADDR(Y)

This function takes a variable identifier of any type as a parameter and
returns an integer result which is the memory address of the variable
identifier V. For information on how variables are held, at runtime,
within HiSoft Pascal see Appendix 3. For an example of the use of
ADDR see Appendix 4.

2.4.6.7 PEEK(X,T)

The first parameter of this function is of type integer and is used to
specify a memory address (see Section 2.4.5.5). The second argument is a
type; this is the result type of the function.

PEEK is used to retrieve data from the memory of the computer and the
result may be of any type except FILE.

In all PEEK and POKE (the opposite of PEEK) operations data is moved
in HiSoft Pascal’s own internal representation detailed in Appendix 3.
For example: if the memory from # 5000 onwards contains the values:
5061 7363 61 6C (in hexadecimal) then:

WRITE(PEEK(# 5000,ARRAY[1..6] OF CHAR)) gives ‘Pascal’
WRITE(PEEK(# 5000,CHAR)) gives ‘P’

WRITE(PEEK(# 5000,INTEGER)) gives 24912
WRITE(PEEK(# 5000,REAL)) gives 2.46227E+29

see Appendix 3 for more details on the representation of types within
HiSoft Pascal.

2.4.6.8 INP(p)

INP is a function with one integer parameter p. [t returns as a character,
the value that would be given by executing the Z80 instruction IN A,(p).

P-34 HPv1.0

SECTION 3 COMMENTS AND
COMPILER OPTIONS.

3.1 Comments

The following is the syntax for a comment:

any sequence of characters
except *) or }

A comment may occur between any two reserved words, numbers, identifiers or
special symbols - see Appendix 2.

3.2. Compiler Options.

Compiler options are specified at the beginning of comments preceeded by a $. They
consist of a letter followed by '+' or -’ except in the case of the 'F' option (see
below). If more than one option is specified then they should be separated by
commas.

Examples:

(*$L- turn the listing off *)
{$0-,C-,S-,A-,L- turn all checks off }

The following options are available:
Option L:
Controls the listing of the program text and object code address by the compiler.

If L+ then a full listing is given. If L- then lines are only listed when an error is
detected.

DEFAULT: L+
Option O:

Controls whether certain overflow checks are made. Integer multiply and divide and
all real arithmetic operations are always checked for overflow.

HPv1.0 P-35

If O+ then checks are made on integer addition and subtraction routine
calls are checked to ensure that their arguments are within range.

If O- then the above checks are not made.

DEFAULT: O+

Option C:

Controls whether or not keyboard checks are made during object code
program execution. If C+ then if CTRLC is pressed then execution will
return to CP/M with a HALT message — see Section 2.4.5.6.

This check is made at the beginning of all loops, procedures and
functions. Thus the user may use this facility to detect which loop etc. is
not terminating correctly during the debugging process.

If C—then the above check is not made.

DEFAULT: C+

Option S:
Controls whether or not stack shecks are made.

If S+ then, at the beginning of each procedure and function call, a check is
made to see if the stack will probably overflow in this block. If the
runtime stack overflows the dynamic variable heap or the program then
the message ‘Out of RAM at PC=XXXX’ is displayed and execution
aborted. Naturally this is not foolproof; ifa procedure has a large amount
of stack usage within itself then the program may ‘crash’. Alternatively,
if a function contains very little stack usage while utilising recursion then
it is possible for the function to be halted unnecessarily.

The address of the stack may be set at compilation time — see Section }.2.
If S— then no stack checks are performed.

DEFAULT: S+

Option A:

Controls whether checks are made to ensure that array indices are within
the bounds specified in the array’s declaration.

If A+ and an array index is too high or too low then the message ‘Index
too high’ or ‘Index too low” will be displayed and the program execution
halted.

P-36 HPv1.0

If A— then no such checks are made.

DEFAULT: A+

Option I:

When using 16 bit 2’s complement integer arithmetic, overflow occurs
when performing a >, <, >=, or <= operation if the arguments differ by
more than MAXINT (32767). If this occurs then the result of the
comparison will be incorrect. This will not normally present any
difficulties; however, should the user wish to compare such numbers, the
use of I+ ensures that the results of the comparison will be correct. The
equivalent situation may arise with real arithmetic in which case an
overflow error will be issued if the arguments differ by more than
approximately 3.4E38 ; this cannot be avoided.

If I- then no check for the result of the above comparisons is made.

DEFAULT: I-

Option P:
If P+ then the compiler listing is directed through the CP/M call number
5; normally to a printer.

P- stops listing through CP/M system call 5 and resumes normal listing
through CP/M system call number 2; normally to CRT.

DEFAULT: P-

Option F:

This option letter must be followed by a space and then a valid CP/M file
identifier of the form ‘drive:filename.file extension’ — if ‘drive:” is omitted
then the current default drive letter is assumed, the file extension must be
PAS and this need not be specified.

The presence of this option causes inclusion of Pascal source text from
the specified file from the end of the current statement — useful if the
programmer wishes to build up a ‘library’ of much-used procedures and
functions on the disk system and then include them in particular
programs.

Example: {$F B:MATRIX include the text MATRIX.PAS from
drive BJ;

This option may not be nested and may only appear within a program.

HPv1.0 P-37

The compiler options may be used selectively. Thus debugged sections of
code may be speeded up and compacted by turning the relevant checks
off whilst retaining checks on untested pieces of code.

P-38 HPv1.0

APPENDIX 1 ERRORS.

A

29
30

39.

40
41
42

43.

44

.1.1 Error numbers generated by the compiler.

Number too large.
Semi-colon expected.
Undeclared identifier.
Identifier expected.
Use ‘=" not “:=’ in a constant declaration.
‘=" expected.
This identifier cannot begin a statement.
=" expected.
‘Y expected.
. Wrong type.
. *.> expected.
. Factor expected.
. Constant expected.
. This identifier is not a constant.
. “THEN’ expected.
. ‘DO’ expected.
.‘TO’ or ‘DOWNTOQO’ expected.
. *(expected.
. Cannot write this type of expression.
. *OF expected.
.4, expected.
. expected.
. ‘PROGRAM’ expected.
. Variable expected since parameter is a variable parameter.
. ‘BEGIN’ expected.
. Variable expected in call to READ.
. Cannot compare expressions of this type.
. Should be either type INTEGER or type REAL.
. Cannot read this type of variable.
. This identifier is not a type.
. Exponent expected in real number.
. Scalar expression (not numeric) expected.
. Null strings not allowed (use CHR(0)).
. ‘[’ expected. 35. ‘T expected.
. Array index type must be scalar.
. *..” expected.
.‘T or ¢, expected in ARRAY declaration.
Lowerbound greater than upperbound.
. Set too large (more than 256 possible elements).
. Function result must be type identifier.
., or ‘] expected in set.
‘. or‘, or] expected in set.
. Type of parameter must be a type identifier.

HPv1.0

P-39

. Null set cannot be the first factor in a non-assignment statement.

. Scalar (including real) expected.

. Scalar (not including real) expected.

. Sets incompatible.

.*<’and ‘> cannot be used to compare sets.

.'FORWARD’, ‘LABEL", 'CONST‘, ‘VAR’, ‘TYPE’ or ‘BEGIN’

expected.

. Hexadecimal digit expected.

. Cannot POKE sets.

. Array too large (> 64K).

."END’ or *;’ expected in RECORD definition.

. Field identifier expected.

. Variable expected after ‘WITH".

. Variable in WITH must be of RECORD type.

. Field identifier has not had asociated WITH statement.

. Unsigned integer expected after ‘LABEL".

. Unsigned integer expected after ‘GOTO’.

. This label is at the wrong level.

. Undeclared label.

. Cannot assign or POKE files.

. Can only use equality tests for pointers.

. The parameter of this procedure/function should be of a F ILE type.
. File buffer too large (>=256 records i.e. 32K).

. The only write parameter for integers with two *:’s is e:xm:H.

. Strings may not contain end of line characters.

. The parameter of NEW, MARK or RELEASE should be a variable

of pointer type.

. The parameter of ADDR should be a variable.

. All files must be FILEs OF CHAR or subrange thereof.

. Files may only be used as global variables or variable parameters.
.RESET and REWRITE may not be used on INPUT or OUTPUT.

A.1.2 Runtime Error Messages.

When a runtime error is detected then one of the following messages will
be displayed, followed by " at PC=XXXX" where XXX X is the memory
location at which the error occurred. Consult the compilation listing to
see where in the program the error occurred, using XXXX to cross
reference.

PN BN~

Halt

Overflow

Out of RAM

/ by zero also generated by DIV.
Index too low

Index too high

Maths Call Error

Number too large

P40 HPv1.0

9. Number expected
10. Line too long

1. Exponent expected
12. File Error

Runtime errors result in the program execution being halted.

«File Error is given if there is an attempt is made to access a file which
has not been opened for the required type of access. e.g. if a read on a file
occurs after a REWRITE without an intervening RESET. The address
given in ‘PC=XXXX’ is the address of the file variable rather than the
location in the program where the error occurred. If it is not obvious
which file has generated the error use the ADDR function. See Section

2.4.6.6.

HPv1.0 P41

P—42 HPvl1.0

APPENDIX 2 RESERVED

WORDS AND PREDEFINED
IDENTIFIERS.

A 2.1 Reserved Words.

AND ARRAY BEGIN CASE CONST
DIV DO DOWNTO ELSE END
FILE FOR FORWARD FUNCTION GOTO
IF IN LABEL MOD NIL
NOT OF OR PACKED PROCEDURE
PROGRAM RECORD REPEAT SET THEN
TO TYPE UNTIL VAR WHILE
WITH

A 2.2 Special Symbols.

The following symbols are used by HiSoft Pascal and have a reserved
meaning;

- * /
<> < <= >= >
[]

)

W+

A 2.3 Predefined Identifiers.

The following entities may be thought of a declared in a block surround-
ing the whole program and they are therefore available throughout the
program unless re-defined by the programmer within an inner block.

For further information see Section 2.
CONST l MAXINT=32767;

TYPE BOOLEAN =(FALSE, TRUE);
CHAR {The expanded ASCII character set};
INTEGER =—MAXINT.MAXINT;
RE,?L {A subset of the real numbers. See Section
1.3.
TEXT=FILE OF CHAR;

HPv1.0 P43

VAR INPUT,OUTPUT : TEXT;

PROCEDURE WRITE; WRITELN; READ; READLN; RESET;
REWRITE; GET; PUT; PAGE; HALT; USER;
POKE; INLINE; NEW; MARK; RELEASE; OUT;
PRON; PROFF, RANSEED

FUNCTION ABS;SQR; ODD; RANDOM; ORD; SUCC;
PRED; INCH; EOLN; EOF; PEEK; CHR; SQRT;
ENTIER; ROUND; TRUNC; FRAC; SIN; COS;
TAN; ARCTAN; EXP; LN; ADDR; CPM: INP:

P44 HP V1.0

APPENDIX 3 DATA
REPRESENTATION AND
STORAGE.

A 3.1 Data Representation.

The following discussion details how data is represented internally by
HiSoft Pascal.

The information on the amount of storage required in each case should

be of use to most programmers; other details may be needed by those
attempting to merge Pascal and machine code programs.

A 3.1.1 Integers.

Integers occupy 2 bytes of storage each, in 2’s complement form.
Examples:

1 = #0001
256 = #0100
-266 = #FFOO

The standard Z80 register used by the compiler to hold integers is HL.

A 3.1.2 Characters, Booleans and other Scalars.
These occupy | byte of storage each, in pure, unsigned binary.

Characters: 8 bit, extended ASCII is used.

‘e = #45
" = #5B
Booleans:
ORD(TRUE)=1 so TRUE is represented by 1.
ORD(FALSE)=0 so FALSE is representd by 0.

The standard Z80 register used by the compiler for the above is A.

HPv1.0 P45

A 3.1.3 Reals.

The (mantissa, exponent) form is used similar to that used in standard
scientific notation — only using binary instead of denary. Examples:

2=2+10° or 1.0,+2'
1=1+«10° or 1.0,+20
-125 =-1.25«10" or ~2542-1

-11001,+2-1
-1.1001,%23 when normalised.

0.1 1.0«10-" or _1 12 0.1,

10 = 1010, = 101,

so now we need to do some binary long division..

0.0001100
101 0.100000000000000

at this point
we see that the
fraction recurs

1.1001100,+ 2-1 answer.

So how do we use the above results to represent these numbers in the
computer? Well, firstly we reserve 4 bytes of storage for each real in the
following format:

[sign] [normalised mantissa | [exponent | data
23 22 0 7 0 bit
H L E D register
sign: the sign of the mantissa; | = negative, 0 =
positive.

normalised mantissa: the mantissa normalised to the form l.xxxxxx
with the top bit (bit 22) always 1 except when
representing zero (HL=0, DE=0).

exponent: the exponent in binary 2’s complement form.

P—46 HPv1.0

Thus:

2 =0 1000000 00000000 00000000 00000001 (#40, #00, #00, #01)
1 =0 1000000 00000000 00000000 00000000 (4 40, #00, # 00, #00)
-12.5=1 1100100 60000000 00000000 00000011 (#E4, # 00, # 00, #03)
0.1=011001100110011001100110 11111100 (66, # 66, # 66, 4 FC)

So, remembering that HL and DE are used to hold real numbers, then we
would have to load the registers in the following way to represent each of
the above numbers:

2 =L1DHL#4000
LD DE, #0100

1 =LDHL #4000
LD DE, #0000
-12.5=LD HL,#E400
LD DE, #0300
0.1=LD HL, #6666
LD DE,#FC66

The last example shows why calculations involving binary fractions can
be inaccurate; 0.1 cannot be accurately represented as a binary fraction,
to a finite number of decimal places.

N.B. Reals are stored in memory in the order ED LH.

A 3.1.4 Records and Arrays.
Records use the same amount of storage as the total of their components.

Arrays: if n=number of elements in the array and
s=size of each element then

the number of bytes occupied by the array is n.
e.g.an ARRAY[1..10] OF INTEGER requires 10%2 =20 bytes

an ARRAY[2..12,1..10] OF CHAR has 11%10=110 elements and
so requires 110 bytes.

HPv1.0 P47

A 3.1.5 Sets.

Sets are stored as bit strings and so if the base type has n elements then
the number of bytes used is: (n—1) DIV 8 + 1. Examples:

aSET OF CHAR requires (256-1) DIV 8 + | = 32 bytes.
aSET OF (blue, green, yellow) requires (3-1) DIV 8 + 1 = | byte.

