FTL Modula-2

Fast Interactive Modula-2 Compiler

Language Reference

Copyright © Dave Moore 1987
Published exclusively in Europe by HiSoft

First printing August1987
ISBN 0 94851706 9

Set using an Apple Macintosh™ and Laserwriter™ with Aldus Pagemaker™.

All Rights Reserved Worldwide. No part of this publication may be
reproduced or transmitted in any form or by any means, including
photocopying and recording, without the written permission of the
copyright holder. Such written permission must also be obtained before any
part of this publication is stored in a retrieval system of any nature.

The information contained in this document is to be used only for modifying
the reader's personal copy of FTL Modula-2.

It is an infringement of the copyright pertaining to FTL Modula-2 and its
associated documentation to copy, by any means whatsoever, any part of
FTL Modula-2 for any reason other than for the purposes of making a
security back-up copy of the object code.

Table of Contents

Language Reference

Determining how you should approach this

Manual 3
An Introductory Example 7
The Lexical items = 9
3.1 Marks 10
3.2 Identifiers and Reserved Words 11
33 Literals 13
34 Comments 16
The Module Structure 17
4.1 IMPORT and EXPORT 19
4.1.1 Nested Modules 21
4.1.2 EXPORT 23
413 Some Advanced Rules 24
4.2 CONST Declarations 24
43 TYPE Declararions 25
431 The Predefined Types 26
43.2 Type Equivalence 28
433 Enumerations 28
434 Subrange Types 29
435 SetTypes . 31
43.6 Array Types 33
43.7 Record Types 34
438 Pointer Types 37
4.3.9 Procedure Types 39
4.3.10 Private Types 39
44 Type Compatibility 41
4.5 Variable Declarations 43

FTL Modula-2 Reference - Table of Contents

4.6 Procedure Definitions 46
4.6.1 Open Array Parameters 49
4.6.2 Procedure Variables 50
4.6.3 FORWARD Declarations 53
4.7 The Statements Part 83
5 Expressions 55
5.1 Entire Variables 55
5.2 Constants 56
53 Function Calls 56
5.4 The Set Builder 57
5.5 Operators 60
5.5.1 Arithmetic Operators 61
55.2 Boolean Operators 62
55.3 Set Operators 62
55.4 Relational Operators 63
6 Statements 65
6.1 Procedure Calls 66
6.1.1 The RETURN Statement 66
6.1.2 Standard Procedures 67
6.2 Assignment Statement 68
6.3 Conditional Statements 69
6.3.1 The IF Statement 69
632 The CASE Statement 71
6.4 Looping Statements 72
6.4.1 The WHILE Statement 72
6.4.2 The REPEAT Statement 72
64.3 The FOR Statement 73
6.4.4 The LOOP Statement (and the EXIT Statement)’ 75
6.4.5 The WITH Statement 77
7 Syntax 81
8 Extensions and Restrictions 87

FTL Modula-2 Reference - Table of Contents

9 Compiler Error Messages 91
10 Linker Error Messages 109
11 Compiler Limits 113
12 A Comparison Of Modula-2 and Pascal 115
12.1 Lexical Differences 115
12.2 Declaration 116
12.3 Expressions 117
12.4 Statements 117
12.5 Separate Compilation 119
13 Revisions and Amendments 121

FTL Modula-2 Retérence - Table of Contents

This page is intentionally left blank
(excepting, of course, this message)

FTL Modula-2 Reference - Table of Contents

FTL Modula-2
Language Reference

General

We cannot guarantee the correctness of the compiler. In a product of
this size, and despite considerable efforts by several people, it is
unlikely that there are no bugs. It is your responsibility to ensure that
any programs you produce with the compiler work as expected. If you
do find a bug, please tell us about it. We will attempt to fix all bugs
reported but we cannot guarantee to do this within a specific period of
time (usually, though, bugs are fixed within a couple of days of being
reported, although distribution can consume several weeks). If a bug
makes it difficult for you to continue with a project, please make this
clear when you report the bug and we will try to expedite the repair.

Please report all bugs (and suggested improvements) in writing, even
if you have telephoned initially, since otherwise it is easy for the bug
notification to become lost and, in any case, phone conversations often
lead to a lack of precision in the definition of the problem.

The programs, relocatables and symbol files produced by you with the
compiler are your property. There is no need to inform us of such
programs, or to pay a licence fee. However, you may not distribute any
part of this system in source.

