AMSTRAD
BASIC

a tutorial guide

AMSTRAD
BASIC

a tutorial guide

* Part 1
FIRST STEPS

Copyright © 1984 Amstrad Consumer Electronics plc

All rights reserved
First edition 1984

Reproduction or translation of any part of this work or the cassette computer
program tapes that accompany this publication without permission of the copyright
owner is unlawful.

Amstrad Consumer Electronics plc
Brentwood House

169 Kings Road

Brentwood

Essex

Amstrad BASIC
A Tutorial Guide
Part 1: First Steps

SOFT111 ISBN 1 85084 000 8
m Programming by Dave Atherton
m Written by Dave Collier and George Tappenden
® Production by Peter Hill and Ray Smith
a

Printed in England by Horwood Printers

CONTENTS

Preface

Chapter 1

What it’s all about
BASIC 8
How to use this book 9

Chapter 2
Setting up and getting
downtoit
HELLO 12
Game number 1 15
Testing 15

Chapter 3
Using the keyboard

Main keyboard: character keys 17

Main keyboard: control keys 17
Numeric keypad 20

Cursor 20

Datacorder controls 21

Practical work 22

Game number 2 24

Testing 24

10

16

Chapter 4
Putting things in their place
Coordinates 27
A la mode 28
In position again 29
Game number 3 30
Testing 30

Chapter 5

Drawing a picture
A square program 33
Changing colour 35
Housing 36
Testing 39

Chapter 6
Numbers, letters and words
Letting 40 ‘
Strings and things 42
What'’s in a name? 43
Savings 44
More printing 45
Barchart 46
Game number 4 49
Testing 49

26

32

Chapter 7

Getting it right
Changing lines 50
Editing 51
To let 52
Branch lines 53
What happens next? 53
Going places 55
Bug hunting 55
Renovation 57
Testing 61

Chapter 8

House improvements
Looping 62

Relativity 64

Doing the windows 65
Finishing off 70
Exercises 70

Testing 71

Chapter 9

Program design
Working from objectives 73
Program for robot postman 74
Exercises 76
Building blocks 77
Routine work 80
Documentation 81

50

62

72

Chapter 10
Sounds fantastic
Tuning up 83
Sounds BASIC 84
Noisy sounds 86
Exercises 87
Playtime 87
Testing 91

Chapter 11

Number crunching
BASIC Arithmetic 92
Elementary logic 95
String logic 96
Homes and gardens 97
Testing 101

Chapter 12

Playing games
Random events 102
Time out 103
BLACKJACK 104
Simple Simon 108
Testing 112

List of keywords

List of programs

Iindex

92

102

113

115

116

PREFACE

This is Part 1 of a self-study course on
programming in BASIC using the Amstrad
CPC 464 Colour Personal Computer. Thetwo
datacassettes that accompany this written text
contain computer programs which are an
integral part of the course.

Datacassette A contains:

B Programs to help explain the principles of
simple and entertaining programming

® Games for your amusement and to help
you get used to using a computer

Datacassette B contains:

m Self-assessment tests to make sure you
have understood the concepts described
in each chapter

Further and more advanced programming
principles are covered in Part 2 of this course,
More BASIC.

WHAT IT’S ALL ABOUT

If you are reading these words you are almost
certainly the proud owner of an Amstrad
CPC 464 Microcomputer. lts superb display
and excellent sound quality will have already

opened up an exciting new world of fun and

excitement for you. Also you will have
realised that to do more than run standard
games and programs, you need to learn the
CPC 464’s language - BASIC.

BASIC

BASIC is the world’s most popular computer
language. It is also the ideal language for the
beginner since it is possible to write your first
program after only a few hours of study. The
satisfaction to be gained from this is
enormous for, make no mistake,
programming is fun. It can even become a
hobby in itself.

So, what is programming? Well, you have to
remember that a computer can do many
things but it can’t think. You have to do its
thinking for it. This thinking - that is, working
out what needs to be done to achieve an end -
is.in the form of aseries of instructions known

‘as a program. Fed into a computer, a program

can make it become, for example, an arcade
game, or a word processor, or a machine that
looks after your accounts.

You will probably find that programs written
specially for the CPC 464 will not work
unchanged on other computers. This is
because the Amstrad. BASIC used by the
CPC 464 contains many unique commands
and functions not available on less
sophisticated equipment.

BASIC has its own vocabulary, the same as any
other language. This vocabulary is made up of
‘keywords’ and you are about to learn what
these keywords are, and what they mean to
the CPC 464. Each time a new keyword is
described in this manual it is printed in the
outside margin so that you can easily flip back
through the book to refresh your memory on
individual keywords.

How to use this book

Each chapter of this book represents about
one or two evenings’ work. Typically it will
contain:

B Written explanation
B Practical work on the computer
® Examples for you to program yourself

There are exercises to reinforce what you
have learned, and there is a programmed self-
assessment test to go with each chapter.

Don’t skip chapters. New information is
introduced progressively through the book
and is built on to the knowledge obtained
from previous chapters. If you think a chapter
or a section of a' chapter looks a bit com-
plicated, just read it quickly once or twice and
then work through it slowly. Make sure that
you understand by means of the self-
assessment tests.

After completing this part of the course you
should be able to write simple, reliable
programs for your own purposes. Part 2 of this
course, More BASIC, explains the more
advanced features of Amstrad BASIC and will
teach you how to write rather more compli-
cated programs.

10

SETTING UP AND GETTING
DOWN TO IT

Firstly you have to unpack your CPC 464. If
you have already done this you can skip the
next few paragraphs.

When you open the boxes they should

“contain the following items:

CPC 464 Colour Personal Computer

GT 64 Monitor, CTM 640 Colour Monitor
'MP1 Modulator/Power supply (optional)
Amstrad CPC 464 User Guide
Demonstration cassette

Find a reasonably large desk or table in a quiet
part of the house and place the CPC 464 and
its monitor (or MP1Modulator/Power Supply

“and domestic TV receiver) on it. Carefully

insert the two leads from the front of the
monitor or MP1 into their sockets in the back
of the CPC 464 (see diagram). Do not plug the
monitor or MP1 into the 13-amp mains yet.
Make sure that the plugs are fully in place in
the back of the CPC 464 but do not use too
much force. Plugs and sockets can be
damaged by constant plugging in and out so,

if possible, try to find a permanent home for
your CPC 464 - at least for the duration of this
course.

If you are using a domestic TV receiver with
your CPC 464, make sure that you have two
13-amp sockets available, or use a double
adaptor so that you can plug in the TV and the
MP1 at the same time. Then connect the co-
axial lead from the MP1 into the aerial socket
of the TV and tune the TV to channel 36.

Find yourself a nice comfortable chair tositon
and then arrange the monitor or TV so that it is
1 metre (about three feet) from your nose -
working with your face too close to a screen
can be very tiring and may cause eye strain.

Place this book in such a position that you can
easily read it while using the keyboard and
still be able to watch the screen. It is also a
good idea to put the Amstrad CPC 464 User
Guide somewhere within easy reach.

Then plug into the mains and switch on. You
should get the following words on the screen:

Amstrad 64K Microcomputer (vl)

© 1984 Amstrad Consumer Electronics plc
and Locomotive Software Ltd.

BASIC 1.9

Ready
]

If you don’t see this (yellow characters on a
blue background if you have a CTM 640
Colour Monitor or a colour TV) turn off and
try again or, if you are using a TV, check that it
is properly tuned to channel 36. If you still
have difficulty, check if the ON indicator of

- _J

11

12

the CPC 464 is showing red. If not, verify that:
® The CPC 464’s ON/OFF switch is ON

® There is no general power failure

® The power lead is firmly plugged into the
CPC 464

® The fuse in the 13-amp plug is intact

If all these tests fail, contact your dealer for
further advice.

HELLO

Once you have the ‘welcome’ onyourscreen,
we can start getting down to it. ‘Ready’ means
that the computer is ready for you to enter
commands or a program. The square blob is
known as the ‘cursor’, and shows you where
the next thing you type on the keyboard will

‘be placed.

So away we go. Put the cassette, First steps in
BASIC - Datacassette A, into the datacorder
and type the following on the keyboard:

To type ”’ you have to hold down one of the
keys marked SHIFT, on either side of the
lower row of letters of the keyboard, while
you press the key marked ” (itis over the ‘2’ on
the left-hand side of the top row). Pressing the
ENTER key signals to the CPC 464 that you
have finished typing and that you expect it to
do something. If you have typed the
command correctly the CPC 464 will reply by
adding another line to the message on the
screen:

(.)

© 1984 Amstrad Consumer Electronics plc
and Locomotive Software Ltd.

strad 64K Microcomputer (vl)

BASIC 1.¢

Ready
run"

Press PLAY then any key: B

— _

Make sure that the tape is at the beginning by
pressing REW on the datacorder, and then
follow the instructions. Push down PLAY and
then press the ENTER key. You will hear a
high-pitched sound from the built-in loud-
speaker as the first program is read into the
CPC 464. ’

If you make a mistake while typing in (and
before you press ENTER) use the

key. This is the DELete key, which backspaces
and deletes the last character you typed. You
can then retype the letter you got wrong.

If you have made a mistake and then pressed
ENTER, don’t worry. The CPC 464 will merely
put another line on the screen asshownin the

following example:

© 1984 Amstrad Consumer Electronics plc
and Locomotive Software Ltd.

Amstrad 64K Microcomputer {vl)

BASIC 1.9

Ready

rumll

Syntax error
Ready

L

\— _

If you get this message you will just have to
start all over again and retype the line.

14

All being well (and if you have typed in the
command correctly), the following message
will appear briefly on the screen:

—

Amstrad 64K Microcomputer (vl)

© 1984 Amstrad Consumer Electronics plc
and Locomotive Software Ltd.

BASIC 1.¢

Ready

run”

Press PLAY then any key:
Loading HELLO block 1

— _J

This message will be followed almost
immediately by the HELLO program, which
will give you a friendly welcome to the world
of computers.

When you have seen the HELLO program
several times through, look at the top left
corner of the keyboard and you will see a red
key. This is the ESCape key. Press it twice:

ESC ESC

The CPC 464 will reply with amessage such as
the following::

Break in 14¢
Ready

The number need not be 140. And it doesn’t
mean that either you or the CPC 464 should
take time off for the next 140 seconds,
minutes, hours, or days. Nor are you expected
to smash your way into house number 140 in
your street. Whatever the number is, ignore
it. We’ll learn about line numbers later on. In
any case, you will have stopped the HELLO
program from running and are now ready to
tackle the rest of this chapter.

Incidentally, note that the CPC 464 insists that
there is a difference between 0 (nothing or
zero) and O (oh, as in ‘hello’) by putting a
diagonal line through it when it is not the
alphabetic character.

Game number 1

Let’s play a game. Computer games may not
strike everyone as the best way to spend their
time and money, but there is a lot more to
them than meets the eye. Firstly you soon
become familiar with the machine without
the tedium of formal exercises, and secondly
games can make you realise that computers
are fun.

We’ll do something different this time. Type
into the CPC 464 the following line:

load"simon" YRR3R

Don't forget to hold down the SHIFT key to
type the quotation marks (). The CPC 464
will answer with the following message:

Press PLAY then any key:

Follow the instructions again. Push down
PLAY on the datacorder and then press the
ENTER key on the main keyboard. If you
typed the name in correctly and allis well, the
CPC 464 will start running the cassette in the
datacorder and loading a program called
SIMON. Programs always have names so that
you can find them when you want them. This
time the program will only be fetched into the
CPC 464’s memory and it will do nothing
until you tell it to.

The CPC 464 will give the message:
Loading SIMON block 1
changing to:

Loading SIMON block 2

Don’t worry about what this means. After the
cassette has stopped in the datacorder, a
further message will be given:

Ready

This is when you have to instruct the CPC 464
what to do with the program it now has in
memory. You type:

Have fun.

Testing

When you are tired of playing SIMON, stop it
by pressing the ESCape key twice as explained
above. Your first test is to try the same
procedure that you used for SIMON to load
the first of our Self-assessment Tests, SAT2,
from Datacassette B. When you run this
program it will ask you questions about this
chapter so you can see if you need to go back
over anything. :

15

USING THE KEYBOARD

We said earlier that you have to learn the The CPC 464 has five separate groups of keys:
BASIC language to communicate with the
CPC 464. As you will have realised, you tell the
CPC 464 what to do by typing words and
numbers on the keyboard. This chapter is all
about just that - getting to know the positions
of keys and learning how to press the right
ones at the right time.

Character keys
Control keys
Numeric keypad
Cursor keys

Datacorder controls

OO oI g0 o0 oo oo oo oo oo o oo o oo

1 I—TI
' []
A"S“IMI 64k COLOUR PERSONAL COMPUTER CPC464 B3 cooun <+ [coPY] —

! " # | $ % & [() - f = £ i
lal2)sjalsielzislolo] =]t forr] ox . o[o
TABQ[WERTYUIO]P@I: ~f718]9

- e ENTER
S lals]lolrlalu]ox]]tlt]a alsls
SWET 1 ZIXJClVIBINIM[T]ZE2]N] swer 11213
CTAL .
° M REC IPLAV REWl F.F. | SEO% leaust

Main keyboard: character keys

You have already been using these. If you
have ever used a typewriter you will need no
further explanation. This part of the keyboard
comprises letters, numbers, a lot of
punctuation marks known as ‘special

characters’, and a ‘space’ bar for putting in
blanks. If you hold any of these keys down

~for more than about half a second, it will

repeat as though you had pressed it againand
go on repeating until you take your finger off.

17

18

Main keyboard: control keys

ESC stands for ESCape. If you press it while a
program is running, it will stop the CPC 464in
its tracks, but you may restart the program by
pressing any other key on the keyboard.
Pressing ESC a second time will bring the CPC
464 back to the READY condition.