A 3.1.6 Files.

Files require (41 + 128«buffer size) bytes where buffer size is specified in
square brackets ([]) after the file variable declaration (default is 1) — see
Section 1.16.

Each file has associated with it a File Information Block (FIB); this is of
the form:

0-1 Pointer to the data buffer; f! in Pascal terminology.
2-3 End of buffer address (set up on creation).
4 Status
O=unused (set up on creation).
l=read.
—l=write.
5 EOF(f)
6 Drive number: O=default 1=A2=B,3=C etc., —I=terminal (i.e.
INPUT and OUTPUT).

The following is the CP/M FCB entry - see the CP/M manual for details.

7 Zero.
8-15 Filename.
16-18 File type.

19-22 Zeroes.
23-38 CP/M disk map.
39 Record Count i.e. initialised to 0.

40- Data Buffer.

For the file INPUT we have:

0-6 as above.
7 maximum linelength — 80 characters.
8 number of characters in the current line.

9-88 Data Buffer.
For the file OUTPUT we have

0-6 as above.
7 one byte buffer.

P48 HPv1.0

A 3.1.7 Pointers.

Pointers occupy 2 bytes which contain the address (in Intel format i.e.
low byte first) of the variable to which they point.

A 3.2 Variable Storage at Runtime.

There are 3 cases where the user needs information on how variables are
stored at runtime:

a. Global variables —declared in the main program block.

b. Local variables —declared in an inner block.

c¢. Parameters and - passed to and from procedures and
returned values. functions.

These individual cases are discussed below and an example of how to use
this information may be found in Appendix 4.
Global variables

Global variables are allocated from the top of the runtime stack
downwards e.g. if the runtime stack is at # B00O and the main program
variables are:

VAR i:INTEGER;
ch:CHAR;
x: REAL;

then:

i (which occupies 2 bytes — see the previous section) will be stored at
locations # B000-2 and # B00O-1 i.c. at # AFFE and 3 AFFF.

ch (1 byte) will be stored at location # AFFE-1 i.e. at # AFFD.
X (4 bytes) will be placed at # AFF9, # AFFA, # AFFB and # AFFC.

Local variables

Local variables cannot be accessed via the stack very easily so, instead,
the IX register is set up at the beginning of each inner block so that (IX—4)
points to the start of the block’s local variables e.g.

PROCEDURE test;.
VAR ,j:INTEGER,;

then:

i (integer —so 2 bytes) will be placed at IX—4-2 and IX—4-1 i.e. IX—6 and
IX-5. j will be placed at IX-8 and IX-7.

HPvl1.0 P49

Parameters andreturned values

Value parameters are treated like local vanables and, hke these
variables, the earlier a parameter is declared the higher address it has in
memory. However, unlike variables. the lowest (not the highest) address
is fixed and this is fixed at (IX+2) e.g.

PROCEDURE test{i: REAL;j: INTEGER);

then:

j (allocated first) is at IX+2 and IX+3.
iisat IX+4, IX+5, IX+6, and [X+7.

Variable parameters are treated just like value parameters except that

they are always allocated 2 bytes and these 2 bytes contain the address of
the variable e.g.

PROCEDURE test(i: INTEGER; VAR x: REAL);
then:

the reference to x 1s placed at IX+2 and IX+3; these locations contain the
address where X is stored. The value of'i is at IX+4 and IX+5.

Returned values of functions are placed above the first parameter in
memory e.g.

FUNCTION test(i: INTEGER) : REAL;

then i is at IX42 and IX43 and space is reserved for the returned value at
IX+4, IX+5, IX+46 and IX+7.

P-50 HPv1.0

APPENDIX 4 SOME EXAMPLE
HISOFT PASCAL PROGRAMS.

There follow some example programs written in HiSoft Pascal. All have
been thoroughly tested and therefore can be typed in with confidence.

Some of the programs may be of practical use; certainly all of them
demonstrate particular aspects of the implementation of Pascal within
HiSoft Pascal, to facilitate the user’s learning process.

‘% A pragras to create @ file 'TESTOATA.DAT' on disk drive 4.
Shows the handling of strings versus individual characters

and use of FILE, REWRITE, EOLN, READLN &)

PROGRAM MAKEFILE;

CONST
NAXFILE = 10; (% file entries #)
MAXSTRING = 12; ! (¢ aax. nuaber length #)
VAR

DATA ¢ FILE OF CHAR;
1: 1..MAIFILE;

i1 1. MAYSTRING;

CH : CHAR;

CHSTRING : ARRAY(1,.MAXSTRING] OF CHAR;

SEBIN
REWRITE (DATA, 'A: TESTDATA, DAT ' }; (¢ open file far writing #)
FOR I := 1 TO MAXFILE DO
BEGIN
WRITE(Name please? ‘};
READLN;
WHILE NGT EOLN DD (% process input character &)
BESIN (% by character #)
AEAD(CH);
WRITE(DATA,CH) (¢ and output to file #)
END; (# character by character ¥)
WRITELN(DATA); {# new line to file ¢

WRITE(Nusber please? 'i;

READLN; (¢ process input line as &)

READ{CHSTRING) 3 (¢ as whole string #)

izl

WHILE CHSTRING{i) <> CHR(0) DO

BEGIN -
WRITE{DATA,CHSTRINGLi 1) (¢ write string to file, &}
i1zi+] (# character by character, #)
END;

HRITELN(DATA)

END

END.

HPv1.0 P-51

i* Prograa to list the lines of a file in reverse order.
Exasple of: Pointers (to create a linked-list), Files and strings. ®)

PRGGRAN FILEREVERSE;

CONST
STRLEN=204

TYPE

STRING = PACKED ARRAY[{..STRLEN] OF CHAR;

1D = RECORD
NEXT : ~ID;
NAME NUMBER : STRING

END;
LINK = ~ID;

VAR
PREVIOUS, CURRENT : LINK;
DATA : TEXT;

SEGIN
RESET(DATA, " TESTDATA.DAT');

PREVIOUS := NIL;
#HILE NOT EOF (DATA) DO
BEGIN
NEW{CURRENT};

WITH CURRENT* DO
BEGIN
READLN{DATA, NAME) ;
READLN(DATA NUMBER) ;
NEXT := PREVIOUS
END;
PREVIOUS := CURRENT

END;

(# Reverses entries in a file. #)
(# Maximua string length #)

{¢ Note: PACKED ignored #)

(# Although illegal in #)

(# Standard Pascal, the recursive
reference to ID #)

(¢ allows a linked list #)

(% structure to be created. #!

(# Pointers to ID. %)

(# Open 'TESTDATA.DAT' on the
default drive, for reading, #

(¢ Creates a new dynamic variable
of type ID, #)

{# Get ready to assign to the new
dynamic variable, #}

{# Read in the nase and nuaber ¢)
(* trom separate lines, #)

(% Make link point to previous #)
(¢ entry. #)

(# Nake this entry the entry
for the next iteration.)

(¢ Having initialised the linked list, now output it in reverse order. ¢

CURRENT := PREVIOUS;
WHILE CURRENT(ONIL DO
AESIN
WITH CURRENT~ 90

WRITELN(NANE," ' NUMBER);

CURRENT := CURRENT*.NEXT
END
END.

P-52

HPv1.0

i# Program to list lines of a file in reverse order,
Shows use of pointers, records, EOF, MARK and RELEASE. #)

PROGRAM Reverseline;

TYPE elea=RECORD
next:“elen;
ch:CHAR

END;
link="eles;

VAR prev,cur,heqap:link;
data : FILE OF CHAR;

BEGIN
RESET (data, "A: TESTDATA,DAT');
REPEAT
HARK theap) s
preve=RIL;
WHILE NOT EDLN{data) DO
BEGIN
NEM{cur);
READ (data,cur*.chi;

cur®.next:=prev;
areviscur
END;

(# create linked-list structure #)

(# cil pointers to ‘elea’ #)

(% npen file for reading. #)

{# until end-of-file #)

(¢ assign top of heap to "heap’.
(# pgints to no variable yet. #)

(¢ create a new dynasic record #)
(% and assign its field to one
character fros file. #

#)

{# this field's pointer addresses %)

(¢ previous record. &)

{t Write out the file entry backwards by scanning the

records set up backwards. #)

curs=prev;

HHILE cur <> HIL DC
BEGIN
WRITE(cur*.ch);
cur:=cur®,next
END;

HRITELN;

RELEASE (heap);

READLN (data)

UNTIL EOF(data)
END.

HPvi.0

(# NIL is first, &) .

{# HRITE this field i.e. character, ¥

(¥ Address previous field, #)

(% Release dynamic variable space. #)

P-53

(¥ Progras to show how to "get your hands dirty"!
i.e. how to sodify Pascal variables using machine cade.
Demonstrates PEEK, POKE, ADDR and INLINE. #)

PROGRAM diveult?;
VAR r:REAL;
FUNCTION divbyZ(x:REAL):REAL; (¥ Function to divide by 2 ..

o quickly. #)
AR 1:INTEBER;

BEGIN
1:=ADDR(x) ¢1; (# Point to the exponent of x. ¥
POKE (i ,PRED{PEEK (1 ,CHAR})); {(+ Decresent the expaonent of x.

see Appendix 3.1.3. #)
divby2:=x

EXD;
FUNCTION multby2{x:REAL):REAL; (# Function to sultiply by 2 ..
. gquickly, #
BERIN
INLINE(4DD,#34,3); {# INC (IX+3) - the exponent of x

- see Appendix 3.2, ®)
aultby2:=x
END;

BEGIN
REPEAT
dRITEC Enter the number r ")
READ(r}; (* No need for READLN - see
Section 2.4.1.9. #)

HRITELN{'r divided by two is',divby2(r):7:2);
WRITELM('r aultiplied by two is’,aultby2(r):7:2}
UNTIL r=0
ExD.

P-54 HPv1.0

it Progras to show use of recursion. %)
PROGRAM FACTOR;

{¢+ This program calculates the factorial of a nusber input from the
keyboard 1) using recursion and. 2) using an iterative sethod. #)

TYPE
POSINT = 0..MAXINT;

VAR
NETHOD : CHAR;
NUMBER : 0..NAXINT;

(# Recursive algorithe. ¥
FUNCTION RFAC(N : POSINT) : INTEGER;
VAR F : POSINT;

BEGIN
IF N1 THEN F := N # RFAC(N-1} (¢ RFAC invoked N tises, &)
ELSE F:={;
RFAC := F
END;

{# [terative solution, &)
FUNCTION IFACIN : POSINT) : INTEGER;
VAR I,F : POSINT;

BEGIN
Fi= i
FOR I :=2TONDDF 1= Fil; (# Sisple loop. #)
IFAC := F

END;

BEGIN
REPEAT
#RITE('Bive sethad (I OR R} and nusber ’};
READLN; _
READ (METHOD, NUMBER) ;
IF METHOD = 'R’
THEN WRITELN{NUMBER, !
ELSE WRITELN(NUMBER,'®
UNTIL NUMBER=0
END,

* yRFAC (NUMBER})
'y IFAC (NUMBER))

HPv1.0 P-55

P-56 HPv1.0

BIBLIOGRAPHY.

K.Jensenand PASCAL USER MANUAL AND REPORT.
N. Wirth Springer—Verlag 1975.

I.LR. Wilsonand A PRACTICAL INTRODUCTION TO PASCAL
A.M. Addyman WITH BS 6192.
MacMillan 1982.

W. Findlayand PASCAL. ANINTRODUCTIONTO
D.A. Watt SYSTEMATIC PROGRAMMING.
Pitman Publishing 1978.

J. Tiberghien THE PASCAL HANDBOOK.
SYBEX 1981.

J. Welsh and INTRODUCTION TO PASCAL.
J. Elder.

HPvl1.0 P-57

HiSoft GSX Graphics

Regional

1986 figures. ©BB’s of units.

Analysis

\\\\\\\\\\\\\\\\

HiSoft Pascal80 with GSX Graphics Copyright © HiSoft 1986

HiSoft - The Old School House Greenfield Flitwick Beds

HISOFT GSX PASCALS0O LIBRARY

What is GSX ?

GSX is an extension to the CP/M Plus operating system that gives you a
powerful graphics interface on your computer through the use of standard
functions that are the same on all implementations. Both the Amstrad CPC 6128
and the Amstrad PCW8256/8512 have GSX supplied as standard under CP/M+
but the problem is that the calls to GSX are difficult to use and there is virtually
no documentation available for them. This manual and the associated Pascal
GSX procedures and functions attempt to help by supplying a high-level Pascal
interface to GSX along with substantial documentation on using the routines.

Please read this manual all the way through at least twice and do try out the
example programs before taking the plunge yourself.

What does GSX let you do?
With GSX you can:

. Draw lines and any sort of polygon in 6 different styles.

. Fill areas in 12 different fill styles.

. Move a special graphics cursor and read the keyboard with one call.
. Print text at any pixel position on the screen.

. Write text in transparent or XOR mode.

. Perform most of the CP/M Plus terminal emulation codes.

. Display 5 sorts of ‘'markers' that are useful for drawing graphs.

. Use colour on the CPC 6128.

o0 ~1] OV L & W N~

If you are using a PCW or have an Epson compatible, Shinwa or Amstrad
DMP-1 printer for your 6128 you also have the following features on the printer
only:

1. Draw text in 12 different sizes, vertically and upside down on the printer.
2. Use 12 sizes of markers.

HiSoft Pascal80 Page 1 GSX library

On Amstrad computers the CP/M operating system consists of just one file with
extention .EMS but to program with GSX you need several files:

1. GSX.SYS

the machine independent part of GSX : about 2K long.

2. GENGRAF .COM the program that makes your programs load GSX before they
run: about 2K long. '

3. ASSIGN. SYS the file that tells GSX which driver to use : less than 1K long.

4. At least one device driver from the following:

DDSCREEN.PRL
The PCW series screen driver, 5K long: use the one on the disc with the GSX
library on it; it will be better than the one on your system disc!

DDMODEO .PRL
The CPC mode O driver: 160 x 200 pixels with n colours. 20 characters per line.
4K long.

DDMODE1 .PRL
The CPC mode 1 driver: 320 x 400 pixels with n colours. 40 characters per line.
4K long.