All supplied modules, and the supplied utility programs may be freely
distributed as linked programs.

Language Reference FTL Modula-2 Page 1

Page 2 FTL Modula-2 Language Reference

] Determining how you
should approach this
Manual

This is the reference for FTL Modula-2. It describes the Modula-2
language as implemented in the compiler.

This manual is common to all versions of the compiler while there are
separate user manuals for each implementation. This manual de-
scribes the language. The user manual describes how you convert your
programs in the language into executable programs. The user manual
also describes the standard modules supplied with the particular
implementation, since they vary slightly from machine to machine so
as to make good use of the underlying hardware and operating system.

If you already know Pascal, or some other modern language, such as
Algol 68, Simula 67, or perhaps even C, then you should have little
difficulty learning Modula-2 from this manual. If you have no knowl-
edge of programming, or have only programmed in Basic or COBOL,
then there are a number of concepts that are probably not sufficiently
described in this manual to meet your needs.

In any case, you will probably find it useful to purchase a text book on
Modula-2. In recent months, a number of books on Modula-2 have
appeared. While none of the books which we have seen is perfect, there
are several which are useful. Check at your nearest technical book-
shop. The Addison-Wesley Publishing Company has several titles, at
least two of which the texts by Edward J Joyce and Professor Arthur
Sale are worth examining.

Other books which you may find useful are books on data structures
which give examples in a real (or almost real) programming language
(such as Niklaus Wirth's 'Data Structures + Algorithms = Programs'),
and books which teach programming Pascal (You can find a shelf full
in any technical bookshop). In the latter case, look for a book that
emphasizes programming technique rather than language details.

Language Reference FTL Modula-2 Page 3

Pascal programmers should be aware that the similarity between
Modula-2 and Pascal has been somewhat exaggerated in the popular
press. Modula-2 is a much more powerful language than Pascal. It has
been designed to support software engineering, whereas Pascal was
mainly intended to be didactic.

For example, Modula-2 provides excellent separate compilation facili-
ties, and allows you to break free of the strong typing constraints of
Pascal when it is essential to do so. See Section 12 for a comparison
of Pascal and Modula-2.

C programmers need to be aware that the emphasis of Modula-2 is
rather different from that of C. C is intended to be a high level
assembler. Like an assembler, it does little checking. As a result, it will
rarely pick up blunders at compile time (though UNIX users have the
excellent program LINT to do this for them). Modula-2, on the other
hand, attempts to find as many errors as possible at compile time, but
gives you facilities to override this checking,.

If you are already an experienced Pascal programmer, the appendix
showing some of the principle differences between the languages is a
quick way into Modula-2. You will also want to look at the sections on
Modules, since these have no counterpart in Pascal. Also, you will
probably find a copy of Wirth's book 'Programming in Modula-2'
(Springer-Verlag) useful. This is very definitely a book for experienced
programmers. Make sure you get the latest edition (edition 3 at the time
of writing this manual), since the language keeps changing from
edition to edition. We are attempting to keep the compiler up to date
with this book. In addition, there are a certain number of programs in
source on the distribution disks. These will provide extended examples
of modules written in Modula-2. They should not, however, be
assumed to be paragons of good programming style.

In the manual, we will want to distinguish between the Modula-2
language and this implementation of Modula-2. When we refer to
Modula-2, we mean the language. When we refer to the compiler, we
mean this particular implementation. Occasionally, we will refer to the
standard language. This means the language as defined in the report
section of Niklaus Wirth's book. Unfortunately, this report is not
sufficiently complete to serve as a full language standard. Many things
which you are left to deduce would need to be made explicit in a
standard.

Page 4 FIL Modula-2 Language Reference

In addition, there is a set of changes and clarifications released by
Niklaus Wirth between February and March 1984. These are imple-
mented by this compiler. They are listed in Part II of the manual. As a
result of these changes, some modules which were valid under the old
compiler are no longer valid. The biggest difference is the removal of the
EXPORT statement from definition modules.

Language Reference FTL Modula-2 Page 5

Page 6 FTL Modula-2 language Reference

2 An Introductory Example

We shall start with a very small example of a Modula-2 program so that
the material which follows is easier to follow.