TAB

If you press the TAB key you will see a right-

facing arrow on the screer.. This key will not
be used in this part of the course, and its use
will be fully explained in Part 2.

SHIFT changes the symbols produced when
you press character keys. Holding down
SHIFT will give you the capital letters on the
letter keys and the upper symbols on the
number and special character keys.

CAPS
LOCK

Pressing CAPS LOCK gives you capitals on the
letter keys until you press it again. It has the
same effect as holding your finger on the
SHIFT key except that you still get the lower
symbols on the number and special character
keys.

CLR

CLR (for CLeaR) is rather similar to the DEL
key. It deletes a character, but not the one to
the left of the cursor as the DEL key does; it
‘eats’ the character under the cursor, without
moving position, and everything to the right
of the cursor moves up one place to the left.

DEL

You may remember the DEL key from the
previous chapter.. When you are typing in
lines, pressing the DEL key DELetes the
character to the left of the cursor, and then
backspaces the cursor to-take its place.

The ENTER key is something like the carriage
return key on an electric typewriter. You have
to press it at the end of every line you type
into the CPC 464 to let it know that you have
finished. Normally, the cursor will be taken
from the end of the last word or number
typed and put at the beginning of the next
line down. Sometimes the CPC 464 will also
say:

Syntax error

This is BASIC for ‘l don’t understand’ and is
known as an ‘error message’. We will see
more of these later in the course.

This stands for ConTRolL. Holding down CTRL
will give you yet another set of symbols on the
letter keys and some of the number keys, in
addition to those inscribed on the key tops.
When used with other control keys, this key
also instructs the CPC 464 to do certain things
- we will see what they are later on.

19

20

Numeric keypad

These keys are arranged conveniently for
typing in lots of numbers. Apart from the
extra ENTER key they are identical to the
number keys on the top row of the main
keyboard except that, unless they are
specially programmed, they are not affected
by SHIFT or CTRL. This special programming
will not be described in this part of the course,
but later in this chapter you will see how this
ENTER key can have an extra function.

Cursor

The ‘arrow’ keys are used to move the cursor
around the screen in the appropriate direc-
tions. The COPY key will be described later on
in this course.

STOP
oo e | oo feRbpes

Datacorder controls

There is only one difference between these
keys and the controls on an audio cassette
recorder. After the PLAY (or PLAY and REC)
keys have been depressed, the datacorder

will not operate until it has been instructed to
by the CPC 464.

21

22

Practical work

Check that the cassette is properly inserted in
the datacorder. If yous still have the remains of
SAT2 all over the screen from your work on
the previous chapter, you can get rid of it by
typing the following line:

This means CLear Screen and, as you will see,
it does just that. Try it. No matter what you
were doing before, the result will be as
follows:

-)

" _

Magical, isn’t it? Now we can run the next

program. Type the following line:

run "letters" EAVRAAL

Now you can just press keys on the keyboard
and see what happens. Try pressing more than
one key at a time.

While using this program you can see many of
the characters that can be shown on the
screen but are not marked on the keytops.
This is done by holding down the CTRL key at
the same time as you press the letter and
number keys, although not all the keys have
‘hidden’ characters.

Once you have started running a computer
program it will go on running until it reaches
the end. Or, if it is designed to repeat itself
continually, like LETTERS, you have to stop it.
You saw above that pressing the ESC key twice
will do the trick. Another way of doing it is to
‘force a restart’. This has the same effect as
turning the power off for a few seconds and
then turning it on again. This is how you doit.
Hold down

and press

ESC

As you will see, the CPC 464 goes back to the
‘welcome’ screen you saw when you turned
power on. From now on we will refer to this as
CTRL/SHIFT/ESC.

Warning When you do this the CPC will
‘forget’ any program it had in memory.

All right so far? The next program is a very
simple one but we shall now learn a novel way
to RUN it. Hold down

Press

on the numeric keypad (not the big ENTER
key this time).

The CPC 464 will reply exactly as if you had
typed in a whole line of instruction. Do you
recognise it? You will remember that we said
earlier that this ENTER key had an additional
function!

REPEAT NAME (the program you just loaded)
won’t keep you amused for very long so use
CTRL/SHIFT/ESC to reset the CPC 464, and
then load and run the next program:
KEYBOARD.

KEYBOARD is a training program to get you

used to the keys on the CPC 464. Once you
have spent a little time on it you will begin to
remember where things are. It is probably
worth coming back to this program from time
to time to improve your typing speed.

23

24

Game number 2

You must have played this one as a paper
game. It’s called HANGMAN. You now know
several ways to load and run programs but,
just to make sure, here is one of them again:

run "hangman" ESNRESR

Testing

Before going on to the next chapter, load and
run SAT3.

25

26

PUTTING THINGS IN

THEIR PLACE

You will have seen from the demonstration
cassette and the previous programs in this
course that the CPC 464 has superb graphics.
In this chapter we are going to make astarton
what you need to know to draw the
appropriate lines and shapes on the screen for
your own designs.

The CPC 464 displays all characters and
graphics in a ‘window’ on the monitorscreen.
The sides, top and bottom are known as the
border, and are never used. You can change
the colour of this border though. Enter the
following:

border ¢ EAVRES:

Black, isn’t it? Now try:

border 26 FANhga:]

The opposite extreme. Now you can amuse
yourself by trying all the numbers in between.

If you have already read the User Guide, you
will know that the CPC 464 has a range of 27
colours to choose from. Even if you don’t
have a CTM 640 Colour Monitor, or a colour
TV, going through the numbers in this way
will not be a waste of time since the ascending
number order corresponds to the equivalent
grey scale in black and white.

Coordinates

Every line, shape, or character you see on the
screen is made up of a number of tiny dots.
The position of each tiny dot is described by
its ‘x” and ‘y’ coordinates.

|
1
I
|
|
I
|
i
|
I
I
I
I
o —— e =

0w X

The horizontal position is given by ‘x” and the
vertical position by ‘y’.

Run the next program. It’s called DRAW. You
can draw straight lines on the screen by
holding down the TAB key at the same time
as you press one of the cursor keys. If you
want to move position without drawing, you
just press the cursor keys. You can speed
things up by holding down a SHIFT key at the
same time.

As you can see, the program gives you the ‘x’
and ‘y’ coordinates for the current position of
the cursor. If you keep the cursor going
upwards it will eventually disappear from the
window. Note the value of the ‘y’ coordinate
where this happens. Do the same thing for the
‘x’ coordinate. You will now have discovered
that the CPC 464 has a graphics screen 400
points high by 640 points wide.

Try drawing a square in a particular position
on the screen. The following is an example:

Put a square 50 x 50 on the screen with its
bottom left-hand corner at x = 300, y = 150.

First, move the cursor in the ‘x’ direction until
it reads 300. Then move the cursor in the ‘y’
direction until it reads 150. If the square is
50 x 50, we have to draw a line from this point
to x = 300 + 50 = 350. Draw this line. If you go

too far you can ‘eat’ the line by making the

cursor go in the other direction until the ‘x’
count is correct. The count will now be:
x=35¢ y=15@

Now draw a vertical line until y =150+ 50=200.
Then draw to x = 350 - 50 = 300. And finally y =
200 - 50 = 150, and we are back where we
started.

Don’t worry if it doesn’t come out exactly
right - it’s the principle that counts.

27

28

A la mode

Before we continue with coordinates, let’s
explore another thing about the screen
display.

When you first switch the CPC 464 on, the
‘welcome’ comes up in characters about
twice the size of those on this page. You will
have noticed, however, that some of the
programs use larger characters. There are, in
fact, three sizes of character and they are
selected by the keyword MODE.

Try it out. Get the ‘welcome’ back on your
screen by forcing arestart (CTRL/SHIFT/ESC -
remember?), and then type in:

mode @ QRN

You can see that the characters are now twice
as wide as they were before. Now enter:

mode 1 F RN :

We are now back to the size of characters we
started with. Now try:

mode 2 EAVRRAL

And we have characters half the previous
width. So there are three modes, namely:

B Mode 0 - 20 characters per line
® Mode 1 - 40 characters per line
® Mode 2 - 80 characters per line
Note that only the width changes and that

there are still 25 lines of characters possible on
the screen at any one time.

The keyword MODE also affects the screen
graphics. But in the case of graphics we don't
talk about characters but ‘pixels’.

A pixel is the smallest size of dot you can draw
on the screen. We saw that the graphics
screen is 640 points by 400 points, but the
width of the pixel is different for each mode:
® Mode 0 - 4 points wide
® Mode 1 - 2 points wide
B Mode 2 - 1 point wide

Pixel height is always two points and does not
vary with the mode.

In position again

So, back to coordinates. Later on we will see
how to position text and numbers on the
screen, but for the moment we will
concentrate on graphics. The next program is
called COORGEOM, but before we load it
here is a very useful keyword, CAT.

CAT is short for catalogue, and is used to find
what programs are on a datacassette. Wind
the datacassette back to the beginning by
pressing the REW key and then enter:

The CPC 464 will respond by giving the
message:

Press PLAY and then any key [}

It is just as if you had given a LOAD or RUN
command except that, instead of loading a
program, the CPC 464 will put a ‘found’
message on the screen such as:

DRAW block 1 $

Programs are always stored on cassette in
blocks of 2,000 characters. Long programs
may comprise many blocks stored individu-
ally. The CPC 464 not only puts a message on
the screen for each block in turn, but also

checks that there are no recording errors and
will then put ‘OK’ at the end of the line.

If you ask the CPC 464 to load a program by
name, you will also get ‘found’ messages for
the other programs before it on the tape, but
no checking is carried out.

Anyway, by now you should have found
COORGEOM, so load up and away you go.

29

30

Game number 3 - BOMBER

This is the one you’ve been waiting for! The
chance to zap an extraterrestrial spacecraft.
Feed the coordinates into your robot bomber
and deliver the plutonium bomb right on
target - or perish!

Testing

If you survived that gruelling battle, check
your progress by running SAT4 before going
on to the next chapter.

31

32

DRAWING A PICTURE

The PLOT keyword is going to be the first
BASIC ‘Command’ we are going to look atin
detail. Up to now you have been entering
things like RUN and BORDER without
realising that they are commands or that they
have to follow a precise set of rules.

To create commands you often have to add
‘arguments’ to the keyword to provide the
details of the operation to be performed. In
the case of PLOT the arguments give the
desired position on the screen as specified by
the x, y coordinates. For example, enter the
following:

plot 319,199 Vg3

You will now have a yellow dot of 1 pixel
almost exactly in the middle of the screen.

If you have trouble remembering which is x
and which is y, don’t forget that you have to go
in through the door of ahouse before you can
climb the stairs, i.e. left-right before up-
down. After the PLOT command has been
executed, the CPC 464 leaves the graphics

cursor at those x, y coordinates until told
otherwise.

Here we go with another graphics command:
drav 9,9 E3XREA3

The DRAW command has an identical
structure to PLOT, except that the arguments
give the point to which the line must be
drawn - specified, of course, by the x, y
coordinates. The diagonal line you will now
have on the screen starts at the centre (x=319,
y = 199) and goes down to the bottom left-
hand corner (x=0,y=0). Now try drawing the
same square that we tried in the previous
chapter. Here are the commands:

move 30%,15¢ Ea\RLEH3]
draw 35¢,15¢0 E3\REA:
draw 350,209 RIANRLA:]

draw 3¢0,2¢¢ RVRE3

draw 3¢¢,15¢ EZRLA:

The MOVE command puts the graphics
cursor at the x, y coordinates specified in its
arguments, without putting anything on the
screen.

A square program

Until now we have been entering commands
for direct execution by the CPC 464. Now we
shall learn about entering and storing a
program for later execution. Before we do
this we have to clean out the CPC 464 by
entering the following:

This has the same effect on the CPC 464’s
memory as a wet cloth on a blackboard.
Although the screen is not cleared, NEW
erases any program that had previously been
loaded or entered. Only use this command
when you are sure that no harm will come of
it!

So, here we go with our first stored program.
It is the same square again. only this time we
have added line numbers:

19 clg
2¢ move
39 draw
4@ draw

5¢ draw 3¢@, 200
6@ draw 3¢@, 159

Line 10 is another new command for you.
Whereas the CLS command clears the screen
and puts the text cursor at the top left corner,

300,150
35¢,15¢
35¢, 200

34

the CLG command also clears the screen but
then puts the graphics cursor at the bottom
left corner (x =0, y=0). These two commands
may puzzle you a little since they are
apparently very similar. In Part 2, however,
you will learn to handle text and graphics on
the screen at the same time and their
usefulness will become apparent.

Enter the six lines of this program exactly as
shown, and press ENTER at the end of each
line. From now on in this course, you must
remember to press the ENTER key at the end
of each line.

These line numbers are necessary so that you
can indicate to the CPC 464 in which order
you want the commands to be stored. Unless
told otherwise it will also execute the
commands in this order. The line numbers go
up in tens so thatextra lines can be slotted in if
necessary. It doesn’t matter in which order
you enter the lines. In fact, if you make a
mistake in one of the lines and don’t notice it
until after pressing the ENTER key, you can
replace the incorrect line in memory by
simply re-entering the line.

When you are satisfied that all is well, RUN the
program by entering:

Pretty, isn’t it? The CPC 464 stored your
program in memory and only executed it
when you gave it the RUN command. And it’s
still there. You can look at it by entering:

list EAVRESS

Changing colour

The three graphics commands we have just
learned have an optional extra argument, the
INK. Try re-entering line 50 of the square
program as follows:

5¢ draw 3¢9, 2¢¢,3

When you run the program this time, the left-
hand side and top of the square will be drawn
in red. This is because the ‘3’ we added
indicated that the DRAW command should
be executed using INK number 3. The
CPC 464 will then continue to use this INK
until told to change. The range of different
INKs that can be specified in DRAW
commands depends on the mode being used.