DDMODEZ2 .PRL
The CPC mode 0 driver: 640 x 400 pixels with n colours. 80 characters per line.
4K long.

DDFXHRS8 .PRL
High resolution printer driver for PCW printers. 960 x 1368 resolution. 15K long.

DDFXLR8 .PRL
Low resolution printer driver for PCW printers 480 x 672resolution. 12K long.

Or one of the printer drivers on your system disc. If you have a CPC 6128 see
side 3 of your system disc. Type the file DRIVERS.GSX. This gives information
on the various printer drivers.

5. GSXLIB.PAS
contains the Pascal procedures and functions for calling GSX.

HiSoft Pascal80 Page 2 GSX library

6. GSXVAR.PAS
contains the Pascal variables that are used by GSXLIB.PAS.

The Format of ASSIGN.SYS

ASSIGN.SYS is an ordinary text file which must be present when using GSX; it
is composed of lines with the following format:

nn d:fname

where nn is the number of the device. Conventionally

01-09 are used for screens.
10-19 are used for plotters.
20-29 are used for printers.

d is an extended drive name specifier. This can be just A: or B:or M: or
alternatively @: which means the default drive. So to use the screen on the
PCW it is normal to use

01 @:DDSCREEN

and to use the High resolution mode on the CPC
01 @:DDMODE2

or

21 @:DDFXHR8
to use the printer on the PCW.

You can use more than one device at a time, but this uses more memory and

you can easily end up with a message ‘'file too large’ because the device drivers
must load in the top 16K of memory.

HiSoft Pascal80 Page 3 GSX library

HOW TO COMPILE AND RUN PASCAL PROGRAMS
USING THE GSX LIBRARIES

When compiling your program you need to use the compiler's v option. This is
necessary because GSX runs at the top of memory and your program normally
uses this area for its variables and so would corrupt GSX. You are generally
safe if you use VBEQO. The maximum value you can use can be determined
using:

WRITE ('Use V',PEEK (6, INTEGER) :4:H)

in your program. Note that this value will vary depending on the device drivers
you are using.

The format of your file must be of the form:
PROGRAM Example;

{ any constant or type definitions }
VAR

{$F GSXVAR }
'{ your global variables }
{$F GSXLIB }
{ your procedures and functions }
BEGIN
{your main program }
END.

Then to compile a typical program like BAR.PAS (which is on your master
disc) use:

HP80 BAR;Y,L-,VBEQOO [ENTER]

HiSoft Pascal80 Page 4 GSX library

Then when your program compiles correctly use:

GENGRAF BAR [ENTER]

to add the GSX loader to BAR.COM, then

BAR [ENTER]
will run your program. Try this now!

It is often a good idea to create a . SUB file to do the compilation and GENGRAF
particularly if you are using the M: drive on the PCW.

GSX CONCEPTS

Before describing the function calls in detail its necessary to be aware of the
concepts behind GSX.

At the lowest level your program 'talks' to GSX by passing the address of an
array called pblock. This in turn contains the addresses of 5 further arrays :
contrl, intin, intout, ptsin, ptsout. Normally you don't need to
know about these, but they must be present in your program and are defined in
the GSXVAR.PAS.

Normally a GSX program opens a 'workstation', does some GSX calls and
then closes the workstation. So that GSX can tell different workstations apart,
opening the workstation returns a 'handle’ that must be used in all subsequent
calls.

The close workstation call is used to clear the screen and put the cursor etc.
back to normal for the screen and to actually do the printing on printers.

As far as the user is concerned the screen or printer page is considered to have

(0,0) in the bottom left to (32767,32767) in the top right, regardless of the screen
or printer physical resolution.

HiSoft Pascal80 Page 5 GSX library

COLOURS

This section is mostly irrelevant when using a PCW.

Colours are refered to by colour indices. These are 0,1,2.. depending on how
many colours can be on the screen at any one time.

In mode O this is 16 colours; in mode 1, 4 colours-and in mode 0, 2 colours.

Colour index 0 is the normal background colour and Colour index 1 is the
foreground colour.

The default colours are as follows:

0 black

1 red

2 green

3 blue

4 cyan

S yellow

6 magenta
7 white

8-15 are also initially white.

Different 'inks' can be associated with a colour by specifying the proportions of
red, green and blue. The device driver then does its best to match this colour
from the available pallette on the CPC 6128. When using mode 2 it is generally a
good idea to change the ink of index 1 as this is dark red and thus is difficult to
read against a black background on a colour monitor and almost impossible to
read on a monochrome one.

How and what GSX prints on the screen depends on several 'variables'. These
are:

HiSoft Pascal80 Page 6 GSX library

1. Line type:
There are five different sorts of line type:

1. solid

2. dash

3. dot

4. dash,dot
5. long dash

There is also the line colour index, which gives the colour in which the lines
are drawn.

2. Marker type:

Markers give you the ability to plot graphs in a more interesting way than just
using dots. The different types are as follows:

NO¥+ .

There is also the marker colour index which gives the colour in which the
markers are drawn. :

HiSoft Pascal80 Page 7 GSX library

3. Fill interior style

0. hollow
1. solid

2. pattern
3. hatch

Associated with fill interior styles pattern and hatch there is a 'fill style
index'. '

The following table shows the patterns generated for different styles and
indices. 2,1 indicates an fill interior style of 2 and a fill style index of 1.

There is also the fill colour index which gives the colour that areas are filled
with and the text colour index which is the colour in which graphics text is
drawn.

For printers there is also the text rotation angle.

HiSoft Pascal80 Page 8 GSX library

Writing mode

There are four different writing modes:

1 Replace normal over- printing

2 Transparent leaves any already printed pixels
3 XOR reverses the bits

4 Reverse transparent

The current writing meode is used in all the graph print routines.

HiSoft Pascal80 Page 9 GSX library

THE GSX FUNCTIONS

1. OPEN WORKSTATION

PROCEDURE openwork (VAR handle:INTEGER;
device, linetype, linecolor,marker,
markercolor,textface,textcolor, fillstyle,
fillindex, fillcolor:INTEGER) ;

This opens a workstation given the initial settings of the colours etc. given
above. Normally 1 is used. The handle to use is returned in the variable
handle.

e.g.
openwork (handlie,1,1,1,1,1,1,1,1,1,1);

Note that the device is the number given in the ASSIGN.SYS file and that
textface will always be 1 since the Amstrad drivers do not support any other
typefaces.

This function also sets up the array that is used when calling GSX.

The open workstation call also return the following in the intout array:

intout [0] pixel width of device -1
intout [1] pixel height of device -1
intout [2] 0= device is capable of producing a continously scaled image.
1= otherwise.
intout [3] width of one pixel in microns
intout [4] height of one pixel in microns
intout 5] number of character heights
intout [6] number of line types
intout [7] number of line widths
intout [8] number of marker types
intout [9] number of marker sizes
intout {10] number of typefaces
intout [11] number of fill patterns
intout [12] number of hatch styles

HiSoft Pascal80 Page 10 GSX library

intout [13] number of colours that can be displayed on the device at
once.

intout [14] number of Generalised Drawing Primitives (GDPs). Sadly for
the Amstrad device drivers this is always 1.

intout {15]1- list of the GDPs supported. This is always just the Bar.
intout [24]

intout [25]~ list of attributes associated with each GDP. Not useful on
intout [34] Amstrads.
intout [35] 1= device supports colour.
0= No colour capability
intout [36] 1= text rotation available
0= no text rotation
intout [37] 1= fill area available
0= no area fill possible
intout [38] 1= cell array capability
0= no cell array capability
intout [39] total number of colours in palette (2= monochrome)
intout[40] number of locator devices (0= just keyboard)
intout [41] number of valuator devices. Not applicable to Amstrads.
intout [42] number of choice devices. n/a
intout {43} number of string devices. n/a
e.g.

openwork (handie,1,1,1,1,1,1,1,1,1,1);

CLOSE WORKSTATION
PROCEDURE closework (handle:INTEGER) ;

For screen devices clears the screen and re-displays the cursor etc. For printers
this causes the current page to be output. Should be used before finishing your
pregram. Because this clears the screen it is usual to place a READLN before it
so that the screen can be viewed and then the screen cleared when [RETURN]

is typed.

e.g.
closework (handle) ;

HiSoft Pascal80 Page 11 GSX library

CLEAR WORKSTATION
PROCEDURE clearwork (handle: INTEGER) ;

Clears the device. On printers all data output but not printed is 'forgotten’.
e.g.
clearwork (handle) ;
UPDATE WORKSTATION
PROCEDURE updatework (handle:INTEGER) ;

On screens, does nothing as the screen is always up to date. On printers, causes
the current page to be printed.

e.g.
updatework (handle)

POLYLINE
PROCEDURE polyline (handle, count,pxyarray :INTEGER);

Draws a series of lines on the screen; the number of points is given by the
parameter count. pxyarray is the address of an array that contains the points.
The current writing mode, line type and line colour index are used.

e.g. Given the definitions:
TYPE point: RECORD
X,y :INTEGER
END;

VAR p: ARRAY[1l..3] OF point:;

HiSoft Pascal80 Page 12 GSX library

then
WITH p[1] DO BEGIN x:=0; y:=0 END;
WITH p([2] DO BEGIN x:=10000; y:=0 END;
WITH p{3] DO BEGIN x:=0; y:=10000 END;

polyline (handle, 3, ADDR (p)) ;

will then draw a line from (0,0) to (10000,0) and another one from (10000,0)
to (0,10000).

The use of the record type here is optional but tends to lead to more readable
programs.

The same effect can be obtained using

VAR p:ARRAY[1..6] OF INTEGER;

then
pil]l:=0; pl[2]:=0; p[3]:=10000; p[4]:=0; p[5]:=10000;
polyline (handle, 3, ADDR(p)):;

POLYMARKER

PROCEDURE polymarker (handle, count,pxyarray :INTEGER):;

Draws a series of markers on the screen; the number of markers is given by the
parameter count. pxyarray is the address of an array that contains the
points on which the markers are based.The current writing mode, marker
colour, marker height and marker type are used.

This is used in an exactly analagous way to polyline. Note that on the screen
there is only one marker height.

WARNING: There appear to bugs in the printer drivers that cause markers not
to be printed unless gtext (see below) is called previously.

HiSoft Pascal80 Page 13 GSX library

GRAPHIC TEXT
PROCEDURE gtext (handle,x,y,string, len:INTEGER) ;

This procedure writes a string starting at graphics position (x,y).stringis
the address of the string that is to be printed..1en is the number of chars;
normally the length of the string.

This uses the current writing mode, and text colour. On printers the current
rotation angle is used.

e.g. given the declaration:

VAR HiSoft:ARRAY[1..6] OF CHAR;
then:

HiSoft:='HiSoft';

gtext (handle, 16000,16000,ADDR(HiSoft), 6);

writes Hi Soft near the middle of the screen/page.

FILL AREA

PROCEDURE fillarea (handle, count,pxyarray :INTEGER);

This fills a polygon specified in the pxyarray. The number of vertices is
specified by the parameter count and pxyarray is the address of the array
containing the points, in exactly the same the form as polyline. The device
driver draws a line from the last point to the first point so that the polygon is
always closed.

The area is filled using the current fill area colour, fill style, and writing

mode, and the outline of the polygon is drawn using a solid line in the current
writing mode of the current fill area colour.

HiSoft Pascal80 Page 14 GSX library

BAR

PROCEDURE bar (handle, xl,yl,x2,y2:INTEGER);

This draws a bar given (x1,y1) as one corner and (x2,y2) as the opposite
corner.

The area fill attributes are used as with fillarea.

e.g. bar(handle,10000,10000,20000,20000);
draws a rectangle near the middle of the screen.

SET CHARACTER HEIGHT

PROCEDURE setcharheight (handle, yheight : INTEGER;
VAR setx, sety,cellx,celly:INTEGER);

This sets the size of the text characters printed on a printer. There are 12
different heights.

The yheight parameter is the size of the characters given in terms of graphics
points.

The setx and sety parameters are maximum size of the actual characters

and the cellx and celly are the size of the cells in which the characters are
printed.

HiSoft Pascal80 Page 15 GSX library

The following table gives the different heights given by the PCW printer using
the High resolution driver:

yheight char size(mm) cell size(mm)
1- 383 Ix 1 1x1
384 - 574 2x 3 3x 3
575 - 766 3x 4 4x 4
767 - 958 4x 6 5x 6
959 - 1149 5x 7 6x 7
1150 - 1341 6x 8 8x 8
1342 - 1533 7x10 9x10
1534 - 1724 8§x 11 10x 11
1725 - 1916 10x 13 11x13
1917 - 2107 11 x 14 13x 14
2108 - 2299 12x 15 14x 15
2300 - 10000 13x 17 15x17

The following table gives the different heights avaiable using the Low resolution
driver: i

yheight: char size(mm) cell size(mm)
1- 780 2x 3 3x 3
781 - 1170 4x 6 5x 6
1171 - 1560 6x 8 8x 8
1561 - 1950 8x 11 10x 11
1951 - 2340 11x14 13x 14
2341 - 2730 13x 17 15x 17
2731 - 3120 15x20 18 x 20
3121 - 3510 17x22 20 x 22
3511 - 3900 19 x 25 23 x25
3901 - 4291 21 x 28 25x 28
4292 - 4681 23 x 31 28 x 31
4682 - 1000 25x34 30x 34

HiSoft Pascal80 Page 16 GSX library

SET ROTATION

FUNCTION setrotation(handle,angle:INTEGER) : INTEGER;

Again this is a function that is only applicable to printers. The angle parameter
is a measure of the angle at which text will be printed. Normally this is 0
corresponding to the usual East to West. 900 corresponds to upwards; 1800 to
upside down and 2700 to down the paper. If a different value is given then the
closest match is taken.

The value returned is the set value.

e.g.

VAR Upside:ARRAY[1..6] OF CHAR;
Upside:='This is Upside down';

gtext (handle, 15000,16000,ADDR(Upside), 19);
prints

umop sprsdn ST STUL

COLOUR
PROCEDURE colour (handle, index, red, green,blue: INTEGER) ;

This is only useful on CPC 6128 screens; the index can be;:

0-1 in mode 2
0-3 in mode 1
0-15 in mode 0

red, green and blue are the proportions of the various colours defined.These
vary from 0 to 1000. Thus the default for index 0 is 1000,0,0

HiSoft Pascal80 Page 17 GSX library

To change index 1 to be white use:
colour (handle,1,1000,1000,1000);
and to set ink 8 to be 'dark’ blue use:
colour (handle,1,0,0,300);

The default colours are:

0 black

1 red

2 green

3 blue

4 cyan

5 yellow

6 magenta
7 white

8-15 are also initially white.