1 MODULE SumNumbers;
2 FROM SmallIO IMPORT ReadInt,Writelnt;
3 FROM Terminal

4 IMPORT WriteString,Writeln;

5 VAR i, j:INTEGER;

6 BEGIN

7 WriteString ('Enter some numbers');
8 Writeln;

9 WriteString('Enter 0 tc end');
10 Writeln;
11 i:=0;

12 LOOP

13 WriteString('Number:");
14 ReadInt (j);

15 IF j=0 THEN EXIT END;

16 1:=1i+73;

17 END:

18 WriteString(' The sum is ');
19 WritelInt (i, 7):
20 WriteLn;

21 END SumNumbers.

This program simply outputs a message to the terminal, reads in a list
of numbers, and then prints their total. We have numbered the lines
of the code for ease of reference in the text that follows. These numbers
are not part of the program,; if you were to type them in as part of the
program, it would not compile.

Note the form of the program. It takes the form of amodule. The module
is the basic unit of compilation in Modula-2 you cannot compile
anything smaller. A module starts with a module header (line 1), and
ends with an END followed by the repetition of the name of the module
and then a period. (line 21)

A typical program contains a number of modules. To produce an
executable program, you must bind together these modules with the

Language Reference FTL Modula-2 Page 7

linker.
In this module, references are made to routines in the modules

SmallI0 and Termiral. The routines are used throughout the code,
but they are requested right at the beginning of the code, on lines 2
through 4. These import statements are a central feature of Modula-
2; whenever you want to access an object that exists in another
module, you must tell the compiler what module it is in and give its
name.

When you link this module to produce an executable program, the
other modules which it needs will be included automatically.

Line 5 of the program contains some variable declarations. In Modula-
2, all variables must be declared. You cannot simply declare by use, as
in Basic or Fortran. This helps protect you against mis-spelling
variable names.

Line 6 through 20 of the module form the executable part. Executicn
starts with line 6. When line 20 is reached, the program is terminated.

The rest of this part of the manual describes the language in detail.

Page 8 FTL Modula-2 Language Reference

3 The Lexical ltems

Programs in the language contain a series of symbols called lexical
items. Lexical items are the basic words and punctuation marks of a
program. '

Each lexical item consists of one or more characters. There can be no
blanks or tabs within a lexical item (except within string literals), nor
can there be a line break (line breaks are not allowed in strings, either).

For example, the first few lexical items in the example in the preceding
section are MODULE, SumNumbers, ; and FROM.

Line breaks have absolutely no significance in Modula-2 programs. (If
you put one in the middle of a lexical item, the text is no longer a
Modula-2 program).

Lexical items fall into three groups. F:irsﬂy. there are the punctuation
symbols, or marks, such as ; and : in the example above. Marks can
contain more than one character. For example, :=is one mark, not two.

Secondly, there are the identifiers and the literals. These items have a
value as well as being lexical items. For example, Fred and George are
both identifiers, even though they are different. Similarly, 42 is a
numeric literal as well as representing the nuinber 42. That is, these
symbols have meaning in addition to the type of lexical item that they
represent.

Finally, there are the reserved words. Reserved words look like
identifiers, but each reserved word is a different lexical item, and it has
no meaning other than that it represents a particular lexical item. For
example, MODULE and FROM in the preceding example, are reserved
words.

Reserved words are like highway signs. They tell the compiler what to
expect for the next few symbols.

Language Reference FTL Modula-2 Page 9

3.1

Marks -

The lexical constants are:

+ ~ * /

.
[

§ <>

< > L= >=

()

{1

x>

The usual arithmetic operators. Note that / can only be
used for real number division. _

{pronounced ‘becomes’) The assignment separator.
An alternative logical AND operator.

Test for equality operator (Note: never used for assign-
ment). It is also used in CONST and TYPE declarations.

Two alternate forms for the not equal operator. We always
use <> since this is the same as Pascal, and in any case,
isn't really # , it's really national currency symbol 2. If
you are in England, it will print as a pound sign (£) , in
Japan as a yen sign (¥), etc.

The usual relational operators.
Parenthesis for use in expressions.

Index brackets for use on arrays, and in some other
places, such as subrange definitions.

Set braces. Pascal programmers note: Not used for
comments.

Comment braces. Comments may be nested. This makes
it possible to comment out code which contains com-
ments. This is different from Pascal which does not allow
nested comments.

The dereference operator. This operator is used with
pointers.

Various punctuation marks.

Page 10

FTL Modula-2 Language Reference

Case variant terminator. This is not the exclamation
mark (!). Its usually somewhere up the top right hand
side of your keyboard. (The IBM PC, naturally, has it
down the bottom left). There is sometimes a gap in the
middle of the bar.