The maximum number of different INKs
which can be used for each mode are as
follows:

® Mode 0 - 16 INKs

® Mode 1 -4 INKs

® Mode 2 - 2 INKs

Now try entering the following:
ink 3,0 3 RIS

You will immediately see the red line change
to black. Do the same thing as we did with
BORDER in the previous chapter and try some
other colours for INK number 3. You could
also try changing INKs 0, 1 and 2 as well.

35

00

agd

36

The next program on Datacassette A is called
HOUSE. It uses all the commands we have
learned so far plus two more. The first one is
REM for REMark. When the CPC 464 comes
across REM, it ignores the rest of the line. This
allows you to put comments and explanations
into programs so that other people (or your-
self, if you have forgotten after a period of
time) can understand what the program is all
about.

The other new command is PAPER, which
enables you to specify the background colour
of the screen window. The argument for
PAPER must be the number of one of the INKs
specified for the current mode. If you
changed INK 0 when suggested above you
will have seen that this was the one
automatically selected for the PAPER when
the CPC 464 was first switched on.

Before running the program, study the
following program listing.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
250
230
240
250
260

REM Drawing a house

MODE ©

CLS

REM *% start *#*
BORDER 12
INK O, 12:REM yellow

INK 1,

F*REM red

INK 2,6:REM bright red
INK 3,9:REM green
PAPER O

REM draw front

MOVE
DRAW
DRAW
DRAW
DRAW

100, 50
100, 250, 1
400, 250
400, 50
100, 50

REM draw side

MOVE
DRAW
DRAW
DRAW
DRAW

400, 250
600, 250
600, 50
400, 50
400, 250

REM draw gable
REM already at
REM so0 no need

DRAW

500, 350

end
start point
for a MOVE

(Continued)

37

38

270
280
290
300
310
320
330
340
350
360
370
380
330
400
410
420
430
4490
4350
460
470
480
490
00
310
520

DRAW 600, 250

DRAW 400, 250

REM draw roof

REM only two lines needed
MOVE 100, 250

DRAW 200, 3350

DRAW S00, 350

REM draw door

MOVE 225, 50

DRAW 225, 140,2
DRAW 2795, 140

DRAW 275, 50

REM draw windows
REM left hand bottom
MOVE 120,70

DRAW 120,130, 3
DRAW 180, 130

DRAW 180,70

DRAW 120,70

REM left hand top
MOVE 120,170

DRAW 120, 230

DRAW 180, 230

DRAW 180,170

DRAW 120,170

REM right hand top

(Continued)

930
340
S50
560
570
80
390
600
610
620
&30

MOVE
DRAW
DRAW
DRAW
DRAW

REM right hand bottom

MOVE
DRAW
DRAW
DRAW
DRAW

320,170
320, 230
%80, 230
%80, 170
320,170

320,70
320, 130
380, 130
380,70
320,70

Testing

You may like to go over this chapter again
before running SAT5. We have covered quite
a lot of ground in a short time but are now
getting down to real programming.

39

40

L

{_“
N

NUMBERS, LETTERS AND

WORDS

It's about time we learned some of the
keywords connected with putting numbers
and words on the screen. The first one is
PRINT. Try typing this on the keyboard:

print 2+2 B RIA3

As you will have guessed, the answer is put on
the next line of the screen and is, of course, 4.
Now try this:

print "Hello" E3\Rgd;]

In this case we had to surround what we
wanted on the screen by double quotes. The
reason for this will become obvious later on.
In the meantime we will explore another
keyword.

Letting

Sometimes the world of computing seems to
be a very strange place indeed. BASIC
keywords are normal English words but they
can have special meanings for the CPC 464.
One of these is the keyword LET. In ordinary
algebra you can write:

Let x=5
You cannot, however, write the following:
Let x=x+5

This is perfectly acceptable in BASIC. It
means: ‘Take the previous value of x, add 5 to
it, and then take this number as the new value
of x.” But why x? Well, we have just come
across something called a variable - and for
very good reason.

Variables are like something out of Alice
Through the Looking Glass. They contain
anything you care to put in them. There is
nothing in BASIC that will stop you from

writing:
Let hundred = 87

If you don’t like ‘hundred’ you could use ‘h’
or ‘C’, since what we are talking about are
labels for empty boxes. When you use LET to
define a variable as shown above, the
CPC 464 writes the name on an empty box
and then puts into it the value given on the
right of the ‘=" sign.

Try typing this on your CPC 464

Let hundred = 87 R\ RE:

You will get the reply ‘Ready’. Then type:

print hundred FI\RESA:]

You will now have the following on your
screen:

(.

eady

let hundred=87
Ready

print hundred
87

Ready

[]

_ _

So, we are now at a point where we can enter
our second program. The following five lines
should be entered exactly as shown:

1¢ cls

20 let a=15
3@ let b=7
4@ let a=a+b
5¢ print a

Remember to press ENTER at the end of each
line. Now try running this program. You
should get the following result.

41

42

(..)

Ready

_ D

That may have seemed a bit obvious, but the
next one might not be:

19 let a=5
20 let b=lg@
39 let a=b
4@ let b=a

- 5@ print a+b

Try it for yourself. Can you see why the answer
is 207 It may help you to think about numbers
being moved from box to box. Remember
that it is the variable to the left of the ‘= sign
that is changed by putting a new value into it,
and that the CPC 464 is going to step through
the program one line after the other.

Strings and things

We have seen that we can define a variable for
numbers, and use it as if it were an actual
figure. BASIC also allows us to define
variables that may contain a series of letters,
numbers and special characters. These are
known as ‘strings’.

A string variable is exactly the same as an
ordinary variable except that you must end
the variable name with a ‘9’ sign. In addition
you must always put quotation marks (“) on
either side of the characters you wish it to
contain, otherwise the CPC 464 thinks you
are trying to tell it about some other variable.
Enter the following line:

let a$=Hello §VhEd:

You will get the error message:

Type mismatch

The CPC 464 thought that you were trying to
put into the string variable a$ the numerical
value of another variable called ‘hello’. What
you should have entered is:

let a$="Hello" Bz}

This time you can enter:

print a$ AR

Try it.

Now enter the following program. See if you
can work out what the results are going to be
before you run it.

1@ let a$="5"
20 let bg$="12"
30 let a=5

40 let b=12

50 let c=a+b
60 let c$=a$+b$
7@ print c

84 print c$

What's in a name?

You can use any name you like for a variable
except that the CPC 464 will object to the use
of any BASIC keyword. For example it will not
accept:

let save=s+p FA Vg

This gives a ‘syntax error’ message. You would

have to change this variable name to ‘savers’ -

or ‘savings’. There is a complete list of
keywords at the back of the CPC 464 User
Guide if you want to find out which ones to
avoid.

You have probably noticed that the CPC 464
doesn’t mind whether you enter commands
in either upper or lower case. But whatever
you do it will always show keywords in upper
case when a program is listed. If you keep all
your variable names in lower case it will make
them easier to pick out from a listing.

43

44

Savings

Until now, you have either been loading
programs from the two datacassettes supplied
with this course, or entering them on the
keyboard. Now is your chance to save the
above program for posterity, or, more to the
point, so that we can use it again in this
chapter and the next without having to enter
it all over again. Take the datacassette out of
the datacorder and replace it with a new one
which has not had the record tag knocked
out. Ordinary cassettes will do although
anything larger than a C60 should be avoided
because the tape is too thin. You should also
beware of the tape leader on ordinary
cassettes,

Rewind the cassette to the beginning and
enter the following:

save "variables" gt

You can choose a different name instead of
VARIABLES if you wish, with upper and lower
case letters and spaces in between words. You
must always, however, put quotation marks
on either side of the name. The CPC 464 will

reply:

Press REC and PLAY and then any key:

Follow the instructions. You will then get the
message:

Saving VARIABLES block 1

The CPC 464 will start the datacorder running
and you will hear your program being
transferred to the cassette. While the program
is being saved the cursor will disappear from
the screen, but will return when the CPC 464
has finished the operation and gives the
‘ready’ message. It is always good practice to
have two copies of a program in case of
accidents to the cassette, so repeat the above
to save the program a second time. Don’t
forget to release the REC key on the
datacorder afterwards.

More printing

If you have just run the program above, the
CPC will still have the variables in memory. if
not, load and run the program again so that
we can use the variables to investigate
another thing or two about the PRINT
command. Enter the following:

print a,b,c AN}

You can see that this puts the three numbers
up on the screen on the same line, but 13
character positions apart. It’s a nice easy way
of tabulating numbers but it only works for
modes 1 and 2. Try the same thing in mode 0
to find out why. If you don’t want the
numbers spaced out you can do the
following:

print a;b;c [RYRRT:

This time the numbers are printed on the
same line but with no spacing between them
at all, so we often have to add spaces as in the
following example:

print "The value of ¢ is ";c;" not

We can put letters and numbers anywhere we
like on the screen by means of the keyword
LOCATE. The command structure is:
locate x,y

This looks familiar, doesn’t it? Be warned
though. These x, y coordinates are not the
same as the graphic coordinates. LOCATE
moves the text cursor to the position on the
screen given by the arguments of the
command. Text coordinates start at the top
left-hand corner of the screen (which has the
coordinates x = 1, y = 1), and are counted
across and down the screen.

Enter the following:

75 locate 2¢,13 WV A3

Clear the screen with CLS. If you now run the
program again with this new line, you will see
that the value of c$ is printed in the middle of
the screen, starting at character position 20 in
line 13.

46

BARCHART

The name of the next program on the
datacassette is BARCHART. It gives you a
visual representation of four numbers
between 0 and 290 - the sort of thing you see
for election results or opinion polls. This type
of program has to wait at certain points for the
numbers to be entered into memory through
the keyboard before it can continue. The
keyword which does this is INPUT and a
typical command is as follows:

1¢ INPUT name$

The CPC 464 will wait patiently at line 10 until
something is typed in and the ENTER key
pressed. The information is then put into the
string variable ‘name$’ and processing
continues.

Now run BARCHART before studying the
listing below. You will see that the CPC 464
puts a question mark (?), followed by the
cursor, when it is waiting for input. It also puts
a ‘prompt’ to let the user know what sort of
information it is waiting for. You do this by
putting a message after the INPUT keyword as
follows:

INPUT "Amount (1-29¢)";a

The prompt message must be enclosed by
quotation marks (”’) and separated from the
variable by a semi-colon (;).

You can see that many of the lines in
BARCHART comprise several commands
separated by colons (:). These colons serve
the same purpose as starting a command with
a line number and finishing it with ENTER. Itis
a good way of keeping a series of related
commands together, particularly if they are
very short.

A very good use of the colon is:
5¢ b=5@:REM bar size

Putting a REM alongside a command to
explain its function makes the program easy
to read at a later date.

10
20
30
40
S0
&0
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

REM 3D Bar Chart
REM by Dave Atherton
MODE 1
BORDER 14:INK O,14:INK 1,0:INK 2,331INK 3,24
b=50:REM bar size
LOCATE 1,23:INPUT "Amount (1-290)":a
x=100:PLOT x,55,1
DRAW x-b*2, 55:DRAW x—b#*2, a+55
DRAW x-b, a+55+b:DRAW x+b, a+55+b

DRAW x, a+55:DRAW x—b*2, a+55

MOVE x+b, a+b+55:DRAW x+b, b+55

DRAW x,35:DRAW x,55+a

LOCATE 1,23

PRINT" "
LOCATE 1,23:INPUT "Amount (1-290)":a

=260:PLOT x,55,2

DRAW x~b*2, 55:DRAW x—b#*2, a+55

DRAW x—b, a+55+biDRAW x+b, a+55+b

DRAW x, a+55:DRAW x—b*2, a+55

MOVE x+b, a+b+35:DRAW x+b, b+55

DRAW x,355:DRAW x, 55+a

LOCATE 1,23

PRINT™® "
LOCATE 1,23:INPUT "Amount (1-290)":a
x=420:PLOT x,55,3

DRAW x—b*2, 55:DRAW x—b#*2, a+35

DRAW x-b, a+35+b:DRAW x+b, a+55+b)
(Continued)

47

48

280
290
300
310
320
330
340
3950
360
370
380
390

DRAW x, a+55:DRAW x—b*2, a+55

MOVE x+b, a+b+55:DRAW x+b, b+55

DRAW x,SS5:DRAW x, 55+a

LOCATE 1,23

PRINT" "
LOCATE 1,23:INPUT "Amount (1-290)":a
x=580:PLOT x, 55, 1

DRAW x—b#*2 S5:DRAW x-b*2, a+55

DRAW x—b, a+S55+b:DRAW x+b, a+55+b

DRAW x, a+55:DRAW x-b*2, a+55

MOVE x+b, a+b+55:DRAW x+b, b+55

DRAW x,S55:DRAW x, 55+a

Game number 4 Testing

Some people use a lot of clever-sounding Run SAT6 to see if you need to re-read any of

words - especially in the computer world. this chapter before going on to the next one.
Our automatic BUZZWORD generator will

help you to strike back at them.

49

50

GETTING IT RIGHT

A lot of this chapter is about corrections and
changes to programs. The program you
entered in the previous chapter will be ideal
for this purpose so rewind the cassette and get
the program back into memory by entering:

load "variables" R3\REH:]

‘Variables’ is the name you gave to the
program when you used SAVE to store it on
the datacassette.

Changing lines

When you are entering a program by typing
on the keyboard you are almost certain to
make mistakes, even if you are just copying
from a printed page. The most common
mistake is when you hit the wrong key. You
usually realise at once what you have done so,
before pressing the ENTER key, backspace
and rub out the offending characters by using
the DEL key.

While you are still entering aline (this is called
the ‘current’ line), you can move the cursor
backwards and forwards over this line by
using the cursor keys. New characters can be
inserted by just typing them in, and you can
remove characters by means of the CLR and
DEL keys.