SET LINE TYPE
FUNCTION setlinetype (handle, style:INTEGER) : INTEGER;
This function sets the line type that is used. Valid style arguments are:

1. solid

2. dash

3. dot

4, dash,dot
5. long dash

This function returns the style that has been set. If an illegal value is used solid
(1) is set.

HiSoft Pascal80 Page 18 GSX library

c.g. After
dummy :=setlinetype (handle, 4);

then lines will be drawn using dashes and dots.

To make your programs more readable you can define a type:
TYPE linetype=(solid, dash,dot, dashdot,longdash);
and then use

dummy :=setlinetype (handle, ORD (longdash)) ;

to achieve the same effect as the example above.

SET COLOUR

FUNCTION setlinecolour (handle, index:INTEGER) : INTEGER;

This functions sets the colour index in which lines will be displayed. Normally
the default is index 1 (normally red on the CPC and 'whiie' on the PCW) (this is
set by the open workstation call). It returns the colour that has actually been set,
so that if you try to set a colour index that does not exist for a particular screen

you will get the highest value possible.

Thus if using either MODEO or MODE1 on a CPC machine and assuming that
colour index 3 has not been redefined using setcolour (see above) then

i:=setcolour (handle, 3);

will cause lines to be drawn in blue.

HiSoft Pascal80 Page 19 GSX library

SET MARKER TYPE

FUNCTION setmarktype (handle, symbol:INTEGER) : INTEGER;

This function sets the current marker type to be one of

1

“O#¥tn

As usual this returns the type that is set; this is asterisk (3) if an illegal type is
passed.

e.g.
dummy :=setmarktype (handle, 5);

sets the marker type to be a diagonal cross.

SET MARKER HEIGHT
FUNCTION setmarkheight (handle, yheight :INTEGER) : INTEGER;

This sets the size of markers to be displayed on the printer. There are 12
different sizes available with the two drivers. The PCW High resolution driver
gives the following sizes:

HiSoft Pascal80 Page 20 GSX library

yheight approx height in mm

1- 383 1
384 - 574 3
575 - 766 4
767 - 958 6
959 - 1149 7
1150 - 1341 8
1342 - 1533 10
1534 - 1724 1
1725 - 1916 13
1917 - 2107 14
2108 - 2299 15
2300 - 10000 17

The PCW Low resolution driver gives the following sizes:

yheight approx height in mm
1- 780 3
781 - 1170 6
- 1171 - 1560 8
1561 - 1950 11
1951 - 2340 14
2341 - 2730 17
2731 - 3120 20
3121 - 3510 22
3511 - 3900 25
3901 - 4291 28
4292 - 4681 31
4682 - 10000 34

HiSoft Pascal80 Page 21 GSX library

SET MARKER COLOUR

FUNCTION setmarkcolour (handle, index:INTEGER) : INTEGER;

This functions sets the colour index in which markers will be displayed. It
returns the colour that has actually been set, so that if you try to set a colour
index that does not exist for a particular screen you will get the highest value

possible.

Thus if using either MODEO or MODE! 6n a CPC machine and assuming that
colour index 2 has not been redefined using setcolour (see above) then

i:=setmarkcolour (handle, 2);

will cause markers to be drawn in green.

SET TEXT COLOUR
FUNCTION settextcolour(handle, index:INTEGER) : INTEGER;

This function sets the colour index that text is drawn with when using
both the gt ext and curtext procedures on the CPC machines.

e.g.
i:=setcolour (handle, 5);

will cause subsequent text to be output in yellow.
Note that you should always reset this to be 1 before you do a closework and

then return to CP/M because otherwise you will end up with a blue foreground
and background.

HiSoft Pascal80 Page 22 GSX library

SET FILL INTERIOR

FUNCTION setfillinterior (handle,style:INTEGER) : INTEGER;
This function sets the fill interior style to be one of:

0 - hollow

1 - solid

2 - pattern

3 - hatch

For the pattern and hatch options the fill style index (see below) is also used.

So that for example:

i:=setfillinterior (handle, 0)

will cause subsequent fills to be done in current background colour.
SET FILL STYLE INDEX

FUNCTION setfillstyle (handle,style:INTEGER) : INTEGER;

This changes how areas are filled if pattern (2) or hatch(3) fill interior styles are
in use.

HiSoft Pascal80 Page 23 GSX library

The following table shows the patterns generated for different styles and
indices. 2,1 indicates an fill interior style of 2 and a fill style index of 1.

SET FILL COLOUR

FUNCTION setfillcolour (handle, index:INTEGER) : INTEGER;

This function sets the colour index that areas are filled with. It returns the
colour that has actually been set, so that if you try to set a colour index that does
not exist for a particular screen you will get the highest value possible.

Thus if using either MODEO or MODE1 on a CPC machine and assuming that
colour index 2 has not been redefined using setcolour (see above) then:

i:=setcolour (handle, 2);

will cause areas to be filled in green.

HiSoft Pascal80 Page 24 GSX library

PLACE GRAPHIC CURSOR AT LOCATION

PROCEDURE dspgrcursor (handle, x,y: INTEGER) ;
Displays the graphics cursor at the graphics location (x,y) . The graphics

cursor is of the ‘cross hair' type. It is drawn using the XOR mode so that in can
be subsequently removed.

e.g.
dspgrcursor (handle, 16384,16384) ;

displays the graphics cursor in the middle of the screen.

REMOVE LAST GRAPHIC CURSOR

PROCEDURE remgrcursor (handle:INTEGER) ;

This removes the last graphics cursor displayed using dspgrcursor. Itis
removed by writing the graphics cursor in XOR mode. Thus if it has been
cleared already it will in fact be redrawn.

SET INPUT MODE

PROCEDURE setinputmode (handle,device,mode: INTEGER) ;

This procedure is used to choose between using getlocator and
samplelocator. You must set device tobe 1 on the Amstrad computers. If

mode is

1 then getlocator is to be used.
2 then samplelocator is to be used.

¢.g. setinputmode (handle, 1, 2) is used before calling samplelocator.

HiSoft Pascal80 Page 25 GSX library

GET LOCATOR

FUNCTION getlocator (handle, x,y:INTEGER;
VAR xout, yout :INTEGER) : CHAR;

This routine displays a graphics cursor at graphics position (x,y) and then lets
the user move it using the cursor keys. Using the cursor keys alone moves the
cursor in quite large steps and using the shift keys as well will cause it to move
in small steps. When the user presses a non-cursor key this is returned as the
value of the function with (xout, yout) containing the final co-ordinates of the
graphics cursor which is then removed.

e.g.

key:=getlocator (handle, 16384,16384, xpos, ypos);
WRITELN ('You moved the cursor to (',x,',',"/¥Ys
') and pressed ',key):

If you have used the samplelocator function (see below) then you must use
setinputmode (handle, 1, 1) ; before calling this function.

SAMPLE LOCATOR

FUNCTION samplelocator (handle, x,y:INTEGER;
VAR xout,yout:INTEGER; VAR c:CHAR) :INTEGER;

This function is used to find the current position of the graphics cursor, which
must be displayed separately at (x,y) using dspgrcursor (see above) first.
The value returned as the result is either:

nothing happened.

1 the cursor has been moved; the new cursor position will be in
(xout,yout)

2 a non-cursor key has been pressed; the character is returned in the

parameter c.

You must call setinputmode (see above) before calling this function.

HiSoft Pascal80 Page 26 GSX library

Here is an extended example of the use of samplelocator in the form of an
entire program:;

PROGRAM Mouse;

TYPE point= RECORD x,y:INTEGER END;

VAR

{$F GSXVAR }

st : INTEGER; { the status returned by samplelocator }
p: ARRAY[0..1] OF point; {p{0] is the last point p[l] the current }
term:CHAR; { any character typed }

{$F GSXLIB }

BEGIN
openwork (handle,1,1,1,1,1,1,1,1,1,1);

setinputmode (handle,1,2); {set sampling mode }

{$C- to avoid losing characters }
WITH pl[l] DO BEGIN x:=10000;y:=10000; END; {start at point(10000,10000);}

pl0]:=p[1};
dspgrcursor (handle,p[0] .x,p{0].y); {display the cursor initially }
REPEAT

st :=samplelocator (handle,p (0] .x,p(0].y,p[1]).x,p[1].y,term);
CASE st OF

0 E] {nothing has happened so do nothing }
1 : BEGIN {the cursor has been moved}
remgrcursor (handle) ; {remove the old cursor}
polyline (handle,2,ADDR{(p)); {draw a line between the old and new
points}
dspgrcursor (handle,pll] .x,p{1].y): {display the new cursor }
pl0]:=p{l]l; {make the old point the current one }
END;
2 : WRITE (term) {echo any characters typed}
END;
UNTIL (st=2) AND (term='E'); {finish if E is typed }
closework (handle) {clear the screen etc }
END.

HiSoft Pascal80 Page 27 GSX library

THE TERMINAL 'ESCAPE' PROCEDURES
These give text, cursor positioning etc in a machine independent way providing

most of the facilities of the CP/M Plus termir_lal emulator on the Amstrad
machines.

INQUIRE CHAR CELLS

" PROCEDURE ingcharcells (handle:INTEGER;
VAR rows,columns:INTEGER) ;

This returns the size of the screen in character positions. This varies depending
on whether you are using a PCW or a CPC and whether or nct the status line is

enabled.

Thus given the declaration

VAR r, c:INTEGER;

ingcharcells (handle, r,c)

will normally return r=31 and c=90 on a PCW with the status line enabled.

EXIT ALPHA MODE

PROCEDURE exitalpha{(handle:INTEGER):;

This simply switches the cursor OFF on the Amstrad machines.

ENTER ALPHA MODE
PROCEDURE enteralpha (handle:INTEGER) ;

This simply switches the cursor ON on the Amstrad machines.
HiSoft Pascal80 Page 28 GSX library

ALPHA CURSOR UP
PROCEDURE cursorup (handle:INTEGER) ;
This moves the cursor up one line; if it is already on the top line it does not

move.

ALPHA CURSOR DOWN

PROCEDURE cursordown (handle:INTEGER) ;

This moves the cursor down one line; if it is already on the bottom line it does
not move.

ALPHA CURSOR RIGHT

PROCEDURE cursorright (handle:INTEGER) ;

This moves the cursor right one character; if it is already on the right most
column it does not move.

ALPHA CURSOR LEFT
PROCEDURE cursorleft (handle:INTEGER) ;

This moves the cursor left one character; if it is already on the left most column
it does not move.

HiSoft Pascal80 Page 29 GSX library

HOME ALPHA CURSOR
PROCEDURE cursorhome (handle:INTEGER) ;

This moves the cursor to the top left corner of the screen.

ERASE TO END OF ALPHA SCREEN
PROCEDURE eraseEOS (handle:INTEGER) ;
Erases the screen from the current alpha position to the end of page. The cursor

does not move.

ERASE TO END OF ALPHA TEXT LINE

PROCEDURE eraseEOL (handle:INTEGER) ;

Erases the screen from the current cursor position to the end of the line. The
cursor does not move.

DIRECT ALPHA CURSOR ADDRESS

PROCEDURE curaddress (handle, row, column: INTEGER) ;

This procedure moves the cursor to alpha position (row, column) with (1,1)

as the top left hand corner. If the position is not on the displayable screen it is
moved to the nearest value that can be displayed.

OUTPUT CURSOR ADDRESSABLE ALPHA TEXT

PROCEDURE curtext (handle, string,size:INTEGER);

This outputs a text string starting at the current alpha cursor position. string

HiSoft Pascal80 Page 30 GSX library

is the address of the string and size is its length in characters. If you only
wish to output part of the string make size less than the true string length.

e.g.
VAR str:ARRAY[1..22] OF CHAR;

curaddress (handle,1,10);
str:='A HiSoft Powerful Tool';
curtext (handle, ADDR(str), 22);

writes A HiSoft Powerful Tool on the top line of the screen 10
characters in from the left.

REVERSE VIDEO ON
PROCEDURE rvseon (handle:INTEGER) ;

This procedure causes all subsequent alpha text to be displayed in inverse video
until rvseoff£ is called.

REVERSE VIDEO OFF
PROCEDURE rvseoff (handle:INTEGER) ;

this causes subsequent alpha text to be printed in normal video.

INQUIRE CURRENT ALPHA CURSOR ADDRESS

PROCEDURE ingcuraddress (handle:INTEGER;
VAR row, column: INTEGER) ;

This procedure returns the current alpha cursor position in the variables
(row, column) with (1,1) as the top left hand corner.

HiSoft Pascal80 Page 31 GSX library

INDEX

alpha cursor
alpha cursor down
alpha cursor left
alpha cursor right
alpha cursor up
current address

home alpha cursor 30
alpha mode

enter alpha mode

exit alpha mode
alpha text
area

fill area

angle

bar
character height

close workstation
clear workstation

colour
fill colour
line colour
marker colour
text colour
compiling
cursor

alpha cursor
graphic cursor

direct cursor address
dspgrcusor

down alpha cursor down

HiSoft Pascal80 Page

29-31
29
29
29
29
31

28

28

28

30, 31
11, 14,15
11, 14
8,14,17

4,5,15

15-16

511

12

6, 7-8, 10, 12-14, 17-19, 21-24
8,24

7,12, 19

7,13,21

8, 13,22

4-5

29-31
25,27

30

25,27
29

32 GSX library

to end of screen
to end of line
whole screen

erase

€scape sequences

fill
fill area
fill colour
fill interior
fill style

gtext
graphic cursor
graphic text

handle
height
character height
marker height
home alpha cursor

ink

input mode
inqcharcells
inqcuraddress
inverse video off
inverse video on

left alpha cursor left
line
line colour
line type
locator
get locator
sample locator
HiSoft Pascal80 Page

30
30
12

28-30

7,8, 10, 11, 14, 22-24
11,14

8,24

8,23-24

8, 14, 23-24

13,14,17,22
25,27
14

5,9-10, 11-31
13, 15-16, 20-21
15-16

13, 20-21

30

6,7, 18
25, 26,27
28

31

31

31

29

7,12-13, 18, 19, 27
7,13,21

7,10, 12,18

25, 26, 27

25, 26,27

25, 26, 27

33 GSX library

marker
marker colour
marker height
marker type
mouse

open workstation

polyline
polymarker

remgrcursor
reverse video on
reverse video off

rotation
right alpha cursor right
screen size
graphics
characters
text
alpha text
graphic text
text colour
up - alpha cursor up

update workstation

workstation
clear
close
open
update

HiSoft Pascal80 Page

7,9, 10,13, 19-21
7,13,21

20-21

7, 13,20

27

5,10

12-13, 27
13

25,27
31

31
8,14,17
29

10
28

30
14
8,13,22

29
12

5,10,11,12
12

511

5,10

12

34

GSX library

JABEER. WOK

FREE: 44836

EDS80

LINE: 16 COL:z217 ~Q°F I/AUTO
He took his vorpal sword in handjg
Long time the manxome foe he sought
So rested he by the Tumtum tree,
And stood awhile 1n thought.