H Statement separator. You only need a semi-colon when
the next symbol is the start of a statement. For example,
you would not need one before and END or an ELSE since
these symbols occur in the middle of a statement. Even
so, including a semi- colon in these places does no harm
and can save compilation errors occurring when you add
more statements.

~ The alternate form of the boolean NOT operator. Avoid this
character as it often fails to print on dot matrix printers
with old ribbons, because it usually only uses two pins on
the print head.

3.2 Identifiers and Reserved Words

An identifier is a symbol which you can use to name an object. A
reserved word is an identifier that has been reserved by the language
to represent (part of) some language construct.

The first character of an identifier must be alphabetic. This may be
followed by any number of alphanumeric characters.

The alphabetic characters may be upper or lower case. However, case
is important: the identifier FIDO is not the same as the identifier Fido,
or the identifier fido. These are three different identifiers!

Itis conventional to spell identifiers in Modula-2 in mixed case with the
first character of each word in the identifier in upper case and the
remaining characters in lower case. In addition, it is convenient to use
all lower case for local or unimportant variables.

Examples:

LineLength LionsInAfrica CupWinnersCup

This makes it easier to get the spelling correct.

Language Reference FTL Modula-2 Page 11

In this compiler, only the first thirty-two characters of an identifier are
significant. Characters after the thirty-second are ignored. Also, in this
compiler, you can use the characters $ and _{(dollar and underline) in
an identifier. These characters are significant. They cannot start an
identifier.

For example, Foo$1, Foo 1 and Fool are all different identifiers. The
use of $ and _ in identifiers makes your programs non-portable.

Reserved words look like identifiers, but they are not simply special
identifiers. To the compiler, a reserved word is more like a mark (such
as [) than it is like an identifier. You should keep this in mind when you
are fixing compilation errors.

Reserved words are always completely upper case. Here is a complete
list of reserved words:

AND ARRAY BEGIN
BY CASE CONST
DEFINITICN DIV DO

ELSE ELSIF END
EXIT EXPORT FOR
FRCM Ir IMPLEMENTATION
IMPORT IN LOOP
MGCD MCDULE " NCT

OF OR POINTER
PROCEDURE QUALIFIED RECORD
REPEAT RETURN SET
THEN TO TYPE
UNTIL VAR WHILE
WITH

In addition to the reserved words, there are some identifiers called
standard identifiers. These are simply identifiers which are defined in
the compiler you can reference them without first declaring them.

There is a difference in the way this compiler handles standard
identifiers and the way they are handled in the standard language. The
standard states that these identifiers are implicitly imported at the
global level of any module (even modules nested inside other modules),
and cannot therefore be redeclared at the module level.

Page 12 FTL Modula-2 Language Reference

In this compiler, they are declared at a level one below the level of the
outermost module.

They can therefore be redeclared at the module level. We recommend
that you do not do so to retain compatibility with other Modula-2
compilers. In any case, using the standard identifiers for other
purposes is confusing,

The standard identifiers are:

ABS BITSET BOOLEAN CAP CARDINAL CHAR
CHR DEC DISPOSE EXCL FALSE FLOAT
HALT HIGH INC INCL INTEGER MAX
MIN NEW NIL ODD ORD PROC
REAL SIZE TRUE TRUNC VAL

In the MSDOS and 68000 versions, the additionél standard identifiers
LONGINT, LONGCARD, SHORT and LONG are also defined.

All these standard identifiers are described in detail later in the
manual. (See the index for page numbers.)

3.3 Literals

Literals are either numeric literals or string literals.

A numeric literal is a string of digits. It may be in octal, if followed by
b or B, or in hex if followed by h or H. It may not contain commas, or any
other non-numeric (except, of course, for hexadecimal literals).

For example:

1 23 OffffH 777B

These last two are a hexadecimal and an octal constant respectively.

Note that the hex value FFFFh had to be introduced with a zero so that
it could be distinguished from an identifier.

Language Reference FTL Modula-2 Page 13

Real constants may contain a period and optionally an exponent. For
example: 2.3 3.7E-9 2.3E9 5E4

The last example (5E4) is an extension permitted by this compiler. The
E notation is used to give an exponent, which is a power of ten. Hence.
5E4 is the number 50000.