In the previous chapter we also saw that you
can replace complete lines by merely re-
entering them, The CPC 464 will then auto-
matically put the new line in place of the old
one.

As you write more of your own programs, you
are going to find that they will not usually run
properly the first time round. The CPC 464
will give you some error messages as you
enter lines, and others when you try torun the
program. But it cannot tell you, for example, if
you have left out commands or forgot to
move the cursor to a new position before
drawing a line. This is the reason why the line
numbers we have used go up in tens. As you
saw in the previous chapter, we added a line
between 70 and 80 by entering:

75 locate 2¢,13

In extreme cases there is nothing to stop you
adding up to nine lines in this or any other
position. In the same way, you may delete
lines by entering a blank line. The line we
added in the above example can be removed
as follows:

rs CIED

The CPC 464 will then eliminate line 75 from
the program. Try it and then LIST the program
to see what has happened.

Editing

When you need to modify a program that has
already been entered or loaded, you can use
the EDIT function of the CPC 464. Using the
example above, enter the following:

edit 4¢ EA RN

As you can see, line 40 is displayed on the
screen with the cursor over the first character
of the line. You then use the left and right
cursor keys to position the cursor over the
part of the line you want to change as if you
were working on the current line. Try this out
for yourself by changing the value of b from
15 to 26. Position the cursor over the ‘1’ of ‘15’
and then press the CLR key twice. This will
erase the 15. Now enter 26 and press the
ENTER key. The cursor need not be at the end
of the line. If you now LIST or RUN the
program you will see that the CPC 464 has
altered the line in the way you wanted.

An easier way of editing lines is to use the
COPY key. A second cursor, called the copy
cursor, is used to pick out lines or parts of lines
from anywhere on the screen.

The copy cursor is obtained by holding down
SHIFT while pressing one of the cursor keys.
List the program again and try it, positioning

51

52

the copy cursor at the beginning of one of the
lines. You can see that the normal cursor has
stayed in place. Press the COPY key to copy
each character onto the current line with the
normal cursor. If you hold the COPY key
down it will repeat automatically. You can
stop copying at any position on the original
line and then enter new or changed infor-
mation on the current line before resuming
copying again.

Once you have got used to using the copy
cursor you probably won’t use the EDIT
command very often. The effect is almost
identical but with the added advantage that
you can leave out of a line the characters that
you no longer want.

To let

You may have found it a bit tedious typing in
LET at the beginning of lines in the last
chapter. It's time to make confession. You
don’t need to use this keyword in Amstrad
BASIC.

Try editing VARIABLES again to remove all the
LETs. If you now run the modified program
you’ll find that it has made no difference at
all!

Branch lines

We said earlier that line numbers show the
CPC 464 the order in which commands are to
be stored, but we also said that they are not
always executed in that order. There are times
when we want to skip backwards or forwards
through a program, and the keyword to use is
GOTO. The command is formed by adding a
line number, for example:

7% goto 13¢@

This line will make the CPC 464 skip all the
lines in a program between 70 and 130. You
can do the same thing in reverse:

13p goto 79

The program will now go back to line 70 and
execute the lines up to 130 - and continue
doing so until you switch off or press the
ESCAPE key.

What happens next?

We are faced with decisions every hour of our
waking lives, even if they are only trivial things
such as choosing whether to drink coffee or
tea, or decide which shoes to put on before
going out. Having made up our minds what to
do next, e.g. drink coffee, tea, or nothing; or
put on black, red, or no shoes, we then take
an appropriate course of action. The CPC 464
carries out alternative courses of action by
means of the keyword IF.

The following line could be from a program to
check the amount of money you have saved
up, the variable ‘money’ being the current
balance:

IF money=¢ THEN PRINT "Hard up"

The interesting thing is that the PRINT
command will only be executed if ‘money’is 0
- otherwise the CPC 464 just steps on to the
next line in the program.

An even better way of doing the same thing is
to include yet another keyword, ELSE, in the
following way:

53

54

IF money>@® THEN PRINT "Rich" ELSE PRINT "Hard up"

The sign ‘>’ means ‘greater than’ or ‘more
than’ and takes care of the situation where
you owe the bank money! If ‘money’ is zero
or less, the CPC 464 ignores what is between
THEN and ELSE, and executes whatever is after
ELSE. ELSE gives you the possibility of an
alternative course of action before going on
to the next line in the program.

In the previous chapter we looked at a
program called BARCHART. There was an
input statement which said:

Amount (@-29¢)?

If yo tried to enter a number over 290 the
program didn’t seem to notice and drew the
bar off the top of the screen. You could stop
this from happening by limiting the variable
‘a’ to its maximum value. For example:

IF a>29¢ THEN a=29¢

As you can see, the IF... THEN command isn’t
restricted to PRINT statements, and this line
would limit ‘a’ to a value that would fit on the
screen.

Going places

The IF keyword really comes into its own

when you use it with GOTO. It is like a

signpost that tells the CPC 464 which part of
the program it should execute next.
Supposing you wanted to stop people
entering numbers larger than 295 for the
BARCHART program. The following lines
would do the trick:

6@ INPUT "Amount (@-29¢)";a
65 IF a>29¢ GOTO 6@

Until a number less than or equal to 290 is
entered, the CPC 464 will just keep looping
back to line 60. This ‘trap’ will actually stop
out-of-range numbers being entered rather
than just cutting them down to size.

Bug hunting

You may imagine that if you made a small
error in writing one of the instructions above,
the CPC 464 could go to the wrong place ina
program. You're right. We have just come
across one of the classic jargon words in
computing - the bug.

Machines develop faults, people make
mistakes. Earlier on we said that computers
can’t think, and that the programmer has to
do a computer’s thinking for it. If the
programmer does make a mistake, and even
the best are not immune, it usually is only
obvious after an attempt is made to run the
program. The CPC 464 does what it was told
to do but that may not be what the
programmer originally intended.

De-bugging is the process of going through a
program and correcting the errors of logic or
understanding that it contains. There is no
shame or ignominy in writing a program with
bugs in it. Admittedly, experienced
programmers have fewer bugs to remove
when they have finished a program than do
beginners, but this is just a matter of
knowledge and practice. In time you will find
that you will introduce fewer and fewer bugs
into your programs.

55

56

It is good practice to check through a
program before running it. One way of doing
this is to give it a ‘dry run’ - going through the
program line by line and writing down the
values of variables and the products of sums.
Let’s go through an example:

19 a=p

2@ print a

3¢ a=a+l

49 if a<4 then goto 2@

Before entering this into the CPC 464, get a
piece of paper and write down the following
three headings:

Step Line number Val. of a

Now go through the program and execute
each instruction exactly the way the CPC 464
would. This is how it should look:

Step Line number Val. of a

10
20
30
40
20
30
40
20
30
10 40
11 20
12 30
13 40

WO WN=

AHAhWWWNNNS=-=OO0

The technique of using adry run is agood way
of forcing yourself to see the program from
the machine’s point of view. Any problems
often then become obvious. When you have
just written a program your main difficulty
can be that you know exactly how you expect
it to work and can’t bring yourself to see how
it might not!

Another technique is to add temporary PRINT
instructions at certain points in the program
to show the value of the variable atthat point.

A simple example would be to add the
following line to the above program.

35 print "Line 35 a= ";a

You can also use the command STOP. For
example:

35 stop

The CPC 464 will STOP executing the
program at this point and you can ask it to
print the variable or variables that interest you
by direct print commands. The program is
restarted by entering:

cont BRI}

This stands for CONTinue. Remember that it
won’t work if any lines are added or deleted
after the program has been STOPped.

Renovation

Yes, it’s back to the house again. This time it
could do with alick of paint here and there so
get out the colour charts and load the
program DECO. '

This isn’t really a game, just an entertaining
way of combining all the commandsyou have
learned so far. You may also like to modify the
program to give your picture a bit of
individuality. You should now know enough
to do this using the techniques described at
the beginning of this chapter.

Don’t worry about any unfamiliar keywords
in the listing of DECO given on the next few
pages. All will be made clear in later chapters.

OO
=
a0

57

58

REM deco
MODE ©O

CLS

REM *%* start **

BORDER 12

INK 0,12:REM yellow

INK 3,3:REM red

INK 6,6:REM bright red

INK 9,9:REM green

PAPER O

REM draw front

MOVE 100,50

DRAW 100,250,3

DRAW 400, 250

DRAW 400, 50

DRAW 100,30

REM draw side

MOVE 400, 250

DRAW 600, 250

DRAW 600, 50

DRAW 400, 50

DRAW 400, 250

REM draw gable end

REM already at start point
REM s0 no need for a MOVE
DRAW 500, 350

DRAW 600, 250

DRAW 400, 230 (Continued)

290

300 REM only two lines needed

310
320
S350
340
30
360
370
380
390
400
410
420
430
440
430
460
470
480
490
200
910
520
S30
9540
250
o560

REM draw roof

MOVE 100,250

DRAW 200, 350

DRAW 500, 350

REM draw doonr
MOVE 225, 50

DRAW 225, 140,6
DRAW 275, 140

DRAW 275, 50

REM draw windows
REM left hand bottom
MOVE 120,70

DRAW 120, 130,9
DRAW 180, 130

DRAW 180,70

DRAW 120,70

REM left hand top
MOVE 120,170

DRAW 120,230

DRAW 180, 230

DRAW 180,170

DRAW 120,170

REM right hand top
MOVE 320,170

DRAW 320, 230

DRAW 380, 230

DRAW 380,170

(Continued)

59

60

370
280
290
600
610
620
630
&40
650
€60
670
&80
&390
700
710
720
730
740
750
760
770
780
790
800
810
8z0
830
840

DRAW 320,170

REM right hand bottom

MOVE 320,70

DRAW 320,130

DRAW 380, 130

DRAW 380,70

DRAW 320,70

REM *¥#% DECO #*x*%

r$=CHR%$ (18)

LOCATE 1,25

PRINT"Type a colour (1-15)":
FOR i=1 TO 15

INK i, isNEXT i

LOCATE 1, 13PRINT r$:

INPUT "Roof colour":r

FOR i=107 TO 399 STEP 2
MOVE 1i,252:DRAW i+96,349, r
NEXT i

LOCATE 1, 1:PRINT r%;

INPUT "Gable end";qg

FOR i=252 TO 346

MOVE i+154, i:DRAW B848-i,i,qg
NEXT i

LOCATE 1, 1:PRINT r&%;

INPUT "End wall":e

FOR i=52 TO 248 STEP 2
MOVE 404, i:DRAW 598,1i,e
NEXT i

(Continued)

850
860
870
880
890
900
210
920
930
940
950
960
970

980

990

LOCATE 1, 1:PRINT r$:
INPUT "Front":f

FOR i=32 TO 248 STEP 2
MOVE 104, i:DRAW 398,1i,f
NEXT i

LOCATE 1, 1:PRINT r$;
INPUT "Door":d

FOR i=52 TO 138

MOVE 229,i:DRAW 268,1i,d
NEXT i

LOCATE 1, 1:PRINT r%:
INPUT "Window":w

FOR 3=0 TO 100 STEP 100
FOR i=70+) TO 130+)
MOVE 120,i:DRAW 180,i,w

1000 MOVE 320, i :DRAW 380, i
1010 NEXT i

1020 NEXT 3

1030 END

Testing

Running SAT7 will allow you to check how
well you understood this chapter. Don’t
worry if you have to thumb back through the
pages before answering a question. Not many
programmers work without a reference book

at their elbow.

61

62

HOUSE IMPROVEMENTS

In computer programming there are some
tasks, like housework, that need to be done
over and over again. The CPC 464, like any
other computer, is very good at repetitive
tasks. If we give it the appropriate program it
will keep repeating it until we tell it otherwise.
So, we are going back to the house again to
see how we can fill in a lot of details without
having to do a lot of programming.

Load the next program on the cassette,
MANSION. It may seem to be the same old
house, but this time we are going to see how
we can produce very clever visual displays by
using the principles of the ‘loop’ and the
‘subroutine’.

Looping

Surprising as it may seem, you have already
seen a loop in the previous chapter. Although
we didn’t call it that at the time, the following
program contains a loop:

19 a=¢

20 print a =

3¢ a=a+l

49 if a<4 then goto 2¢

What this program means is ‘Print the value of
a, loop back to line 20, and do this until a is
greater than 3.

We could have written the program as
follows:

1@ for a=@ to 3
2¢ print a
3@ next a

If you look at the listing of the MANSION
program, printed below, you will see that it no
longer ends at line 640. We are first going to
look at the new lines from 640to 680 inclusive.

If you run the program, it will draw the house
as usual. When it reaches the STOP command
you can run the next bit by entering:

CONT B R3S

Try it. What do you think of the fence? It may
even keep the neighbour’s dog out of the
garden!

The key to this operation is line 650, so let’s
have a close look at it:

65¢ FOR F=@ TO 62¢ STEP 2@

The FOR command tells the CPC 464 that it is
just going into a loop. ‘F = 0’ says where the
loop starts; ‘TO 620’ says where the loop
stops. The instruction ‘STEP 20’ gives the
distance between fence posts by telling the
CPC 464 to increase ‘F’ by 20 each time it goes
round the loop.

Line 660 uses the current value of the variable

‘F’ to move the graphics cursor to the next

fence post position and to draw the line of the
post.

The instruction that completes the loop is
NEXT, as you can see in line 670. It means ‘Give
me the next value of F, using the ‘step’ we
described previously.