And as i1n uffish thought he stood,

The Jabberwock, with eyes of flame,
Came whiffling through the tulgey wood
And burbled as it came!

One, two ! One, two! And through and through
The vorbal blade wgent snicker-snack!

He left it dead. and with its head

He went gallumphing back.

"And hast thou slain the Jabberwock.
Come to my arms, my beamish boy'

0 frabjous day!' Callooh! Callay'"
He chortled in his joy.

$JABBERWOCK $Jabberwock

© Copyright HiSoft 1985

All rights reserved worldwide. No part of this publication may be
reproduced or transmitted in any form or by any means, including
photocopying and recording, without the written permission of the
copyright holder. Such written permission must also be obtained before
any part of this publication is stored in a retrieval system of any nature.

The information contained in this document is to be used only for
modifying the reader’s personal copy of HiSoft ED80.

It is an infringement of the copyright pertaining to HiSoft ED80 and
associated documentation to copy, by any means whatsoever, any part of
HiSoft ED80 for any reason other than for the purposes of making a
security back-up copy of the object code.

ED80 is a full screen text editor designed to help you create and
amend source programs and other texts quickly and efficiently.

Please take time to read carefully through this manual; there are
sections on installing ED80 on your particular computer, the
commands available from ED80, some technical details of ED80
and a tutorial; this tutorial is well worth working through even if
you have used screen editors before.

The software described by this manual will run on computers
with the following specification:

— a Z80 microprocessor

- the CP/M 2.2 disc operating system

— a TPA of at least 16K for the ED80 programs

— a TPA of at least 36K for the installation programs

Please check that your system conforms with the above require-
ments and that you have been supplied with a disc that is
currectly formatted for your disc system; the format supplied is
shown on the discilabel together with your registration number.

Also note that your computer must be running under the CP/M
2.2 operating system before any of the ED80 programs will work.

We strongly emcourage you to make one back-up copy of ED80
before using it.

If you cannot get £D80 lo run correctly on your computer then
please contact your supplier for help or contact HiSoft directly:

HiSoft
180 High Street North
Dunstable LU6 1AT
(0582) 696421

CONTENTS

SECTION 1

SECTION 2

2.1
2.2
23
24
25

SECTION 3

3.1
3.2
33
34
35
3.6
3.7

ED80 v1.0

ABOUT ED80

USING EDS80

Getting Started

The Status-Lines

The Text Window

Typing Modes

A Tutorial in the use of ED80

INSTALLING EDS80
Starting up the Install Program

Terminal Installation
User Patches

: Re-Defining ED80 Commands

Re-Defining User Options
Use of Installation Files
Leaving the Install Program

E-1

E-3

E-3
E-3
'E4
E4
E4

E-9

E-9
E-10
E-12
E-13
E-14

E-16

SECTION 4

4.1
4.2
4.3

44
4.5
4.6
4.7
4.8

SECTION 5

SECTION 6
6.1

6.2
6.3

SECTION 7

COMMAND REFERENCE
GUIDE E-17
Cursor-Moving Commands E-17
Text Deleting Commands - E-18
Block Commands E-18
Printing a Block E-19
Quick Cursor Movement E-19
Find and Substitute E-20
Leaving ED80 E-21
Printing the File E-21
Toggles E-21
Miscellaneous E-22
PROMPTS AND

MESSAGES IN ED80 E-25

TECHNICAL DETAILS E-29

Internal File Format E-29
Non-Printing Characters E-29
Data and External Devices E-30

EXAMPLE PATCH-FILE E-31

ED80v1.0

SECTION 1 ABOUT EDS80

ED8O is a full-screen program editor. It is a tool to enable you to type
programs into your machine, to inspect and edit them at will and to save
them on disc, and has been designed to make the process of program
development as easy and convenient as possible. When you use ED80,
you might immediately notice that it behaves in approximately the same
way as a word-processor. Although there are important differences
between a program-editor and a word-processor (reflected in the design
of ED80) the initial set-up of the commands in ED80 is compatible with
the most familiar and widely-used of word-processors, Wordstar. ED80
has been written, however, so that you may easily tailor the program to
your personal preference (See INSTALLING ED80) and thus where the
manual might read:-

Now move the cursor up one line ([CTRL}-X)

a space has been left after the Wordstar command ([CTRL]-X) so that if
you decide to change it using the ED8OINST program you can fill in the
new command.

The supplied disc contains at least six {(and possibly seven) files con-
cerned with ED80:-

1) ED80.COM (The program editor itself)
2) ED80.HLP {The ED80 help file created by EDSOINST)
3) EDS8OINST.COM (The INSTALL program)
4) EDS8OINST.MSG (The message file for the INSTALL program)
5) JABBER.WOK (Example text file)
6) EXTRA.WOK (Example text file)

[7) something.E80 (An optional installation file) |

It is recommended that the first-time user work through section 2 of the
manual (which is not intended to be a work of reference, but rather, a
tutorial guide), after which he/she will be familiar enough with ED80 to
use the program without further reference to documentation.

ED80v1.0 E-1

E-2

ED80v1.0

SECTION 2 USING EDS80

2.1 GETTING STARTED

You enter ED80 simply by typing ED80. You may, however, add a
filename preceded by a space eg.. ED80 MYFILE.TXT. This will cause
that filename to become the Current File. If the Current File exists then it
is loaded from the disc otherwise the user simply starts from scratch with
an empty file.

Type:-
ED80 JABBER.WOK [ENTER]

(from now on the symbol [ENTER] will be used to represent a key that
may be labeled ENTER or RETURN or CR on your machine). This will
activate ED80 and load the file JABBER.WOK from the disc.

2.2 THE STATUS-LINES

You should now be in ED80 with some text filling the screen. If there
appear to be problems at this stage then ED80 may require installing on
your terminal (See INSTALLING ED80). The status-lines are described
here for an 80 column screen, but even if your console is different (eg.. 40
columns), the differences in the status-lines will not be very significant.

The upper status-line (the top line of the screen) has six sections and
should appear like this:—

JABBER.WOK LINE:1 coun INSERT

On the left is the name of the Current File. To the right is the line and
column at which the cursor is positioned. The space to the right of the
column number is for the commands you give to ED80 and is blank
because you haven’t issued any yet. To the right of this is the mode (see
next section) and finally there is a large space for ED80’s messages.

The lower status-line (the bottom line of the screen) has three sections
and should appear like this:—

FREEXXXXX $ $

On the left is the amount of free space you have left in memory which
will vary depending on the machine and the size of the current text.
The value is approximately equal to the number of characters you can
type before ED80 becomes full of text. The two $ signs mark the start of
the Find and Substitute strings which are currently undefined.

ED80vl1.0 E-3

On a 40 column screen, the space for the commands is on the top status
line at the far left and the messages will overwrite the line and column
information.

2.3 THE TEXT WINDOW

The screen in ED80 is best looked upon as a window onto the current
text. This window may be moved in all four directions so that you can
view any part of the file. If the window moves downwards then the text
appears to move upwards and this is called upward scrolling. In the
same way, if the window moves to the right then the text appears to move
to the left (leftward scrolling). In ED80 the scrolling is handled automati-
cally and intelligently to give you the most convenient window onto the
text.

2.4 TYPING MODES

There are two basic typing modes: INSERT and CHANGE. INSERT
mode is the more normal method of text entry. When you type a charac-
ter in INSERT mode, all of the line to the right of the cursor is moved
right one position before the character is entered. This means that the
current line becomes longer by one character. In CHANGE mode, the
character you type overwrites the current character (ie.. the one at the
cursor) and thus the line remains the same length. ED80 wiil not allow
you to go over the end of the line in CHANGE mode.

In general, INSERT mode is used to build up a file and CHANGE mode
is used to alter small sections within a line.

2.5 ATUTORIAL IN THE USE OF ED80

If you are quite familiar with the use of word-processors then a quick
glance over this tutorial to clarify the points of difference with the one
you are used to should be sufficient. If, however, you are in any doubt as
to the full capabilities of a word-processor then it is strongly recom-
mended that you work through this tutorial on your own terminal.

On the screen at the moment is the text of JABBERWOCKY from Lewis
Carroll’s Alice Through the Looking-glass. This is just a sample piece of
text to enable you to become familiar with ED80. As a re-assuring start,
verify that the help key ((CTRL]-J) will list the various com-
mands. Remember that [CTRL]-J means control-J ie.. hold down the
control key and then press J. After a quick look at the help page, pressing
[ENTER] will get you back to the file.

An important factor in the efficient use of full-screen editors is gaining

E4 ED80vl1.0

confidence in moving the cursor around the file. It is worthwhile
experimenting with the two main cursor-moving commands which
are:~ character left ([CTRL}-S) and character right
((CTRL}-D). If you keep pressing the character-right key until the
cursor is just past the Y of JABBERWOCKY in the title, and then press
it a further time, you’ll notice that the cursor “*wraps around” to the start
of the next line. Also notice how the line and column numbers change in
the upper status-line. If character spaces were the only way you could
move the cursor then it would take a very long time to get to the end of
some files and so, of course, there are many other ways to position the
cursor. You can move the cursor one word to the left (CTRL}-A)
or one to the right (CTRL]-F) or even straight to the beginning
([CTRL}-Q S) or end ([CTRL]-Q D) of the line. Next
move the cursor down ([CTRL]-X) and place it at line 7 column 1
just below All mimsy ... etc. ... As you may have realised, there is a
line missing from the poem and the fourth line of the first stanza should
read:

And the mome raths outgrabe.

Type this line in preceded by the correct number of spaces and press
[ENTER] at the end. You may have noticed that the second line of this
verse is also incorrect and should read:

Did gyre and gimble in the wabe;

Move the cursor up to where the word the has been missed out ie.. the
space after in and simply type the word the. Note that the rest of the line
is moved to the right after each letter. This is because ED80 is in
INSERT mode (note the word on the upper status-line). You can change
{or toggle) the typing mode by pressing [CTRL]-V. Now the word
CHANGE appears in the upper status-line. Move the cursor to the letter
o of wobe which should be an a and simply type the letter a. Note that
in CHANGE mode, the text is not moved to the right and the characters
typed simply overwrite the existing ones. If you finish off the line by
typing be; then you can also see that ED80 will not allow you to over-
write [ENTER] in CHANGE mode.

A word of explanation is in order here about [ENTERY]. It is a character
as much as is the letter **A” and can be cursored-over, deleted, found and
substituted (as [CTRL]-M) as can any other character. In fact the instal-
lation program gives you the option of displaying all [ENTER]s so you
can see where you are more easily. The most usual way of displaying
themis <.

The second verse has been omitted from the poem and this is a good
excuse to test the deleting commands in ED80 and the auto indent
feature. Firstly go into INSERT mode ([CTRL}-V) and then
move the cursor to the start of the blank line below at the end of the first
verse. Now press [ENTER] twice to give a good separation between the

ED80Ov1.0 E-5

stanzas. You can toggle auto-indent by pressing [CTRL]-O | ie..
[CTRL]-O and then | (or i or [CTRL]-I or [CTRL]—i) and the message
[/AUTO will appear on the upper status-line. Now type the first line
preceded by the correct number of spaces so that the line starts directly
under those of the first verse: :

Beware the Jabberwock, my son!

If you make a mistake then you can delete the character before the cursor
({DEL]) or the character at the cursor ((CTRL]-G). Press
[ENTER] at the end of the line and note that the new line starts
immediately under the one above. This is due to the auto-indent and is
an extremely useful feature when writing programs to improve legibility.
Now type in the other three lines of the stanza ending all with [ENTER]:

The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!

Typing mistakes are usually very common when entering programs and
EDS80 has been designed to minimise the effects of the more common
errors. Thus whenever you delete a line in ED80 it is stored UNTIL
YOU START TO EDIT ANOTHER LINE and can be recovered. To
illustrate this, move the cursor until it rests on the line starting Beware
the Jabberwock ... and give the command to delete the line
({CTRL]-Y). As you can see it disappears from the text, but the
restore line command ((CTRL]-O R) can be used to get the line
back and in fact you may move the cursor to an entirely different place
and *‘restore” the line again as many times as required. This manoeuvre
can be quite useful for moving a line or copying it to some other place in
the text. If you start editing a line ie.. type in a few characters to an exist-
ing line and then use the restore line command, the line is restored to
what it was originally.

In a large program using the Find and Substitute facilities in ED80 is
often the best way of getting to a known point in a program. To illustrate
this, position the cursor on the first line of the poem and give the find first
command ((CTRL}]-Q F). This puts the cursor just after the first
dollar sign on the lower status-line. Now type in Jabberwock. (the
word Jabberwock followed by a full-stop) (you can use the delete
character left (DEL]) if you make a mistake) and then [ENTER]
and just press [ENTER] for the second or Substitute string. The cursor
will now be positioned on line 34. Note that the two previous occur-
rences of Jabberwock are not followed by a full-stop. If you now put
the cursor to the top of the file (CTRL]-Q R) and redefine the
Find string as Jabberwock then the cursor will first rest on line 10.
Now the find next command ((CTRL]-L ywill go to line 23.