So, to summarise, the CPC 464 goes through a
loop which steps through F = 20, 40, 60, 80,
etc., until the ‘next’ number is 640, i.e. past the
end of the loop. The CPC 464 then ‘drops
through’ the NEXT and executes line number
680 to draw the cross beams on the fence.

raran

IRRLLRAALA]

=i

63

Relativity

Before we go on to the next bit, let’s just finish
off our study of graphics commands with the
‘relative’ versions of PLOT, DRAW and
MOVE. You will remember that with all three
commands the arguments are the x and y
coordinates measured from the graphics
origin of 0,0. For the commands PLOTR,

y
200 —i
150 e == om =m afs e == e
|
|
1
100 }
1
|
1
1
50 i
1
t
|
|
0 50 100 150 X

DRAWR and MOVER, the arguments are the
required x and y displacement starting from

the current position of the graphics cursor.

From the above diagram you can seethat the
following instruction would move the
graphics cursor to x = 150, y = 200:

mover 5@,50 EANREE:]

The same philosophy applies to the DRAWR
and PLOTR commands. Their arguments will
always apply to the relative coordinates
starting from the current cursor position, and
thereby allow the programmer to avoid
having to calculate the coordinates every
time. Their usefulness will become obvious
before the end of the chapter.

Doing the windows

You will not have failed to notice that we
haven’t finished with the house yet. After the
fence-drawing loop there is another STOP
command in line 685, followed by some lines
which include a new command - GOSUB.
Run the program through to the end by
entering CONT.

Well, it was about time we had some panes of

glass in the windows. This was done by means
of a ‘subroutine’, which is the term used in
computer programming for a series of
instructions that can be called up repeatedly
as and when necessary. If we didn’t use a
subroutine for the window panes it would
have meant writing the same set of instruc-
tions 16 times. GOSUB stands for GO to
SUBroutine and is always followed by the
line number of the first instruction of the
subroutine.

10 REM mansion
20 MODE ©
IO CLS

40 REM #% start #**

S0 BORDER 12

60 INK 0,12:REM yellow
70 INK 3,3:REM red

80 INK 6,6:REM bright red
90 INK 9,9:REM green

95 INK 135, 15:REM orange

100 PAPER O

110 REM draw front

120 MOVE 100,350
130 DRAW 100, 250,3

(Continued)

65

66

140
150
160
170
180
130
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

DRAW 400, 250

DRAW 400, 50

DRAW 100,50

REM draw side

MOVE 400, 250

DRAW 600, 250

DRAW 600, 50

DRAW 400, 30

DRAW 400, 250

REM draw gable end

REM already at start point
REM =0 no need for a MOVE
DRAW 3500, 350

DRAW &00, 250

DRAW 400, 250

REM draw roof

REM only two lines needed
MOVE 100, 250

DRAW 200, 350

DRAW 500, 350

REM draw door (in red)
MOVE 223, 50

DRAW 223, 140,6

DRAW 273, 140

DRAW 275, 50

REM draw windows (in green)
REM left hand bottom

MOVE 120,70

(Continued)

420
430
440
450
460
470
480
490
S00
510
520
530
240
990
560
370
280
390
600
610
620
630
635
640
650
660
670
&80

DRAW 120,130,9

DRAW 180,130

DRAW 180,70

DRAW 120,70

REM left hand top
MOVE 120,170

DRAW 120,230

DRAW 180, 230

DRAW 180,170

DRAW 120,170

REM right hand top
MOVE 320,170

DRAW 320, 230

DRAW 380, 230

DRAW 380, 170

DRAW 320,170

REM right hand bottom
MOVE 320,70

DRAW 320,130

DRAW 380, 130

DRAW 380,70

DRAW 320,70

STOP

REM fence

FOR F=0 TO 620 STEP 20
MOVE F,O:DRAW F,60,13
NEXT F

MOVE O, 45:¢ DRAW 620, 45 (Continued)

67

68

685
€90
700
710
720
730
740
750
760
770
780
730
800
810
820
830
840
850
860
870
880
830
300
210
920
930
340

STOP

REM frames in windows

REM use a square drawing subr

size=18

MOVE 130, 78:605UB 900
MOVE 156, 78:608SUB 300

MOVE 130, 103:G0SUB
MOVE 156, 103:G0OSUB
MOVE 130, 178:60SUB
MOVE 156, 178:60SUB
MOVE 130, 203:60SUB
MOVE 156, 203:G0SUB

900
900
900
900
300
200

MOVE 330, 78:608SUB 900
MOVE 356, 78:60SUB 900

MOVE 330, 103:6G05UB
MOVE 336, 103:60SUB
MOVE ‘330, 178:6G0SUB
MOVE 356, 178:605UB
MOVE 330, 203:60SUB
MOVE 356, 203:G0SUB
END

REM subroutine for
DRAWR 0,size,9
DRAWR size, 0

DRAWR O, -size
DRAWR -size, O
RETURN

900
300
900
900
900
800

square

Now you can see why we had to tackle the
relative graphic commands before
continuing with this part of the chapter. If we
have a standard subroutine for a particular
task, in this case the drawing of a square, it
must be possible to describe that task in a
universal way. In our window pane
subroutine you can see that the use of
DRAWR and the variable ‘size’ enable us to
draw a square of any size, starting at any
position on the screen.

A subroutine should start with at least one
REM to describe what it does. In a long
program with many subroutines it would be
foolish not to. In Chapter 9 we will see how
important this is and learn what other infor-
mation must be given. You must, however,
end a subroutine with the command
RETURN.

When the CPC 464 comes across a GOSUB
command it makes a note of where it had got
to in the program before going off and
executing the commands in the subroutine.
The RETURN at the end of the subroutine is a
bit like the NEXT instruction in a FOR loop,
but whereas NEXT takes you back to the
beginning of the loop, RETURN sends the
CPC 464 back to the nextinstruction after the
GOSUB that called the subroutine.

A program can use subroutines to draw a
picture of a house in the same way that a
builder uses subcontractors to build one.
Tradesmen such as bricklayers, carpenters,
plumbers and tilers are called in to do specific
jobs. And these specialists may themselves
subcontract certain parts of their tasks. For
example, a bricklayer will almost certainly get
a labourer to mix his mortar for him and the
days when he would have made his own
bricks are long past. Furthermore, the same
labourer could also work for any of the others
trades.

You can construct programs in the same
manner. A subroutine called by a GOSUB can
call another subroutine to carry out part of its
task, and so on. The CPC 464 can keep track
of many levels of GOSUBs and will still find its
way back to where each one was called.

69

70

Finishing off

Subroutines are always put at the end of a
program. But what happens when the last
command has been executed? Well, if you
don’t take any precautions the program will
drop straight into the beginning of the first
subroutine with occasionally comic but
usually silly results. One way to avoid trouble
is to put in an END command. Quite simply it
is, as you can see in MANSION:

8@P END

When the CPC 464 reachessuch alineitstops

running the program and goes back to
READY.

Another method is to put in a loop such as:
8¢@ GOTO 8¢@d

This will keep running until either you press
ESC or you do a general reset. It’s useful if you
don’t want READY to appear on the screen.

Exercises

Try using the window subroutine to put a nice
big picture window in the right-hand end of
the house to overlook the garden.

Write a subroutine that will draw a chimney
and then use this subroutine to put the
chimney on the left, right, or centre of the
roof.

Testing

This time you will not only be tested on the
subjects covered in this chapter, you will also
be given a bit of revision on previous subjects.
It is quite reasonable for you to check back
through the book to find the answer to a
question. No one can be expected to
memorise the amount of information you

have been given in such a short period of
time.

71

72

PROGRAM DESIGN

It cannot be overemphasised that there is as
much craft in programming as there is art and
science. You will remember that we have
already said, more than once, that computers
can’t think. The craft in computer
programming is the careful analysis of a
problem or task and the conversion of the
information obtained into a logical, coherent
program that will not use too much memory
space and will be fast enough to do the job

properly.

Obviously you can’t expect to do this without
knowledge and experience, but this chapter
may help you to acquire certain habits and
techniques of good programming that will
serve you well in years to come.

Working from objectives

For any program longer than, say, 20 lines,
there is only one way to approach the task.
You have to break it down into manageable
pieces. No matter how good you are, amateur
or professional, it is not possible to carry all
the aspects of a large program in your head at
the same time.

So, the first thing to do when starting on a
program is to divide it into parts and write
down what each part is supposed to do. It is
worth starting a ‘project’ book to record all
these design parameters for each program
and its subroutines. If you don’t, you may get
half way through writing a program and then
find that you have forgotten the reason for a
specific requirement, or the exact
specification for what a subroutine does.
From the overall description of what the
program does, you must then break it down
into an ordered, logical structure of tasks.

And quite how is this done, you ask? Well,
there are various methods in use, but we are
going to explain just one of them. It makes use
of something called Programming
Development Language - better known as
PDL. Let’s take a familiar example. A postman
has to go through a series of decisions and
actions as he goes on his round. Imagine that
you had to program a robot postman to do the
same thing. Since robots are controlled by
computers, you have to tell them what to do
in every case. So take a look at the following:

73

Program for Walk to first house in street
robot postman For every house in the street
If there is something for this house
Then Repeat
Get packet from bag
Until no more for this house
If there is a front gate
Then open it
Step through it
Close gate
While not at the front door
Walk towards door
If any recorded delivery/excess post/parcel
Then ring doorbell
Wait for answer
For each packet

In case:
Recorded: get signature
Excess: collect money
Otherwise: hand over package

Else push everything through letterbox
While not at entrance
Walk to entrance
If there is a front gate
Then open gate
Step through
Close gate
Else walk to next house
Next house

74

We have written a plan for the program using
ordinary English in a very formal and
organised fashion.

There are a number of important things to
note about the above example. The first is that
there are a small number of building blocks
for the program, some of which you will
recognise as BASIC commands and some not.
Another is that the text is indented to show
which actions take place inside loops or IF-
THEN-ELSE blocks. Pay careful attention to
this when writing your own programs in this
way or you may get very confused!

Perhaps the term ‘routine’ needs to be
explained. A series of actions (or commands)
that perform a particular task are grouped
together to form aroutine. Look at the second
line of the example above:

For every house in the street

This is the start of a routine that may be
repeated for any house in any street, as long as
the rest of the program takes care of the rest
of the problem.

Within this routine there are several
subroutines (yes, this is the real meaning of
the term). The following one is typical:
While not at front door

walk towards door

You can see that this could be handled by a
subroutine that took care of walking from any
starting point to any finishing point.

The most important point about our example
is that not too much attention is paid to
defining each action in detail at this stage. If
you continued breaking this program down
you would find that ‘walk’ alone would
represent pages and pages of work even
without the problems of balancing on two
feet. But at this level a simple general
description is enough.

When all the tasks are broken down
successively, we would eventually reach a
point where each action of the program
corresponded to individual actions
concerning our robot’s sensors or control
mechanisms.

If the above boggles your mind, here is a
comforting thought. It would take the
average team of programmers many years of
hard work to actually write the above
program, so it is probably a good idea to
scratch it off your list of projects. The reason
we chose this example, however, is to show
you how even the most complex tasks can be
expressed simply.

75

76

Exercises

There are several design parameters missing
from the above program. See if you can
design the subroutines to take care of:

No answer to the bell

No letterbox

Hands too full to open the gate
Street with house names only

And you can probably think up others as well.
Don’t be discouraged if you can’t solve many
of them. The things that we human beings
take in our stride can be unbelieveably com-
plicated.

Building blocks

Here are some of the building blocks of our
postman program with examples of how they-
might be translated into Amstrad BASIC.

For every house in the street
Next house

8@ FOR house=firsthouse TO lasthouse

879 NEXT

Repeat
Get packet from bag
Until no more for this house

1¢p9 GOSUB 1l20@@:REM get packet from bag

111¢ IF waslastpacket=@g THEN GOTO 1l¢@@@

This assumes that the subroutine at line 12,000
sets the variable ‘waslastpacket’.

While not at the front door
Walk towards door

20@00 GOSUB 13@@@P:REM see if we are at door
201¢ IF atdoor<>@ then 2p4¢

202¢ GOSUB 14@@@:REM walk towards door
2030 GOTO 20¢d ,

2049 REM end of while

The subroutine at line 13,000 would set the
variable ‘atdoor’.

In case:
Recorded: get signature
Excess: collect money
Otherwise: hand over packet

3¢@P GOSUB 1l5@@@:REM get type of packet

3¢1l¢ IF packettype=recd THEN GOSUB l6@@@:GOTO 3940
3029 IF packettype=excess THEN GOSUB l7¢@@:GOTO 3@4@
3039 GOSUB 18¢@@:REM hand over packet

3¢4@9 REM end of "in case"

The subroutine at 15,000 sets the variable
‘packettype’ and the variables ‘recd’ and
‘excess’ have been set to suitable values.

78

1f any recorded delivery/excess post/parcel
Then ring doorbell

Else push everything through letterbox

Here is one possible translation:

4009 GOSUB 1@@@P:REM see if recorded/excess/parcel

¢ e v a0 0 0sessrrs o0

4079 IF needring<>@ THEN GOSUB 20@@@ ELSE GOSUB 21@¢@

Or you may want to keep the actual routines
close to the IF-THEN-ELSE commands for
reasons of clarity, rather than use subroutines,
so the translation could also be:

4¢P IF needring=@ THEN GOTO 41@¢
ceceessse+:REM get answer etc.
4090 GOTO 4209

4109 REM don't need to ring

«essesessstREM put everything through letterbox
42¢@ REM end of "IF needring"

79

80

Routine work

Here is a checklist of what you should work
out before you write a routine:

® Name of routine (for your own use - not
the CPC 464)

® Names of variables that need to be set
before using the routine

® Effect of routine on variables
® Any side-effects of the routine

When you design programs itis agood ideato
use separate sheets of paper that can later be
put into a ring binder to form your project
book. Each sheet should have the above
information written at the top. This has two
advantages:

1 You can see at a glance what you intend to
write.

2 ltis easier to identify two very similar sub-
routines that could be combined into a
single one to save you having to do the
same thing twice.