The next part of the tutorial illustrates the way you can manipulate

E-6 ED80v1.0

blocks of text, rather than just characters and lines. To define a block of
text you have to mark its start and end. The original Lewis Carroll poem
duplicates the first verse at the end and so the aim is to mark the whole of
the first verse as a block and then copy it to the end. However, this will be
done in rather an unusual way to illustrate the block buffer in ED80. Put
the cursor to the start of line 4 ie.. the start of the first line of the first
verse and mark this point as the start of a block ((CTRL]-K B).
Now position the cursor at the end of the last line of the poem (the
space after outgrabe.) and mark this as the end of the block
((CTRL]-K K). Now the unusual part: delete this block
((CTRL]-KY M You can now see that there is a star after the
figure showing the amount of free space left on the lower status-line. This
star means that there is a block in the block buffer. You can see the size
of the block by operating the free-space toggle ((CTRL]-O F).
You get the block back by using the paste block command
({CTRL]-O P). Do this now. Note that the block is still there and
can be pasted as many times as required. Now move the cursor to the end
of the file (CTRL]-Q C) and paste the block again and lo! the last
verse is duplicated. Exactly the same effect would have been achieved by
marking the block and then copying it {CTRL]-K C) except that
the block would not have been put in the buffer. Both block delete and
block move (which is exactly equivalent to delete followed by paste) put
the block in the buffer if there is space.

It is possible to write a block to the disc ((CTRL]-K W)and read
a block from the disc. As an exercise, move the cursor right to the
end of the file and then issue the command to read a block
(([CTRL]-KR). You are now prompted for the filename of the file
you wish to read in. Type:—

EXTRAWOK [ENTER]

(you can use [DEL] if you make a mistake typing in the name).
Naturally Alice did not understand the explicit and obscure sexual
connotations of the poem as we do today and the poem stands as an
interesting if rather distressing insight into Dodgson’s dark, tulgey mind.

Finally, it is very important to be able to save an edited file to the disc.
There are three ways to quit ED80. Firstly, one may abandon the file

([CTRL]-K Q). Here nothing is saved and the current text is
lost. Then one may want to save the file with no backup
([CTRL}-O Q). This will save the current text on the disc deleting

a file of the same name if it existed. This method is generally used when
space is low on the disc. Finally, the most normal method of quitting
ED8O is to save with a backup ((CTRL]}-K X). Here, if there is a
file with the same name it is converted to type .BAK and thus is pre-
served. Issue the save with backup command ((CTRL]-K X). You
are prompted for a filename, with the Current Filename already given for
convenience. The Current Filename may be deleted if you require and

ED80vI1.0 E-7

the text saved under another name. In this case, however, just press
[ENTER]. When silence and the A> prompt rules again, a look at the
disc directory with DIR will show that the original file is now called
JABBER.BAK and there is a new JABBER.WOK that is the file we
have just edited.

It should now be perfectly possible (with frequent forays into the help-
pages) to edit your own files. Before doing so it is advisable to cast a quick
glance over the reference section as there are some very useful features
documented there that have not been covered in this tutorial.

E-8 EDS0 v1.0

SECTION 3 INSTALLING
EDS80

The process of installing ED80 involves three phases. ED80 is first read
in from the disc. Then, sections of the program are modified and finaily
ED80 is written back out to the disc (as a .COM file) together with a help
(.HLP) file. Thus the process involves a permanent change to ED80.

There are two reasons that you might want to instail ED80. Primarily, it
may be that there are problems with the screen layout and ED80 seems
not to work at all. This will be due to incorrect terminal codes and in this
case you should read the section on TERMINAL INSTALLATION.
.Alternatively, you may wish to modify some of the commands or options
to suit either keyboard or taste. This procedure is covered in the section
RE-DEFINING ED80 COMMANDS and RE-DEFINING USER
OPTIONS. In either case you should first read the next section.

3.1 STARTING UP THE INSTALL PROGRAM

To run the installing program, insert the supplied disc and type:~
EDBOINST [ENTER]

You will now see the EDS8OINST copyright message and some general
information. When you’re ready, press any key. The purpose of the
installation process is to alter the copy of ED80 on the disc. To this end,
some copy of the program (called the working copy) is read in from the
disc into the machine. The first question is thus:-

Normally the working copy of ED80 is
read in from a file called ED80.COM
Use another file instead (Y/N) ?

The reply will normally be N, the exception being when you have
renamed a version of ED80. A reply of Y will produce the prompt:-

[ESC] to abort
Omit file type {.COM assumed)
Enter filename

to which a filename should be typed in (omitting the filetype eg . . . to use
EDIT.COM as the image, type EDIT [ENTER]). If you typed Y by
mistake and really do want to use ED80.COM as the working copy then
just type ED80O. Whether you replied N to the opening question or Y
and then specified a filename, the working copy will now be read in to

ED80v1.0 E-9

the machine from the disc and the ED80 Installation Menu will appear.

There is now a copy of ED80 in the memory of your machine ready to be
altered and the ED80 Installation Menu on the screen.

ED8O INSTALLATION MENU

1. Return to CP/M

2. Alter screen codes

3. Save ED80 as < working copy filename > (normally
ED80.COM)

4. Save ED8O as another file

5. Alter command codes

6. Alter user options

7. Load installation from .E80 file

8. Save installation to .E80 file

Type desired number:

If you are a first-timer using the installation program because the screen
codes in ED80 were wrong then turn first to the section TERMINAL
INSTALLATION and then to LEAVING THE INSTALL PRO-
GRAM. The other sections in this chapter are USER PATCHES,
REDEFINING ED80 COMMANDS, REDEFINING USER OP-
TIONS, and USE OF INSTALLATION FILES.

3.2 TERMINAL INSTALLATION

Select option 2 from the main menu to alter the screen codes. You will be
asked

How many screen columns {) ? and then
How many screen rows {) ?

in answer to each of these questions you should type in the correct
number followed by [ENTERY]. Pressing [ENTER] alone is equivalent to
giving the answer in brackets. :

The rest of the questions concern how the screen controller works on
your machine. If you are in doubt about any of the questions, consult the
manual for your machine. You are now asked for the:—

Cursor ;Jositi(on lead-in sequence

When ED80 is in operation it has to be able to tell the screen controller
to put the cursor at a certain position on the screen. To do this, ED80
tells the controller the row and the column required. Most screen con-
trollers require a special sequence of codes to indicate that the values to

E-10 ED80v1.0

follow represent a row and a column. Thus inside the first set of brackets
there will be the sequence as it is currently defined with the decimal
values of the codes in that sequence in the second set of brackets. If the
sequence is correctly set up then just press [ENTER] and move on to the
next question. If the sequence is incorrect then it must be changed and

" there are two ways to change it.

1) If your screen controller does not have a special sequence of codes
then you will have to write a program in assembly language to do it
instead. In this extremely unlikely event, press D to delete the current
sequence.

2) i, as is much more likely, your screen controller does have a
Cursor Position lead-in sequence then you should enter it now code by
code (up to 2 maximum of four codes) terminated by [ENTER]. Each
code may either be entered as a single keypress or as its decimal value
terminated by [ENTER]. As an example, if the correct sequence for your
controller was [CTRL]-K =. You could enter this either by typing

[CTRL]-K =[ENTERY] (ie.. 4 keypresses) or by typing

1 1 [ENTER] 6 1 [ENTER][ENTER]

(ICTRL}-K is ASCII Il and =is ASCII 61 and note the two [ENTER]s at
the end. The first is to terminate the 61 and the second is to terminate the
whole sequence.)

The next question asked is

Is the row sent before the column {
(Y/N/[ENTER]) ?

The screen controller may require the row before the column, or the
column before the row. As above, pressing [ENTER] is equivalent to
giving the answer in brackets.

You are now asked

Offset for column () ? and then
Offset for row () ?

When the values for the row and the column are sent, many screen
controllers require an offset to be added to each. The values required for
the offsets are those required to position the cursor at the top left of the
screen (ie.. if the correct offsets for your machine were both 32 then
sending the Cursor Position lead-in sequence, then 32. then 32 will put
the cursor at the top left of your screen). If the value in brackets is correct
then just press [ENTER] otherwise type in the correct value terminated
by [ENTER]. As above. you should consult the manual for your
machine if in any doubt.

ED80 v1.0 E-11

The next text to appear is:—

Clear Screen sequence
{

The layout is identical with that for the cursor positioning sequence
detailed above. Press [ENTER] alone if the sequence for clearing the
screen is correct or enter the correct sequence terminated by [ENTER] as
above. If your controller does not recognize a sequence to clear the screen
(possible but unlikely) then press D.

Clear to End of Line Sequence

prompts you for the sequence to clear to the end of the current line.
Respond to the prompt exactly as above for the clear— screen
sequence. It is quite possible that your screen controller does not
recognize a sequence for clearing to the end of the current line. If this
is so then press D to delete the sequence and ED80 will perform the
function itself by software (although more slowly than the controller
would do it).

Use lead-in ()
Use lead-out ()
(Y/N/[ENTER]) ?

The final questions concern the use of lead-in and lead-out sequences.
These options allow you to use ED80 to send a command to the screen
controller or run a small program at the start and end of an editing
session. For example, this facility might be used to put your machine into
80 column mode for editing and reset back to 40 column mode on exit
from ED80. However, unless you have an important reason for wanting
to use this facility, it is advisable to answer N to both questions. If you
answer Y to either you will be asked to specify a code sequence to send to
the screen controller which you should enter as described above. If
however, you wish to do something more complicated than just send a
sequence then you should press D to delete the current sequence and
prepare to write a program for the patch file!

Normally you will now be returned to the main menu. If, however, you
do not see the main menu now then read on!

3.3 USER PATCHES

A user-patch is a program written by you in assembly language to
perform a function not within the capabilities of your screen controller.
They will be needed if your response to certain questions from option 2

E-12 ‘ ED80v1.0

of the main menu has been to press D ie.. the screen controller cannot
perform certain functions. The functions which may need user patches
are:— Cursor Position, Clear Screen, Lead-in, and Lead-out. If you have
answered D to any of these then after the last question of option 2, you
will see the message

Please read the manual (Section 3) ! (which you are. Good)
User patch area starts at 3 XXXX

Read in a new Patch file
(Y/N) ?

The normal process by which you can write a user-patch is to use an
assembler (GENS8O I hope) to write and assemble the program and create
a .COM file, which is the form needed for the patch. Included in this
manual is an assembly language source file that is extensively com-
mented to illustrate the general format for a patch-file. If you need to
write a patch-file then reply N to the question for the moment and study
the example patch-file closely. If you have already written and assembled
the patch-file then reply Y to the question above and then in response to
the prompt type in the filename. The machine-code in the patch-file will
then be incorporated from the disc into the memory copy of ED80 and
you will then be returned to the main menu. It is possible to get the
message

Too many characters in commands

when trying to read in the patch-file. This message means that the size of
the command definitions and the patch-file combined is too large. You
should try to change the command definitions to be shorter and thus
quicker (both to type and to execute) and more efficient.

3.4 RE-DEFINING ED80 COMMANDS

Pressing 5 from the main menu will allow you to alter the command
definitions. All of the commands will be shown and you have the oppor-
tunity to change the definition or accept it and pass on to the next
command. After the last command you are returned to the main menu.
For each of the commands the display format is:—

Command name
(keystroke definition) (decimal definition) —

where the keystroke definition is the sequence of keys the user
presses to give the command and the decimal definition is the
decimal ASCII value of those keys.

At any stage you have the option 1o go back to consider the previous

ED80v1.0 E-13

command, to retain the current definition or to change the current
definition.

1) To backtrack to the previous command, press B

2) To retain the current definition press [ENTER]. The process then
repeats for the next command. At the end you are returned to the main
menu.

3) To change the current definition the new definition should be typed
in element by element (up to a maximum of four elements) and termi-
nated by [ENTER] after which the redefined command appears. If you
are now sure that the definition is correct then press [ENTER] to pass to
the next command, otherwise type in another definition and the whole
process is repeated.

4) Definition elements are of two types. The first type is simply a key-
stroke and the second type is a. sequence of digits terminated by
[ENTER]. For example, the two ways to include a [CTRL]-Y (which
has an ASCII value of 25) in the definition are:-

a) hold down the [CTRL] key and press Y

b) press 2 then 5 then [ENTER]

The two modes of entry of elements may not be mixed within the same
definition. Thus if the first character of a definition was a number then
all subsequent numbers are treated as their numerical value. However, if
the first character was not a number then all subsequent numbers are
treated as ASCII characters. This feature is included so that command
definitions such as [CTRL]-K O can be entered as three key presses (ie..
hold down [CTRL] and press K, then press 0)

If the definition given is the same as that of a previous command or a
prefix to a previous command then this message will appear:—

WARNING : There is a conflict between the

and--——————————— .~ commands.
Do you wish to continue anyway (Y/N) ?

A response of Y will ignore the duplication and N will allow the current
command to be re-defined. Note that if ED80 is saved to the disc with
two commands identical, the use of one of the commands will be lost.

It is recommended that you consult the reference section of the manual if

in any doubt as to the meaning of some of the commands. After the last
command, you are returned to the main menu.

3.5 RE-DEFINING USER OPTIONS

You can change the user options by selecting 6 from the main menu.

E-14 ED8OvI1.0

There are four user options. They are:-
Size of tabs () ?

to which you should type in the tab size required followed by [ENTER]
or [ENTER] alone to retain the value in brackets.

Tabs per scroll {) ?

When the cursor in ED80 moves off the right-hand edge of the screen, the
text window moves to the right (ie.. the text appears to scroll to the left).
This left/right scroll works in units of one tab. On most screens, a value
of one or two is best for this parameter. Enter the value as above.

End of I;ne di(splay)

End of file display
() (?

A single key response is needed for both of these. If you don’t wish the
end of lines or the end of file to be displayed then press D to delete the
current value, otherwise type the character you would like to be used for
each (< is a common end-of-line marker with maybe | for end-of-file).
Although not normally used in word-processors, the markers can be
useful in a program editor for distinguishing spaces and tabs at the end of
lines and end of file. After responding to these options you are returned
to the main menu.

3.6 USE OF INSTALLATION FILES

There are many features of ED80 that are alterable by the user. Every
copy of ED80 naturally contains one set of these options. There is a type
of file, however, called an Installation File that consists solely of the set
of the alterable options. An Installation File is of type .E80.

To save the current installation information in a file, select option 7 from
the main menu. You will then be prompted for a filename which you

should type in terminated by [ENTERY]. It is possible that you will see
the error message

Too many characters in commands

If so, you should decrease the number of characters used to define the
commands or the size of the patch-file (if you’re using one).

To load an installation file, select option 8 from the main menu. As
above. you will be prompted for a filename. If the file you give does not

ED80v1.0 E-15

exist then the prompt will be repeated. You can press [ESC] to quit.
When the installation file is loaded into memory, it will overwrite the
alterable options aiready present in the copy of ED80 in memory.

The main use of Installation Files is when you are in the long-term
process of tailoring your version of ED80 to suit your own preferences. If
you save each successive change you make to the installation of ED80
then any changes you find undesirable can be overwritten by using the
last installation file rather than going all the way through the commands.
You may also find it useful to save your final installation in a file as a
reminder of how your commands are defined.

3.7 LEAVING THE INSTALL PROGRAM

You can leave the install program by selecting option 1 from the main
menu, but BEWARE! If you select option 1 then nothing will be changed
on the disc. Thus if you are satisfied with the changes you have made in
the last installation session, you should first use either option 3 or option
4. Both will save a copy of ED80 (as a .COM file) and a help file (as a
.HLP file) on the disc. Option 3 will save both files under the name you
specified at the beginning of the session (normally ED80) whereas option
4 allows you to change the name by which you will invoke ED80. You
may have more than one copy of ED80 on the disc at the same time
(under different names, of course) without a clash of help files.

Thus the normal method of leaving the install program will be first to
select option 3 and then option 1. If you don’t wish to save the results of
your installing labours then select option 1 alone.

N.B. You may, when saving the copy of ED80 get the error message

Too many characters in commands

in which case you should either decrease the size of your command
definitions, or the size of the patch-file or both. It is well worth spending
some time deciding on the design of the command definitions. A well-

designed and succinct set will be easier to use and will also lead to
quicker and more efficient editing.

E-16 ED8Ov!1.0

SECTION 4 COMMAND
REFERENCE GUIDE

This Section is intended as a short reference guide to the commands and
features of ED80. In all cases, the default command is given in brackets
followed by a space so that the user may fill in any new commands.
Where possible, the default command is the same as the Wordstar
command. A ? means that there is no exact Wordstar equivalent for this
command and the sign [CTRL]- means that the control key is held
down. [ENTERY] indicates that the user should press the requisite key,
whereas < CR > indicates a byte of the value £0D (ASCH 13).

4.1 CURSOR-MOVING COMMANDS

Character left/right (CTRL]-S :{CTRL}-D)

Move the cursor one character position left/right. Moving past the end
of a line positions the cursor at the beginning of the next line. Likewise
moving past the beginning of a line puts the cursor at the end of the
previous line. (This feature is hereafter called wraparound).

Character left (alt) (CTRL]-H=backspace)
As in Wordstar there are two cursor left commands.
Word left/right (CTRL]-A :[CTRL]-F)

Move the cursor to the beginning of the last/next word. Characters that
constitute the boundaries between words are:— “()[Ju=+- \ /<>
1—;:,£$ [TAB] and wraparound operates.

Tab left/right ([CTRL]-O S :[CTRL]-O D)
Move the cursor to the last/next tab position. The size of tab stops may
be defined by the user (see INSTALLING ED80). Wraparound operates.

Start/End of line ((CTRL}-Q S :[CTRL}-Q D)
Move the cursor to the start/end of the current line. Wraparound does
not operate.

Line up/down ((CTRL]-E :[CTRL]}-X)

Move the cursor up/down one line. After moving up or down one line,
the cursor column is always the same. Thus it may appear that the cursor
is positioned beyond the end of a line. If another line up/down or page
up/down command is issued then the cursor will move as described.
However, if any other key is pressed, ED80 will behave as though the
cursor was at the end of the current line (Ambiguous cursor).

ED80v1.0 E-17

Top/Bottom of screen 2(CTRL]-O E
)

[CTRL}-O X
Move the cursor to the top/bottom of the screen.
Page up/down ((CTRL]-R :[CTRL]-C)

Move the text window down/up by one less than the number of non-
status lines displayed on the screen. Thus a page up command on a 25
line screen will move the text window up by 22 lines (25 screen lines-2
status lines-1) and the old top line becomes the new bottom line.
Ambiguous cursor operates.

Start/End of file (CTRL]-Q R :[CTRL]-Q C)
Move the cursor to the start/end of the file.

4.2 TEXT DELETING COMMANDS

Delete line (CTRL}-Y)

Delete the current line. Note that the line is placed into the editing
buffer and can be recalled into the text by use of the restore line
command. The deleted line wili be overwritten when the user next makes
a change to any line.

Delete last character ((DEL])

Delete the character to the left of the cursor. Wraparound operates.
Delete this character (CTRL]-G)

Delete the character under the cursor. Wraparound operates.
Delete word left/right ?[CTRL]-O T :[CTRL]-T)

Delete from the cursor to the beginning of the last/next word. The
characters that constitute the boundaries between are given under the
Word left/right command above. Wraparound operates.

Delete to start of line (CTRL]-Q [DEL])
Delete from the cursor to the beginning of the current line.

Delete to end of line (CTRL]-Q Y)
Delete from the cursor to the end of the current line.

4.3 BLOCK COMMANDS
Mark start/end of block (CTRL]-K B :[CTRL]-K K)
Place the block markers. A marker will be positioned at the cursor

position. The markers are lost if the line containing the marker is altered
subsequently.

E-18 ED80 v1.0

Move block ((CTRL]-K V

Delete the currently marked block from the text and place in the block
buffer, then insert the block at the cursor position. If there is enough
space the block will be retained in the buffer, but the less space there is,
the longer the command will take.

Copy block (CTRL}-K C)
Copy the currently marked block from the text to the cursor position.
Delete block ((CTRL]-K Y)

Delete the currently marked block from the text and place in the block
buffer. The less space there is, the longer this command will take. This is
due to the procedure required to place the block in the buffer rather than
abandoning it altogether. Thus, if the amount of free space is very smalil
(less than 256) the user is asked whether to abandon the block. If the user
presses Y then the block will be deleted from the text and not placed in
the block buffer. If the user does not want to completely abandon the
block then N should be pressed, the block should be written out to the
disc (from where it may later be read back in if desired) and then deleted.

Paste block 2({CTRL]-O P)
Insert at the cursor the block currently in the block buffer. The block
remains in the buffer if there is sufficient space.

Read block ((CTRL]-K R

The user is asked for a filename. [ENTER] alone aborts the command.
A filename followed by [ENTER] will search the disc for the filename
given and insert it at the cursor. The response RDR: will read the block
from the current logical reader device.

Write block ((CTRL}-K W

The user is asked for a filename. [ENTER] alone aborts the command.
A filename followed by [ENTER] will write the currently marked block
to the disc with the filename given.

Printing a Block

In response to the filename prompt, LST: will send the block to the
current logical list device and may thus be used to print a block of text.
The response PUN: will send the block to the current logical punch
device. The whole file may thus be printed by setting the block markers
to the start and end of the file and writing the block to LST: (but see
Printing the File below).

4.4 QUICK CURSOR MOVEMENT
Goto line ([CTRL]-O G)

User will be prompted for a line number. This should be entered digit
by digit (the DELETE CHAR LEFT command may be used as a destruc-

ED80v1.0 E-19

tive backspace) and after [ENTER] the cursor will be positioned at the
start of the line given. This command is extremely convenient for quick
access to an error reported by a compiler or assembler.

Goto start/end of block (CTRL]-Q B :[CTRL]-Q K)
Move the cursor to the start/end block marker.

Remember position (CTRL]-K O)
The current cursor position is stored. The marker is lost if the line in
which it lies is subsequently changed.

Return to pesition (CTRL]-Q O)
The cursor is positioned at the stored position.

4.5 FIND AND SUBSTITUTE

Find first (CTRL]-Q F

The current Find string is displayed. [ENTER] will retain the current
string, otherwise the user should type in the required Find string (up to a
maximum of 32 characters) and then press [ENTER]. The DELETE
CHAR LEFT command may be used as a destructive backspace,
[CTRL]-R will redisplay the previous string and [CTRL]-U will abort
the operation leaving the strings as they were. A control character may
be entered by pressing the control meta-key ((CTRL]-P) (see
MISCELLANEOUS) and then the control character (eg.. [CTRL]-P
then [ENTER] enters a <CR> or [CTRL]-M into the string). Pressing
the meta-key and then ? will return a value which is displayed as ? and
counts as a wild-character when in the Find string.

After [ENTERY] is pressed the operation is repeated for the Substitute
string, and then the cursor is positioned at the start of the first occurrence
of the Find string in the file.

Find next (CTRL]-L)

The file is searched for the next occurrence of the Find string starting
from one character after the cursor. A wild-character in the Find string
will match with any character at ail in the file.

Substitute and find 2(CTRL]-O L)

The file is searched for the next occurrance of the Find string starting
from the cursor. A wild-character in the Find string will match with any
character at all in the file. When the string is found, it is replaced by the
Substitute string and the cursor is positioned after the last character of
the Substitute string. Finally the file is searched for the next occurrence
of the Find string starting from the cursor.

Substitute all 2([CTRL]-O A)
Starting from the cursor, all occurrances of the Find string in the file
are replaced by the Substitute string. A wild-character in the Find string

E-20 ED80v1.0

will match with any character at all in the file. The cursor is then placed
after the last string substituted.

4.6 LEAVING ED80

Quit and Exit (CTRL]-K Q

The user is asked whether to abandon the file. Pressing Y will cause a
return to CP/M and the current text will be abandoned. Pressing
[SPACE] will prompt the user for a filename and the given file will be
loaded from the disc thus effectively also abandoning the current text.
Any other response will abort the command.

Edit without backup 2([CTRL]-O Q)

The Current Filename is displayed after the prompt Filename:. This
may be deleted using the DELETE CHAR LEFT command
([DEL]) and altered, or the whole command can be aborted by
pressing [CTRL]-U. When the user is satisfied with the filename,
[ENTER] or [SPACE] will cause the current text to be saved on the disc
under the filename given. If[ENTER] is used as the terminator then after
saving the file the user is returned to CP/M. After [SPACE], however,
the user is prompted for a filename and then will be able to edit another
file without leaving ED80. Thus the normal response after this command
will be [ENTER] or [SPACE] alone which will save the file with its
original name. A file already on the disc with the same name will be lost.

Exit with a backup ((CTRL]-K X)

Identical with above except that a file already on the disc with the
same name as the Current Filename will be renamed as a .BAK file and
any .BAK file with the same name will be lost.

Printing the File

In response to the filename prompt, LST: will cause the current text to be
written to the current logical list device and may thus be used to send a
file to the printer. PUN: will write the text to the current logical punch
device. Note that after both these responses the user will abandon the
current text and the disc copy of the Current Filename will be unaltered.
A better way of printing the whole file is to set the block markers at the
start and end of the file and then write the block to LST: (see Printing a
Block above).

4.7 TOGGLES

Toggle mode ((CTRL]-V)

Switch between INSERT and CHANGE mode. A character typed in
INSERT mode will only be entered after the characters to the right of the
cursor on the same line have been moved right one character position. A
character typed in CHANGE mode will overwrite the current character.
A <CR> may not be overwritten in CHANGE mode.

ED80v1.0 E-21

Toggle auto indent 2[CTRL}]-O |)

Auto indent will only operate in INSERT mode. The message
INSERT will become |/AUTO. When indent is on and [ENTER] is
pressed in INSERT mode, the next line will be indented so that it starts
at the same column as the line above. '

Toggle free space A(CTRL]-O F)

A star following the amount of free space indicates that there is a block
in the block buffer. The free space toggle is used to check the size of the
block.

4.8 MISCELLANEOUS

Deliver tab ((CTRL]-I)

Will return a tab character (CTRL}-I or ASCII 9). The size of tabs and
thus the position of tab stops may be defined by the user. Tabs will be
entered as a ASCII 9 in the file and will not be changed to spaces. They
are treated in the main like any other character in the file.

Restore line 2(({CTRL]-O R)

If the user is in the process of editing a line then this command will
restore the line to what it was when the user first positioned the cursor on
it. If the user is not in the process of editing a line then this command will
insert in front of the current line, the last edited line. This aspect of the
command is useful because the DELETE LINE command places the
deleted line into the line-buffer exactly as though it had just been edited.
The user may thus move a line from one place to another by deleting it,
moving the cursor to the desired place and then issuing a RESTORE
LINE command.

Disc directory 2[CTRL]-K F

The prompt Filename: is given. See RULES FOR FILENAMES. A
reply of [ENTER] or [SPACE] alone will abort the command as will
pressing [CTRL}-U. After the filename is terminated by [ENTER] or
[SPACE], the screen is cleared and a directory is printed (in fact the
directory given will be the same as that seen after the equivalent DIR
command). Any key will then return the user to the current text.

Erase file (CTRL}-K J)

The prompt Filename: is given. See RULES FOR FILENAMES. A
reply of [ENTER] or [SPACE] alone will abort the command, as will
pressing [CTRL]-U. After the filename is terminated by [ENTER] or
[SPACE] the named file or files will be deleted from the disc.

Control meta-key ((CTRL]-P)

Any key pressed after the meta-key will be entered into the file as its
literal value. This may thus be used to enter control characters into the
file that are normally commands or prefixes to commands (eg..

E-22 ED80 v1.0

[CTRL]-P then backspace enters a [CTRL]—-H). The meta-key can also
be used in the same way to enter control characters in the Find and
Substitute strings. In this case if ? is pressed after the meta-key a
character is returned that is displayed as ? but acts as a wild-character in
the find string.

Help key %A[CTRL]J)

Pressing the help key will display help pages giving information on the
commands available from ED80 and how to access them.

ED80v1.0 E-23

E-24 ED80 v1.0

SECTION 5 PROMPTS AND
MESSAGES IN EDS80

There are four prompts produced by ED80. They appear on the lower
status line. Two require a single key response and the other two require a
string of characters terminated by [ENTER)].

Abandon block: Sure?

This prompt requires a single character response. It appears if the user
has issued the DELETE-BLOCK command and there are less than 256
bytes free. If the user responds Y then the block will be deleted and lost
(note that the block is normally saved in the block buffer and thus not
lost) while any other response will abort the command.

The prompt also appears if the user has issued any command the execu-
tion of which would overwrite the block in the block buffer. If the user
responds Y then the block in the block buffer will be lost and the
command executed while any other response will abort the command.

Abandon text: Sure?