Do you remember the routine that drew the
window panes on the house? It started with a
REM:

REM subroutine for square

The only variable set up before calling the
subroutine was ‘size’, and the subroutine
merely used the variable but did not change
it. Finally, the routine did not have any other
effect on other parts of the program or the
CPC 464 itself.

Designing routines in this way makes them
‘watertight’. You know exactly what to do to
use them, you know what they do for you, and
you know what they may affect. Not only are
programs designed this way much easier to
debug; such a design avoids having
unexpected results spreading round until the
whole program sinks faster than, and just as
catastrophically, as the Titanic.

Designing programs using this routine-by-
routine method means that by the time you
have finished, you end up with a sheaf of
paper that tells you exactly what to write.

Documentation

As an amateur programmer, you probably
work entirely on your own. Thus, any
programs you write will tend to be proud
possessions which you will be unwilling to
either disclose to the outside world, or have
subjected to critical scrutiny. Professional
programmers don’t work like this. Most
professionals work in teams on the same
program, or set of programs, and therefore
must be able to read and understand what-
ever anyone else has written without
difficulty.

BASIC is an accessible, tolerant language that
doesn’t insist on any rigid structure orformto
a program. This is all very well when you are a
beginner, but as soon as the tasks become a
little more complex it is necessary to start
making the programs clear and easy to under-
stand. Otherwise you will find yourself re-
writing programs you only finished a month
previously simply because you can no longer
make head or tail of them, or you can’t see
how to change them.

The secret of success is REM. And REM and
REM again. When you have a branch or a
GOSUB in your program just put a REM in to
say why and where it is going. Putting GOSUB
4,000, for example, is acceptable until there
are 50 other subroutines. When this is the case
you need to write (for example again):

GOSUB 4@@@:REM Move cursor to position

We talked about clearly defining what a
routine has to do and the variables involved.
The way to do this within a program is to put
all the appropriate information in a series of
REMs at the beginning of each routine. It
doesn’t have much effect on the processing
time and has a magical effect on readability,
both for yourself and for other programmers.

81

82

SOUNDS FANTASTIC

When we said earlier that BASIC programs
written for the CPC 464 might not work on
other computers, it was particularly with the
sound commands in mind. The range and
power of the CPC 464's BASIC sound
commands are such that few other computers
can equal them.

But this creates a problem as well. 1t would be
quite possible to write a separate book on the
sound commands alone. So, in keeping with

the intention of learning the first steps in
Amstrad BASIC, a lot of information has been
left out of this chapter.

Having said all that, load the next program
from the cassette. It is called ZAPPOW, and
will give you an idea of what can be achieved
with these sound commands. A listing of this
program is given at the end of this chapter so
that you can copy the interesting bits into
your own programs.

Tuning up

As you may have guessed, the command that
produces the sound is SOUND. Enter the
following:

sound 1,478 F\ Rz

That was middle C. The number 478 is called
the ‘period’, and determines the note to be
played. A full list of notes and their associated
periods is given in the Amstrad CPC 464 User
Guide. The 1 is the sound ‘channel’ to be
used. Part 2 of this course describes how to
use the other two channels.

Now enter the following:

sound 1,478,200 F3Yagd:]

When you press the ENTER key this time the
sound will go on for precisely 2 seconds. This
is governed by the 200 which defines the
‘duration’ of the sound in hundredths of a
second. If you omit this part of the command,
the CPC 464 assumes that the duration
wanted is 20. You may now write a program to
play a familiar tune. For example:

1¢ rem A Familiar Tune
2¢ sound 1,213

3¢ sound 1,253,690

49 sound 1,0,40

5 sound
6@ sound
7% sound
8@ sound
99 sound
16@0 sound
114 sound
12¢ end

1,253
1,239
1,213
1,127,4¢
1,8,1
1,127,4¢
1,159, 6¢

Lines 40 and 90 are interesting. To give a ‘rest’
(music terminology for a pause) between two
notes, you must put in a command whose
period is zero - silence, in other words. Inline
40 we have a rest for two beats; in line 90 an
extremely brief rest makes sure that the
repeated note does not merge with the first
one.

A Familiar Tune

&=

3
Y] [

)

v 1}-1L ’

For those of you who are familiar with music,
the same tune is shown above in normal
notation so that you can compare it with the
program.

84

Sounds BASIC

Before we go any further it is necessary to
have a look at how sounds are built up. In its
simplest form a sound can be represented
graphically by a sine wave, as you can see

below.
f+— period —|

AVAVAV/

Perhaps it will now be clear what the period
part of the SOUND command really means. It
is the time that elapses between two waves of
the sound, measured in steps of 8
microseconds (millionths of a second). The
shorter the time between waves, the higher
the sound, and the longer the time between
waves, the lower the sound.

<

le—— volume

The height of the waves is known as the
volume, and we can specify this in the sound
command. Try entering our middle C line
again, only this time put a 2 on the end as
follows:

sound 1,478,209, 2 LA

That makes it very quiet doesn’t it? The
volume can be specified between 0 and 7, 0
meaning no volume at all (yes, it can be
useful) and 7 meaning maximum volume. The
sound we looked at above started and
finished at the same volume. In the real world
things aren’t usually like that. It is quite
normal to have a sound which changes in
volume from start to finish.

l

We do this on the CPC 464 with the ENV
command, which gives you an ‘envelope’ that
can vary the volume of asound throughout its
duration. Enter the following two lines and
run them:

14 env 1,6,1,30
3¢ sound 1,478,18¢,1,1

You will probably need to study the following
diagram closely to understand how this
works. Don’t worry about the missing line 20 -
we’ll come to that in due course.

‘;step size

volume

0 time

You can have up to 15 different volume
envelopes in one program, and the first 1 in
the ENV command above merely identifies it
as the first. The next number, 6, means that
you want the volume to change in 6 equal
steps. The next number, 1, gives the amount
by which you want the volume to increase. If
this was -1, it would decrease the volume.
And finally, the 30 gives the length of the step
in hundredths of a second.

Be careful about the volume specified in the
SOUND command. The CPC 464 can actually
set the volume at sixteen different levels
when a volume envelope is specified. The
range then becomes 0 to 15 where levels 0, 2,
4,6, 8,10, 12, and 14 correspond to therange 0
to 7 that you get when a volume envelope is
not specified.

Now let’s analyse how SOUND and ENV work
together in our example. The volume is set at
1 in the SOUND command, and ENV 1 gives
six steps of increasing the volume by one
level, so the final volume will be 1+ 6=7. Note
that the first step takes place immediately the
SOUND command is executed, so the initial
volume is 1+ 1= 2. Note also that the six steps
of the envelope multiplied by the pause
duration shouldn’t be longer than the
duration specified in the SOUND command,
or otherwise the end of the envelope will be
lost.

So now let’s have a look at the missing line
number 20. In the same way that the volume
levels in a SOUND command are modified by
a volume envelope, the frequency of the
sound can be modified by a ‘tone’ envelope.
The command used is ENT. Here is line 20 in
place at last:

14 env 1,6,1,3¢0
2¢ ent 1,189,1,1
3¢ sound 1,478,18¢,1,1,1

As you can see, our SOUND command has
acquired yet another 1to indicate that ENT 1is
to be used.

The structure of the ENT command is very
similar to ENV, as you can see from the

85

86

diagram below. This time, though, it is the
period of the sound that is increased one ata
time for 180 steps, each one being one-
hundredth of a second long.

|

period

| -
0 time

If you haven’t already done so, run the
program above several times. Then change
the step value of both the ENV and ENT
commands to -1 instead of 1, change the
initial volume setting of the sound command
to 7, and then run it again.

Noisy sounds

The CPC 464 can add a little noise to any
sound to give it extra interest.

You may think that the SOUND command
already looks like a Christmas tree since we
added the ENV and ENT numbers. Here is
positively the last thing you can tack onto it -
the noise. Edit line 30 of our program to give
you:

3¢ sound 1,478,18¢,1,1,1,5

If you run the program now you will notice
quite a difference. Try experimenting with
the 31 different sorts of noise which can be
specified by putting the appropriate number
in this part of the command. Leaving it off or
putting 0 means zero noise.

Exercises

Add tone and volume envelopes to the
‘familiar tune’ and then change them to get
different sounds. Then add different sorts of
noise to some of the sound commands.

Write your own program for a few bars of a
familiar tune. Even if you don’t know music
very well, it is possible to do quite alot by trial
and error. If you do know about music, don’t
be too ambitious at first. A nursery rhyme is
quite sufficient to start with.

Playtime

Well, it isn’t really. The next program on the
datacassette is called ORGAN. Not only can
you pick out tunes directly from the keyboard
but you have the opportunity to analyse the
program to see how it can be done. You
should be starting to understand enough
about BASIC to list and understand what a
program .is supposed to do, although this
particular program contains some rather
advanced programming. Don’t be afraid to try
changing things to see what will happen.

As promised, here is the ZAPPOW listing:

87

88

10
20
30
39
40
350
&0
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

REM Zapp

oW

REM by Dave Atherton

MODE 1
INK O, 1
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE

TINK 1,23
13, 4:PRINT"SOUND DEMO"
10, 7:PRINT"1. Explosion”

10,8:PRINT"2. Dog Barking"

10, 3:PRINT"Z. Siren"
10, 10:PRINT"4. Toilet Flush"

10, 11:PRINT"S. Cuckoo"

10, 12:PRINT"6. Machine Gun"

10, 13:PRINT"7. Space Invader"

9, 17:PRINT"Select a sound from 1 to 7"

IF INKEY$)"" THEN 130
a$=INKEY$:IF a$="" THEN 140

IF a%(

"1" OR a#$)"7" THEN 140

a=VAL (a%)

LOCATE
IF a=1
IF a=2
IF a=3
IF a=4
IF a=5
IF a=6
IF a=7

20, 19: PRINT a%
THEN GOSUB 280
THEN GOSUB 330
THEN GOSUB 380
THEN GOSUB 430
THEN GOSUB 480
THEN GOSUB 530
THEN GOSUB 580

FOR 3=0 TO 1000:NEXT

LOCATE

20, 19:PRINT " "

GOTO 130 (Continued)

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
4350
460
470
480
490
300
910
220
330
540
550

REM Explosion

ENV 1,11,-1,25

ENT 1,9,49,5,9,-10,185
SOUND 1,145,255,0,1,1,12
RETURN

REM Dog Bark

ENV 1,4,7,10

ENT 1,7,-8,3,6,24,2
SOUND 1,120,33,8,1,1,3
RETURN

REM Siren

ENV 1,2,9,45

ENT 1,2,9,45

SOUND 1,150,90,6,1,1
RETURN

REM Toilet Flush

ENV 1,3,-2,85

ENT 1,5,-1,51

SOUND 1,150,254,11,1,1,8
RETURN

REM Cuckoo

ENV 1,4,12,11

ENT 1,5,12,8

SOUND 1,165,40,13,1,1
RETURN

REM Machine Gun

ENV 1,21,-5,4

ENT 1

(Continued)

89

80

260
370
580
290
600
610
620

SOUND 1,162,82,15,1,1,11
RETURN

REM Space Invader

ENV 1,4,30,19

ENT 1,9,49,5,1,-10,26
SOUND 1,136,68,15,1,1,0
RETURN

Testing

It would be quite surprising if you didn’t have
to keep checking back through this chapter to
answer the questions in SAT10. Don’t let this
worry you. If you already knew all about the
SOUND commands of the CPC 464, you
wouldn’t be reading this book.

91

92

NUMBER CRUNCHING

As we have said several times the CPC 464,
like any other computer, is good at boring
repetitive tasks. It is also good at crunching
numbers. In fact it is the only thing it is good
at. Everything we have seen is achieved by the
CPC 464’s internal processing of lots of
numbers at incredible speed. Even the
graphic and sound functions work this way.

If you aren’t particularly good at maths this
chapter won'’t be easy. But give it a try anyway.
The simple arithmetic isn’t too bad, and
BASIC is fairly straightforward in the way it is
presented. In any case the really difficult stuff
is not covered in this part of the course.

BASIC arithmetic

The CPC 464 does its sums by using the four
familiar arithmetic functions, but two of them
have different symbols:

Function Meaning BASIC

+ add +
- subtract -
X multiply *
+ divide /

Thus, sums written in BASIC look a bit
different to what you may be used to.

In Chapter 4 we entered:

print 242

You can do the same thing with the following
sums by referring to the list of functions above
and using the correct BASIC symbols:

3+7 17 -8
15x4 15+3
8+2 20x 17

For more complicated sums we have to tell

the CPC 464 that certain operations have to
be done before others. The following, for

example, is perfectly clear in ordinary
arithmetic:

15x7
7-2

In BASIC this is not written:
15*7/7-2 [=13 wrong!]

We have to show that the multiplication 15*7
and the subtraction 7 - 2 must be carried out
before the division. This is done by putting
them between brackets as follows:

(15*7) /(7-2) [=21rightl]

You should now be able to do the sums
below:

30 15 % 6
3+2 9
24 - (4 % 3) 5% (2+8)

The same rule applies to variables as well as
numbers. Enter the following program and
then keep changing line 40 so that you can
solve the other sums shown below. Don’t
forget to use the correct symbols and te put
brackets in the right place.

14 a=2

20 b=5

3@ c=19

4@ print a+b+c
axa bxc
c-(axb) b-a
C c-b
b-a c+b

The first two are straightforward enough, but
what did you think of the answers to the other
three? You have just had an insight into the
way the CPC 464 does its maths. If you count
the digits before and after the decimal point
for the last three answers, you will find that
there are always nine. This is the way the
CPC 464 normally displays numbers on the
screen. The snag is, though, that sometimes a
series of calculations will give a very slightly
inaccurate result. Instead of 5.0 you could get:

> . OPPPPDPL

or:
4.99999999

Tricky, isn’t it. Fortunately we don’t often
need such extreme accuracy. Sometimes, in

93

94

fact, we only want whole numbers, since the
difference between 276.25 and 276, for
example, is not often very significant. The
keyword we can use to give aresult as awhole
number is ROUND. A typical command
would be:

x=round (26*17) /1.6

Try it. If the part after the decimal point s less
than 0.5 the result is rounded down to the
next whole number, and if itis 0.5 or more, it is
rounded up to the next whole number.

Another thing you must remember is that,

although the CPC 464 puts on the screen

numbers that are accurate to 9digits, it may be
holding even more digits in memory. For
example, you may end up with a value of:

5.000000091 (ten digits)

The CPC 464 will insist that this is 5.0 every
time you ask it! But, and this is important, if
the next command is something like:

IF a=5 THEN GOTO

the GOTO will never be executed.

A standard programming technique to avoid
such problems is never to use the line above
but rather the following:

vsmall=@.s000001

Don’t worry about the keyword ABS. It just
gives you the difference between ‘a’ and 5, as
you will see in Part 2.

The next program on Datacassette A is a good
crib for multiplication tables as well as being
an example of simple maths on the CPC 464.
Ask it to give you the 13.87 times table! After
running this program it may be worth your
while to list it on the monitor screen to see
how it is put together.

Elementary logic

There are lots of things we mentioned in
earlier chapters without explaining them in
detail, the reason being quite simply that it
was too soon to have explained them at that
point and would have confused rather than
helped you. One of these is the use of ‘logical
operators’.

Cast your mind back to our study of loops. We
used signs like ‘<’ and ‘>’. There is a
complete list of these symbols, known as
‘logical operators’:

< less than

> greater than

= equal to
<> not equal to
<= less than or equal to
>= greater than or equal to

Even if these terms are unfamiliar, it is fairly
clear what they mean. When you need to
compare two variables so that you know
when to end a loop or decide between two

courses of action, these operators give you
the means to discriminate between them. The
IF commands we studied in Chapter 7 are
entirely dependent on these operators.

A subtlety you must remember about logical
operators is that they take into account
whether a number is negative or positive, so if
a=5and b=3:

a>b
But if a=-5and b = 3;

a<b

95

96

String logic

Do you remember that we started off saying
that the CPC 464 only knew how to handle
numbers? How then,. you should be asking,
can it store and process characters in string
variables, as we learned in Chapter 6?

The answer is that each character is identified
by a number called its ‘character code’, so
characters are simply treated as a series of
numbers. Thus, the logical operators can test
strings for their alphabetic order, ‘A’ being
less than ‘Z’, but this is because of the numeric
value of the character code. If we try the
following command:

In this case, the CPC 464 is testing the
‘numerical’ value of each letter of a word and
comparing it with the numerical value of the
letter in the same position in the word on the
other side of the operator.

IF "Apple"<"Orange" THEN PRINT "Lemon"

the answer is a ‘lemon’ since ‘apple’ is before
‘orange’ alphabetically. All capital letters are
less than any lower-case letters, and a short
string is less than alonger one thatstartsin the
same way, So:

“aardvark” < “abbey” is true
“love” > “locksmith” is true
“box” < “BOX” is false
“Zoo” > “Zookeeper” is false

“apple” > “Apples” is true

Homes and gardens

The house isin pretty good shape now:. It has a
picture window on one end, achimney,and a
fence to keep the neighbour’s dog out. All it
needs now is a bit of work on the garden.

Being a practical sort of machine, the
CPC 464 is not much use for planning an
attractive flower border. Butit can help you to
plan the vegetable plot. So load the next
program from Datacassette A. It’s called
GARDEN.

The garden is 6 metres long by 4 metres wide
and we are going to plant things in 4-metre
rows. Different vegetables need to besownin
rows of different widths and each will give a
different weight of produce per square metre
of cultivation. When you run the program it
will ask you how many rows you want of each
vegetable, and will tell you if you have any
space left for another row or two.

Assuming a good soil, and a reasonable year
for weather, you can then get a summary
showing the weight of produce that can be
expected for each vegetable. The listing for
this program is shown below. As you can see,
the maths are fairly simple, and are based on
the following table:

Vegetable Row width Produce per
(metres) row (kg)

Onions 0.30 9
Carrots 0.30 3
Potatoes 1.0 50
Cabbages 0.60 8
Beans 1.0 30
Parsnips 0.50 m

You don’t like parsnips? Try altering this
program to include something you do like.

10 REM Garden

20 MODE 1

30 INK ©,0:BORDER O
40 INK 1,26

90 length=6

&0 CLS

(Continued)

97

98

70 PRINT"GARDEN"
80 PRINT"Length remaining :"jlength:"metres"
90 PRINT"Which vegetable do you want to grow"

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
340
350

PRINT

PRINT" width vield rows"
PRINT"1. ONIONS 0. 3m 9Kg "sonions
PRINT"2. CARROTS 0.3m 3Kg "carrots
PRINT"3. POTATOES im S0Kg ":potatoes
PRINT"4. CABBRGES O.6m 8Kg "s:cabbages
PRINT"S. BEANS 1m 30Kg "sbeans
PRINT"6. PARSNIPS 0. 5m i1Kg "eparsnips
PRINT

PRINT"Enter a number between 1 and &"

PRINT"or 7 to show total output"

INPUT veg

IF veg{(=0 OR veg)7 THEN GOTO 190

IF veg=7 THEN GOTO 320

IF veg=1 THEN GOSUB 470

IF veg=2 THEN GOSUB 540

IF veg=3 THEN GOSUB 610

IF veg=4 THEN GOSUB 680

IF veg=5 THEN GOSUB 750

IF veg=6 THEN GOSUB 820

PRINT * "

GOTO &0

REM Summary

PRINT"SUMMARY"
PRINT"GARDEN OUTPUT IN KILOS"

(Continued)

370
380
390
400
410
420
430
450
460
470
480
430
200
510
920
930
oS40
950
S60
S70
580
990
600
610
620
630
€40
&50

PRINT |
PRINT"Onions :"j;onions*9;"Kg"
PRINT"Carrots :"j;carrots*3;"Kg"
PRINT"Potatoes:" ;potatoes*50;"Kg"
PRINT"Cabbages:" ;cabbages*8; "Kg"
PRINT"Beans t"sbeans*30; "Kg"
PRINT"Parsnips:"jparsnips#11;"Kg"
GOTO 430

REM Onions
PRINT"Onions"
rowwidth=0.3
GOSUB 890
ONiONS=rows
RETURN

REM Carrots
PRINT"Carrots"”
rowwidt h=0, 3:produce=3
GOSUB 890

carrots=rows

RETURN

REM Potatoes
PRINT"Potatoes"
rowwidth=1
GOSUB 890
potatoes=rows

(Continued)

99

100

660
&70
&80
690
700
710
720
730
740
750
760
770
780
790
800
810
8z0
830
840
850
=110
870
880
830
900
910
920
930
950

RETURN

REM Cabbages
PRINT"Cabbages"
rowwidt h=0.6
GOSUB 890
cabbages=rows
RETURN

:

REM Beans
PRINT"Beans"
rowwidth=1
GOSUB 890
beans=rows
RETURN

REM Parsnips
PRINT"Parsnips"
rowwidth=0.5
GOSUB 890
Parsnips=rows
RETURN

REM Details
INPUT"How many rows do you want to
testlength=length-rows*rowwidth

plant";rows

IF testlength{(0 THEN PRINT"No room":GOTO 900

length=testlength
RETURN

Testing

You really must run SAT11 to get a lot of
practice in handling the mathematical
operators of the CPC 464. Most programs
require a certain amount of elementary maths
for them to be of any use, so it is worthwhile
spending as much time as possible in under-
standing this aspect of the CPC 464. Don’t
forget that most of the game programs you
can buy for the CPC 464 depend on some
very high-speed maths!

101

102

PLAYING GAMES

Most games, and not only computer games,
involve pitting your physical and mental
ability against opponents, against chance
occurrences, or against the clock. Sometimes
you have to play against all three. A chess
program or an arcade game will give you
many hours of pleasure in this way and you
don’t need to know anything about games
programming.

If you want to design games, however, aword
of advice is necessary. Go back to your maths
books. You cannot expect to program a ball
bouncing off a wall if you can’t remember the
formulae for calculating ricochet angle,
speed and trajectory. Admittedly we aren’t
going to cover this level of detail at this stage
of the course, but you must realise that the
two games given in this chapter cover only a
tiny fraction of what the CPC 464 can really
do.

Random events

When you played BOMBER back in Chapter
4, the alien spaceship kept appearing at
different places in the bombsight. This was
done by making use of a function known as
RND (for RaNDom), which is useful for
bringing an element of chance into a
computer program.

The following is an example of the way RND
can be used:

move rnd*639,xrnd*399

RND gives you a decimal number between 0
and 1, so you have to multiply it by the largest
number you expect in the command or
routine. Inthe case above, the graphics cursor
will end up in a random position on the
screen since we multiplied the maximum x
and y coordinates by RND.

Try writing a short program to put a small
square in a random position on the screen.

Time out

Another useful function in the CPC 464, and
not only for games, is TIME. From the moment
that the CPC 464 is switched on or restarted, it
counts the time elapsed every three-
hundredth of a second and stores it in TIME.
This count is only suspended when a program
is loaded or saved on the datacassette. The
following program is an example of how this
can be used:

14 print "Press any key"

2¢ if inkey$="" goto 29

3¢ for t=1 to rnd*5@@@:next
44 a=time

5¢ print "again"

6@ if inkey$="" goto 6@

7¢ b=time

character and it doesn’t need to be followed
by ENTER. Here we are using it to detect when
any key is pressed - any key, that is, except
SHIFT, CTRL, CAPS LOCK, and ESC.

8@ print "Reaction time="; (b-a)/3¢@;" seconds"

99 end

What we are doing here is to sample the value
of TIME before and after the word ‘again’
appears on the screen, the reaction time
being the difference between the two.

You will have noticed another new keyword
in lines 20 and 60, INKEY$. It is similar to
INPUT except that it gives you only one

103

104

BLACKJACK

Playing cards with the CPC 464 is more fun
than playing solitaire all by yourself. The next
program on Datacassette A is BLACKJACK. In
case you don’t know the game, the idea is to
keep asking for cards until their total value is
as close as possible to 21. If you get more than
21 you have ‘bust’ and lose the hand. If not,
the CPC 464 then deals itself a hand and tries
to get a higher score than you without
‘busting’.

Other rules are:

m Five cards that add up to 21 or less will beat
anything

B Aces can be counted as either 1 or 11

® Picture cards count as 10

Although there are several commands that we
will not study until Part 2 of this course, the
listing for BLACKJACK is shown below for you
to study.

10 REM %% BLACKJACK #*#*
20 REM

30 REM *x STARTUP *=
40 MODE 1:BORDER 4

S50 INK O,17:INK 1,0

&0 LOCATE 16,5:PRINT "BLACKJACK"

70 LOCATE 10,12

80 PRINT"Press a key to start"
0 suit$=CHRS$ (226)+CHR$ (227)+CHR% (228) +CHR$ (229)

100 card$="A234S56789TIOK"

110 CS$="5 card trick - I win"

120 myace=0!yourace=0
130 mygames=0:yourgames=0
140 WHILE INKEY$=""3:WEND

(Continued)

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
350
360
370
380
390
400
410
420
440
450

cLs

REM %% YDUR TURN %*#*
yourcards=0iyourace=0

yourhand=0

LOCATE 20,1

PRINT"Games Me:i:":mygames:

PRINT "You:":yourgames

y=202:x=3

yourcards=0

GOsSUB 770

yourcards=yourcards+l1

IF value=1 THEN yourace=yourace+l
yourhand=yourhand+value

GOSUB 830: x=x+3

IF yourhand)21 THEN GOTO 690

G0OSUB 930

oneacehand=yourhand

IF yourace)=1 THEN oneacehand=yourhand+10
IF yourcards=5 THEN 440

IF yourhand=21 THEN 440

IF oneacehand=21 THEN 420

IF yourace=0 AND yourhand (=11 THEN 240
IF yourcards=1 THEN 240

INPUT"Want another card (Y/N)";q%

IF UPPERS$ (q$)="Y" THEN GOTO 240

IF oneacehand (=21 THEN yourhand=oneacehand
REM %% MY TURN #*%

y=10: x=5 (Continued)

105

460 myhand=0:twmycards=0inyace=0

470 GOSUB 770

480 mycards=wmycards+1

490 IF value=1 THEN myace=myace+l

S00 myhand=wmyhand+value

310 GOSUB 830: x=x+5

520 FOR delay=0 TO 1000:NEXT

330 IF myhand)21 GOTO 720

940 IF mycards=5 THEN GOSUB 930:PRINT CS#$:607T0 710

590 IF yourcards=5 THEN 470

560 minefsmyhand

970 IF myace)=1 AND myhand (12 THEN minef=myhand+10

600 IF myhand)=yourhand THEN &40

610 IF wminefR)=yourhand THEN myhand=mineR:G0TO 640

630 BGOTO 470

640 REM %** TEST RESULTS #**

6350 GOSUB 930

660 PRINT"I have"jmyhand;

670 PRINT"and you have";yourhand

680 IF myhand{yourhand GOTO 730 ELSE GOTO 700

690 GOSUB 930:PRINT"You have bust!"

700 PRINT"I win"

710 mygames=mygames+1:60T0 140

720 GOSUB 930:PRINT"I have bust!"

730 PRINT"You win"

740 yourgames=yourgames+1:60T0O 140

7350 END

760 REM #% GENERATE CARD #% (Continued)
106 : S

770
780
790
800
810
820
830
840
850
860
870
880
830
9200
910
920
930
940

card=INT (RND*#13)+1

suit=INT (RND%*4) +1

value=card

IF value)10 THEN value=10
RETURN

REM %% PRINT CARD #**

LOCATE x,y

PRINT CHR#$(24):" "sCHR$ (24)
LOCATE x,y+1

PRINT CHR#%(24) 3" "
PRINT MID#(card$,card,1):
PRINT MID#(suit®,suit,1):
PRINT" " :CHR%(24)
LOCATE x, y+2

PRINT CHR$(24) 3" "sCHR%(24)
RETURN
LOCATE 1, 24:PRINT SPACE®$(40)

LOCATE 1,24:RETURN

107

108

As you can see from the listing below, it isn’t
as simple as all that! Again, there are some
commands that will have to wait until Part 2 of
this course. There is one keyword in it,
however, that you may like to know about; it
is CHRS.