This prompt requires a single character response. It is produced after the
QUIT AND EXIT command. If the user responds Y then the current
text will be lost and the user returned to CP/M. If the user responds
[SPACE] then he will be further prompted to produce a filename (see
later) and the named file will be loaded and the old current text
abandoned. Any other response will abort the command.

Filename:

This prompt requires a string of characters terminated by [ENTER] or
[SPACE]. It is produced after any command that requires reading from
or writing to the disc. The response is interpreted as a filename and the
maximum allowed length is 14 characters (See RULES FOR FILE-
NAMES). In building up the filename, the currently defined DELETE
CHARACTER LEFT can be used as a destructive backspace. When the
two EXIT commands are issued, the Current Filename is given for
convenience although it may be deleted if desired and another name
substituted. If the name returned is null ie.. [ENTER] or [SPACE]
alone, or [CTRL]-U is pressed at any stage then the command is
aborted. There are three responses to this prompt that are not interpreted
as a filename, viz LST: PUN: RDR: These address the logical list
device, the logical punch device and the logical reader device respectively.

Go toline:

This prompt requires a string of numbers terminated by [ENTER]. It is
produced after the GO TO LINE command. The response is interpreted
as a line number and the maximum allowed length is 4 characters (only

ED80vIi.0 E-25

numbers are accepted). In building up the number the currently defined
DELETE CHARACTER LEFT can be used as a destructive backspace.
[ENTER] alone aborts the command.

RULES FOR FILENAMES

A filename consists of three fields. The drivename, the filename and the
filetype. (eg.. B: MYFILE .GEN).

When giving a filename:-

1) The drivename is optional and if not given the current logged-in
drive is assumed.

2) In a command where ambiguous filenames are allowed (ie..
ERASE FILE and DISC DIRECTORY) a ? may be used to represent
any single character and a * may be used as if the remainder of the field
in which it occurs (barring the drivename field) were filled out with ?s.

3) Inthe directory command a response of the drivename field alone is
interpreted as though the filename and filetype were *.

For example:-

B:MYFILE.» Addresses files of any filetype on disc B called
MYFILE

* BAK Addresses all files of type .BAK on the current drive

FILE+ GEN Addresses files of type .GEN on the current disc whose
filename starts with the letters FILE

FILE?.GEN Addresses files of type .GEN on the current disc whose
filename contains 5 letters and starts with the letters
FILE

B:orB:«.+ The first form (drivename alone) can only be used for
the DISC DIRECTORY command. Addresses all files
ondrive B

There are thirteen messages produced by ED80 and they appear on the
lower status-line as do the prompts.

Out of memory
Indicates that there is not enough space in the machine to carry out the
proposed command.

Line is too long

Produced when the length of the line would exceed the maximum
allowed length (255 characters) if the proposed action was taken. This
might either be simply the press of a key, or the deletion ofa <CR >.

E-26 ED80O v1.0

Undefined command
Indicates that the initial key of a command is correct, but the second or
subsequent keys do not form a valid command.

Block start unmarked/Block end unmarked

Prociced after any block operation if the start/end of the block has not
been marked or the mark has been lost (ie.. the line containing the mark
has been edited).

Block marks reversed
Produced after any block operation if the start of the block occurs after
the end.

Invalid destination
Produced after a MOVE BLOCK or COPY BLOCK and indicates that
the destination (cursor) lies between the start and end of the block.

Block too big
Produced after a READ BLOCK command and indicates that the file on
the disc is too large to fit into memory.

No block in buffer
Produced after a PASTE BLOCK operation and is self-explanatory.

Marker lost
Produced after a RETURN TO POSITION command and indicates that
the position marker has not been placed or has been lost.

No file/Bad filename

Produced after any command which prompts the user for a filename.
The command indicates either that the filename is badly formed or
inappropriate or the file does not exist.

Disc full

Produced after any command that tries to write to the disc. Indicates that
either the disc or the disc directory is full. The user should consider using
the ERASE FILE command.

No such line

Produced after the GO TO LINE command and indicates that the line
number given is greater than the number of lines in the file.

ED80v1.0 E-27

E-28 ED80v1.0

SECTION 6 TECHNICAL
DETAILS

6.1 INTERNAL FILE FORMAT

Text in ED80 is held simply as a string of ASCII characters. The end-of-

line sequence is < CR> (ASCII 13) rather than <CR> <LF>, allowing

the user greater text space. The end-of-file is marked by a <NULL>

(ASCH 0). When the text is written to the disc, however, <CR> is

replaced with <CR> <LF> and the <NULL> is replaced by

[CTRL}-Z (ASCII 26) thus making the disc file written by ED80 com-
. patible with normal CP/M text files.

The maximum line-length in ED80 is 255 characters. Note that the
cursor column number may exceed 255 due to tab and control characters
(in which case the column number displayed on the status-line remains

255).

The maximum number of lines in the file is limited only by memory
considerations, but note that the {ine number display on the status-line is
only of four digits (due to space considerations) and the GO TO LINE
command can only reach line 9999 and no further. All other commands
will work as normal if the number of lines exceeds 9999 (although note
also that on most systems the average number of characters per line
would have 10 be about three for the line numbers to exceed 9999).

6.2 NON-PRINTING CHARACTERS

Characters of ASCII value less than 32 decimal (Control characters) are
treated as far as the user is concerned as any other character. They may
be entered into the file by first pressing the control meta-key
([CTRL]-P) and then the control character desired. If the ter-
minal is capable of producing characters of value greater than 127
decimal, then these characters are entered as any other into the file and
are displayed as ?

The meta-key may also be used to specify control characters in the find
and substitute strings in the same way as above. An obvious use for this
feature is to find the end-of-line character (reached by [meta-key]
[ENTER] or [meta-key][CTRL]-M). The ? character when pressed
after the meta-key returns £80. This character is displayed as ? in the
find and substitute strings, but is treated as a wild-character in the find
string ie.. it will match with any character at all in the file. (Note that if a
terminal has a key that can return £80 then this will be in all respects
identical to [meta-key] followed by ?).

ED80v1.0 E-29

6.3 DATA AND EXTERNAL DEVICES

Whenever the user gives a command that would normally access the disc
(ie.. READ BLOCK, WRITE BLOCK, EXIT WITHOUT BACKUP,
EXIT WITH A BACKUP) there are three responses to the prompt File-
name: that are interpreted as logical external devices.

1) LST: if used for a write operation will send the data to the current

logical list device, which is normally a printer (but may, of course, be set

-from CP/M using STAT). When the data is sent a <LF> character
(ASCII 10) is sent after every < CR > as is usual for CP/M files.

2) PUN: if used for a write operation will send the data to the current
logical punch device. As above, every <CR > issent as <CR> <LF>,
but unlike the use of LST: a [CTRL]-Z (ASCII 26) is sent after the data
to mark the end-of-file. [CTRL}-Z is the standard CP/M end-of-file
character.

3) RDR: when used for a read operation is designed to be compatible
with PUN: or indeed any standard CP/M data transfer operation. The
top bit of every character is reset (thus masking out any parity bits sent
by the transmitting hardware) and all <LF> characters are ignored to
produce the standard ED80 internal format. RDR: requires a [CTRL]-Z
character to mark the end-of-data. Files may thus easily be transferred
g%nﬁ one machine to another from inside ED80 by use of PUN: and

E-30 ED8Ov1.0

SECTION 7 EXAMPLE
PATCH-FILE

ifhas 18 an exasple patch-file for use with EDBO or MONBO.

1The patch-file for MONBY must be position 1ndependent, whereas that

s for EDBU need not he. This example 15 wratten to be position i1ndependent
180 that 1t can be used for both prograas.

]

11§ this 1% a patch-file for EDBO (which doess not have to be position-—
j1ndependent) and the fi1le i1ncludes some position-dependent code &g.. a
sCALL to within 1tself or a LD anstruction addressing an area wathin
sitself then there should be an ORG statement here at the head of the file.
1The value for the ORG 1s that given by the installing progras in the line
3 User Fatch Area starts at #$XXXX

}50 assuming the #XxXX was #2438 the statement should be

' ORG #2438

iNote that the value gaven 1s adjusted for the initisl length bvte

3

LENGTH DEFP FINISH-START
$The first bvte of the file must be the total length
jof the patch-file excluding i1tself (255 saxiaum).

START
JR CLEAR_SCREEN
1Jump relative to the routine to clear the screen

JR CURSOR_POSITION
jJump relative to the routine to position the cursor

DEFS 2
;The vector to your lead-in routine would 9o here, but in this example
thone is required. The two bytes should be filled however.

DEFS 2
1A lead-ocut routine i1s not used i1n this exasple. See above.

sThe file should start with four two-byte areas that are onthar vectors

$to the routines concerned or uninitialised space (DEFS 2). The way EDBO
sand MONBC uses the vectors is siaply to CALL the requisite location

j1e.. where the vector to the routine i1s positioned. I+¥+ the user has
jspecified 1n the installing program that a certain patch 1s not required
Jthen the vector will never be called. Common sense say be used; as an
jexample, if the only patch required was to clear the screen, then the patch
;file need onlv contain the length bvte followed by the routine itself as
jthe vectors for CURSOR_POSITION, LEAD_IN and LEAD_OUT are never called.

ED80 v1.0 E-31

CLEAR_SCREEN

1This routine must clear the whole screen, but need not adjust the
jcursor position, or do anything else normally associated with a
jscreen-clearing routine. It takes no parameters and may corrupt all
jregisters except IX. Use of 1Y and the alternate register set is not
jadvisable as the BIOS of some machines corrupt these.

CALL #F060 sThis is an example

LD HL,#FFCB jof a possible screen

SET 3, (HL) jclearing routine. Note that

RET it should finish with a simple RET

CURSOR_POSITION
;Thas routine must set the cursor position on the screen.
sThe routine takes two parameters, the column and the row thus:-

tE holds the desired row + offset for row
3C holds the desired column + offset for column

s The routine may corrupt all registere sxcept IX. Use of 1Y and the
jalternate set i1s not advisable for the reason given above.

LD AE

LD (NFFDO) A 1An example routine

Lb A,C sto position the cursor

LD (#FFD2) ;A ;Note that the

PUSH 1IXx jroutine saves the IX

CALL #FO076 jregister which is

POFP IX jdestroyed by the CALL

RET jand then does a simple RET

sLead-1n and }lead-out are not required in this example. Code need
jnot, of course, be included. The only requirement is that there be
jtwo bytes where the vector ought to be. See above

$NE the code for the lead-i1n and lead-out may corrupt all registers
jand should end with a simple RET

FINISH EQU s

E-32 ED80 v1.0

The questions we are asked most often

Here are the answers to the questions we get asked most frequently - if you get
stuck read this:

Q. Why do I get error 3 (undeclared identifier) when I use one of SIN, COS,
TAN, ARCTAN, EXP, LN, RANDOM, RANSEED or FRAC ?
A. You haven'’t used the command line option T. See Page P-3.

Q. Why do [get BDOS ERROR ON A: R/07?
A. You're using CPIM 2 and have changed discs without typing {CTRL] C at
the A> prompt.

Q. My program looks O.K. but the compiler doesn't generate a .COM file and
finishes with the error '‘No more text'.

A. The last line of your program needs to finish with 'END." and a newline. Like
many CPIM programs (e.g. Digitial Research’s SUBMIT, RMAC) Pascal80
must have a CRILF before the end of file. You should edit your program; go to
the end of text (with [CTRL] Q [CTRL] C) and type ENTER.

Q. When I load ED80 I get rubbish on the screen as well as the text. How do I
make it look alright?

A. ED80 isn'’t installed for your screen. Run the ED80 install program as
described in the ED80 manual Page E-9 and change the screen codes. If you
don't know the screen codes, look in the documentation that came with your
computer. If this doesn’t help contact your dealer or the computer’s

manufacturer.

Q. I seem to have installed ED80 OK but if the cursor is on the bottom line
and I do cursor down, then the display gets messed up.

A It sounds as if you have the number of lines on the screen installed
incorrectly; check this carefully.

	pag 001
	pag 002
	pag 003
	pag 004
	pag 005
	pag 006
	pag 007
	pag 008
	pag 009
	pag 010
	pag 011
	pag 012
	pag 013
	pag 014
	pag 015
	pag 016
	pag 017
	pag 018
	pag 019
	pag 020
	pag 021
	pag 022
	pag 023
	pag 024
	pag 025
	pag 026
	pag 027
	pag 028
	pag 029
	pag 030
	pag 031
	pag 032
	pag 033
	pag 034
	pag 035
	pag 036
	pag 037
	pag 038
	pag 039
	pag 040
	pag 041
	pag 042
	pag 043
	pag 044
	pag 045
	pag 046
	pag 047
	pag 048
	pag 049
	pag 050
	pag 051
	pag 052
	pag 053
	pag 054
	pag 055
	pag 056
	pag 057
	pag 058
	pag 059
	pag 060
	pag 061
	pag 062
	pag 063
	pag 064
	pag 065
	pag 066
	pag 067
	pag 068
	pag 069
	pag 070
	pag 071
	pag 072
	pag 073
	pag 074
	pag 075
	pag 076
	pag 077
	pag 078
	pag 079
	pag 080
	pag 081
	pag 082
	pag 083
	pag 084
	pag 085
	pag 086
	pag 087
	pag 088
	pag 089
	pag 090
	pag 091
	pag 092
	pag 093
	pag 094
	pag 095
	pag 096
	pag 097
	pag 098
	pag 099
	pag 100
	pag 101
	pag 102
	pag 103
	pag 104
	pag 105
	pag 106
	pag 107
	pag 108
	pag 109
	pag 110
	pag 111
	pag 112
	pag 113
	pag 114
	pag 115
	pag 116
	pag 117
	pag 118
	pag 119
	pag 120
	pag 121
	pag 122
	pag 123
	pag 124
	pag 125
	pag 126
	pag 127
	pag 128
	pag 129
	pag 130
	pag 131
	pag 132
	pag 133
	pag 134
	pag 135
	pag 136
	pag 137
	pag 138
	pag 139
	pag 140
	pag 141
	pag 142
	pag 143
	pag 144
	pag 145
	pag 146
	pag 147
	pag 148
	pag 149
	pag 150
	pag 151
	pag 152
	pag 153
	pag 154
	pag 155
	pag 156
	pag 157
	pag 158
	pag 159
	pag 160
	pag 161
	pag 162
	pag 163
	pag 164
	pag 165
	pag 166
	pag 167
	pag 168
	pag 169