Way back in Chapter 3 we saw that we can get

some fancy special characters on the screen
that don’t appear on the keytops. CHR$ (for
CHaracteR$) allows you to call them up by
their character code. For example, to put a
little spaceship on the screen the command
would be:

print chr$ (239)

The full list of CPC 464 characters is in the
Amstrad CPC 464 User Guide.

10 cré=CHR$ (13)
20 REM Simon

30 REM *#%% INSTRUCTIONS *%%%

40 MODE 1:BORDER ZO:INK O,20:INK 1,1
20 LOCATE 16, 2:PRINT CHR%(24) ;"Simon" ;CHR$ (24)

60 PRINT:PRINT

70 PRINT"In this game, you have to watch the”
80 PRINT"flashing circles and remewber the"
90 PRINT"pattern. When the sequence ends you"
100 PRINT"must copy it out on the cursor keys"
110 PRINT"The sequence increases by one after"
120 PRINT"each correct attempt.":PRINT

130 PRINT"For example, a circle at the top of"
140 PRINT"the screen should be indicated by"
150 PRINT"the up cursor. The cursor keys are"
160 PRINT"above the numeric key pad, and are"

170 PRINT"marked as follows:":PRINT

(Continued)

180 PRINT TAB(20) ;CHR$(240)

130 PRINT TRAB(19) ;CHR%$(242) 1" ":CHR$ (243)

200 PRINT TAB(20) :CHR$(241)

210 LOCATE 7,22:¢PRINT"Press ENTER to continue"

220 LOCATE S5,24:PRINT "there will be a short pause!"
230 WHILE INKEY${)cr$:WEND

240 REM *%%% SET-UP %#%*

250 MODE O

260 WINDOW 7,14,10,16

270 b=17:f=3:REM Background/Foreground

280 BORDER b

290 INK 0,17

300 FOR i=1 TO 13:INK i, biNEXT

310 x=320:y=70:c=2:605UB 940

320 y=330:1c=1:608UB 940

330 x=120:1y=200:c=3:608UB 940

340 x=520:1c=4:605UB 940

350 INK S, fsPEN S

360 RANDOMIZE TIME

70 as=""

380 REM *x%x% DISPLAY SEQUENCE *%%#

390 as=a$+CHR® (RND#*3+1)

400 FOR i=1 TO LENC(a%)

410 FOR =1 TO ZOO:INEXT

420 x=ARSC(MID%(a%,i, 1))

430 INK x,2%x+1

440 SOUND 1, 10+x#100

450 FOR =1 TO 200:NEXT (Continued)
109

460 INK x,b

470 NEXT

480 FOR i=1 TO 100:NEXT

490 REM #*%%% GET ANSWER *##%

SO0 FOR i=1 TO LEN(a$)

510 WHILE k$)"":k$=INKEY#:WEND

520 FOR L=1 TO 2000:k$=INKEY$

530 IF k$)"" THEN S60

540 NEXT

550 k$=" "

560 k=ASC(k$)-239:IF k<1 OR k)& THEN 520

570 x=ASC(MID$(a%$,i, 1))

S80 IF k{)x BOTOD 730:REM wrong

590 INK x, 2%x+1

600 SOUND 1, 10+x#100

610 FOR j=1 TO BO:NEXT

620 INK x,b

630 FOR j=1 TO 20:NEXT

640 NEXT

650 REM *%x% RIGHT! #%%»

660 CLS:PRINT" RIGHT!"

670 PRINT:PRINT:PRINT" SCORE:"

680 PRINT:PRINT" “:LEN(AS)

690 FOR j=1 TO 600INEXT

700 LOCATE 1, 1:PRINT" n

710 GOTO 390

720 REM #%%% WRONG %#¥x

730 SOUND 1, 2000 (Continued)
110

740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
300
910
920
930
940
950
960
970
980
990

CLS:PRINT" HWrong"

FOR =1 TO 300:NEXT
PRINT:PRINT"Sequence wass"
FOR i=1 TO LEN(a%)
x=ASC(MID% (a%, i, 1))

INK x,2#x+1

SOUND 1, 10+x%#100

FOR 3=1 TO 200:NEXT

INK x,b

FOR 3=1 TO 200:NEXT

NEXT

REM x%x%% END & RESTART #*#%%
CLS

PRINT" You"

PRINT" scored"

PRINT:PRINT" ":LEN(a$)
PRINT:PRINT" PRESS"

PRINT" ENTER"

WHILE INKEYS$ () CR$:WEND

GOTO 360

REM x#%% CIRCLES *##%

r=60

FOR i=-r TO r STEP 2

h=SQR (r#*r—i*i)

MOVE x~h, i+y:DRAW x+h,i+y,c
NEXT

1000 RETURN

1

112

Testing

Before you go on to Part 2 of this course, More
BASIC, get in as much practice as possible in
writing your programs, and go through the
last of our tests, SAT12. It will give you
questions on all the chapters of this part of the
course and will show you if you need to go
back over any topic.

Good Luck!

LIST OF KEYWORDS

The following is a list, chapter by chapter, of
all the Amstrad BASIC keywords covered in
this book. Not all the variations or extensions
have been dealt with since this is, after all, a
book for beginners. Part 2 of this course,
More BASIC, covers further keywords and
more advanced programming techniques.

A description of all keywords can be found
in the Amstrad CPC 464 User Guide.

Chapter 2

RUN
LOAD

Chapter 3

CLS
RUN

Chapter 4

BORDER
MODE
CAT

Chapter 5

CLG
INK
DRAW
LIST
MOVE
NEW
PAPER

113

114

PLOT
REM

Chapter 6

INPUT
LET
LOCATE
PRINT
SAVE

Chapter 7

CONT
EDIT
ELSE
GOTO
IF
STOP
THEN

Chapter 8

DRAWR
END
FOR
GOsuB
MOVER

NEXT
PLOTR
RETURN
STEP

Chapter 10

ENT
ENV
SOUND

Chapter 11
ROUND

Chapter 12

CHR$
INKEY$
RND
TIME

LIST OF PROGRAMS

Datacassette A contdins the following
programs in the same order that they are
referred to in this book. Datacassette B

Chapter 2 Chapter 5
HELLO HOUSE
SIMON (See also Chapter 12)
Chapter 6
Chapter 3 BARCHART
LETTERS BUZZWORD
REPEAT NAME
KEYBOARD
HANGMAN Chapter 7
DECO
Chapter 4
DRAW Chapter 8
COORGEOM
BOMBER MANSION

contains the Self-assessment Tests (SATs)
which the reader should complete at the end
of every chapter except Chapters 1-and 9.

Chapter 10

ZAPPOW
ORGAN

Chapter 11

MULT TABLES
GARDEN

Chapter 12

BLACKJACK
PONTOON
SIMON

115

116

INDEX

Adding lines, 5°
Arguments, 32
Arithmetic functions, 92

BARCHART, 46, 54
BASIC, 8, 80
BLACKJACK, 104
BOMBER, 30
Book, project, 73
BORDER, 26
Branching, 53
Break, 14

Bug, 55
BUZZWORD, 49

CAT, 29

Capital letters, 19

CAPS LOCK key, 18

Cassettes, 44

Changing colour, 35
lines, 50

Character code, 96, 108
keys, 17

Characters, special, 17

CHRS$, 108

Clear screen, 22
CLG, 33
CLR key, 19, 50
CLS, 22, 33
Colon, 46
Colour, changing, 35
Command, 32

relative graphic, 64
CONT, 57
Control keys, 18
Controls, Datacorder, 21
Coordinates:

X, Y, 27

text, 45
COORGEOM, 29
Copy cursor, 51
COPY key, 20, 51
CTRL key, 19
CTRL/ENTER, 23
CTRL/SHIFT/ESC, 22
Current line, 50, 51
Cursor, 12, 52

copy, 51

graphics, 32

keys, 20, 50

text, 45

Datacorder control, 21
Debugging, 55
DECO, 57
Deleting lines, 51
DEL key, 13, 19, 50
Design:
games, 102
program, 72
Documentation, 81
DRAW, 32
DRAW (program), 27
DRAWR, 64
Dry run, 56

EDIT, 51
Editing, 51
ELSE, 54
END, 70
Ending a program, 70
ENT, 85
ENTER key, 12, 19, 20, 50
ENV, 85
Envelope:
tone, 85
volume, 85
Error:
message, 19, 51
syntax, 13, 19
ESC key, 14, 19

FF (fast forward) control, 21

FOR, 63
Force a restart, 22
Found message, 29

Games:
designing, 102
BLACKJACK, 104
BOMBER, 30
BUZZWORD, 49
HANGMAN, 24
SIMON, 15
GARDEN, 97
GOSUB, 65
GOTO, 53, 55
Graphics, 24
cursor, 32
Graphic commands, 32
relative, 64
Grey scale, 26

HANGMAN, 24

HELLO, 14

HOUSE, 36

How to use this book, 9

IF, 53

INK, 35
INKEY$, 103
INPUT, 46

117

118

Input statement, 54

Keyboard, 16
KEYBOARD, 23
Keypad, numeric, 20
Keys:

character, 17

control, 18

cursor, 20
Keywords, 9, 46

list of, 113

LET, 40, 52
LETTERS, 22
Line:
current, 50, 51
number, 33, 51
Lines:
adding, 51
deleting, 51
replacing, 50
LIST, 34
Listing, 36
List of keywords, 113
LOAD, 15
Loading programs, 15
LOCATE, 45
Logical operators, 95
Loops, 62

Main keyboard:
character keys, 17
control keys, 18

MANSION, 62

Mathematics, 92

Message, error, 19

MODE, 28, 35

MOVE, 33

MOVER, 64

MULT TABLES, 94

Music, 83

NEW, 33
NEXT, 63
Noise, 86
Numeric keypad, 20

ORGAN, 87

PAPER, 36

PAUSE control, 21

PDL: See Programming Development
Language

Pixel, 28

PLOT, 32

PLOTR, 64

Postman, robot, 73

Preface, 7

PRINT, 40, 45

Programming, 8, 72

Programming Development Language

(PDL), 73
Program storage, 29
Project book, 73
Prompt, 46

Random number, 102
Ready, 12, 18

Relative graphic commands, 64
REC control, 21

REM, 36

REPEAT NAME, 23
Replacing lines, 50
Restart, force a, 22
RETURN, 69

REW control, 13, 21
RND, 102

Robot postman, 73
ROUND, 94

Rounding numbers, 94
Routine, 75, 80

RUN, 12,15

SATs: See Self-assessment tests
SAVE, 44
Screen border, 26
Self-assessments tests (SATS):
SAT2, 15
SAT3, 24
SAT4, 30

SATS5, 39

SAT6, 49

SAT7, 61

SATS, 71

SAT10, 91

SAT11, 101

SAT12, 112
SHIFT key, 12, 19
SIMON, 15, 106
SOUND, 83
Sound:

commands, 83

volume, 84
Special characters, 17
STEP, 63
STOP, 57
STOP EJECT control, 21
Storage, program, 29 (see also SAVE)
String variable, 42, 96
Subroutine, 65, 75, 80
Syntax error, 13, 19

TAB key, 18

Text cursor, 45
THEN, 53

TIME, 103

Tone envelope, 85
Trap, 55

Using the keyboard, 18

119

Variable, 40, 93
string, 42
VARIABLES, 44, 50, 52
Volume:
sound, 84
envelope, 85

Welcome, 12
Window, 26
Working from objectives, 73

ZAPPOW, 82

120

	pag 001
	pag 002
	pag 003
	pag 004
	pag 005
	pag 006
	pag 007
	pag 008
	pag 009
	pag 010
	pag 011
	pag 012
	pag 013
	pag 014
	pag 015
	pag 016
	pag 017
	pag 018
	pag 019
	pag 020
	pag 021
	pag 022
	pag 023
	pag 024
	pag 025
	pag 026
	pag 027
	pag 028
	pag 029
	pag 030
	pag 031
	pag 032
	pag 033
	pag 034
	pag 035
	pag 036
	pag 037
	pag 038
	pag 039
	pag 040
	pag 041
	pag 042
	pag 043
	pag 044
	pag 045
	pag 046
	pag 047
	pag 048
	pag 049
	pag 050
	pag 051
	pag 052
	pag 053
	pag 054
	pag 055
	pag 056
	pag 057
	pag 058
	pag 059
	pag 060
	pag 061
	pag 062
	pag 063
	pag 064
	pag 065
	pag 066
	pag 067
	pag 068
	pag 069
	pag 070
	pag 071
	pag 072
	pag 073
	pag 074
	pag 075
	pag 076
	pag 077
	pag 078
	pag 079
	pag 080
	pag 081
	pag 082
	pag 083
	pag 084
	pag 085
	pag 086
	pag 087
	pag 088
	pag 089
	pag 090
	pag 091
	pag 092
	pag 093
	pag 094
	pag 095
	pag 096
	pag 097
	pag 098
	pag 099
	pag 100
	pag 101
	pag 102
	pag 103
	pag 104
	pag 105
	pag 106
	pag 107
	pag 108
	pag 109
	pag 110
	pag 111
	pag 112
	pag 113
	pag 114
	pag 115
	pag 116
	pag 117
	pag 118
	pag 119
	pag 120