String literals can either be sequences of characters enclosed in elther
single or double quotes:

'Barrossa Valley'
"Cunningham's Gap"

Note that a string opened with a single quote is terminated with a single
quote and cannot contain a single quote. A string opened with a double
quote is terminated with a double quote and cannot contain a double
quote. (Pascal's '''' convention is not supported.)

A string literal may contain zero characters. If it contains exactly one
character, it may be used as either a character constant (i.e. of type
CHAR) or a string constant. A string has type ARRAY[0..n] OF CHAR,
where n is the number of elements in the string, less 1.

This compiler contains an extension which allows you to include non-
printing characters in strings. For compatibility with other compilers,
this extension is normally disabled. To enable it, use the pseudo-
comment:

(*SA™™)

A pseudo-comment is a comment that actually changes the way the
compiler works. A pseudo-comment always has a $ character immedi-
ately following the opening (* and this is followed in turn by a character
identifying the pseudo-comment. Other pseudo- comments are de-
fined in the user guide in the section on compiler flags.

Here, the character ~ in (*$A~*) is an escape character which is to be
used to prefix control characters. It can be any non-alphanumeric
character.

Page 14 FTL Modula-2 Language Reference

If the compiler finds this escape character in a string, and the following
the character is alphabetic, the two characters together represent the
corresponding control character. For example:

'Line 1"M~JLine 2"G"G"G'

Which when listed to the terminal, types out as two lines of output and
rings the bell three times. This is because "M represents the carriage
return character (0dx), ~J represents the line feed character (0ax) while
~G represents the character to ring the bell (07x).

If the following character is not alphabetic, the next character repre-
sents itself. This allows you to include the escape character in a string
(by repeating it) and even allows you to include quote characters in a
string: '~'An"' ~“Example""'

which prints as: 'An' ~Example”

To disable the use of the extension, enter the pseudo-comment
(*SA *).That is, setting the flag character to space turns the facility
off. Do not enter (*$A*) without the space. This sets the escape
character to be * and the comment is not yet terminated!

Character literals are string literals which contain exactly one charac-
ter. In addition, a character literal can be entered by giving the value
of the character in either octal or hexadecimal, followed by the
character C or X.

For example: 13C 0dx

Note that the second form (0dx) is an extension supported by this
compiler for hex character values.

If the suffix is a c, (or C) the ordinal value is in octal. If it is an x(or X),
it is hexadecimal. It is not possible to give the value in decimall

Hence: 0dx, ODx, ODX, 15c and 15C all represent the ASCII character
carriage return.

Language Reference FTL Modula-2 Page 15

3.4 Comments

Comments are enclosed in the symbols (* and *).

Comments can be nested. This is useful in commenting out code which
itself contains comments. For example: .

(* The following code is commented out

WHILE (i<Tabcnt) AND (Tab[i]<>Key) DO
(*keep searching¥*)
INC(i);
END;

*)

In Pascal, the *) after searching would terminate the comment and
the next two lines would be compiled. In Modula-2, because comments
nest, the lines following (*keep searching*) are still commented out.

The { and } characters of Pascal cannot be used for comments. They
are used in set constructs.

Page 16 FTL Modula-2 Language Reference

4 The Module Structure

The basic unit of compilation in Modula-2 is the Module. Any program
you write will consist of a number of modules. You will write some of
these modules yourself. Others will be modules which have been
provided with the compiler. The latter modules are described briefly in
the user guide. In addition, the sources for these modules is on the
release disks.

To create a program, you compile all of your modules individually and
then call the linker to combine them into a program. When you make
a change to a module, you will often only need to recompile that
particular module. You then call the linker again to combine all the
modules together.

With a few exceptions which will be noted on the README . NOW file on
your distribution disks, all the supplied modules have been compiled
ready for use when you receive the compiler. You do not need to
recompile them to use them in your own programs.

There are three types of module. The type of module is identified by the
first reserved word or words in the text of the module:

MODULE
DEFINITION MODULE
IMPLEMENTATION MODULE

A (plain) module is a piece of code which may use other modules in its
definition, but is never used by another module. Hence, this is the top
level of a program and most programs will only contain one such
module (though they may contain more and need not have any).

Definition and implementation modules go together in pairs.
The definition module acts as a prefix to the implementation module.
It defines the objects of the module which can be accessed from outside

the module.

Any variables, constants or types defined in the definition module are
automatically accessible in the implementation module.

Language Reference FTL Modula-2 Page 17

You can use them in the implemen:ation module as if they were
declared at the beginning of that module.

The reserved word IMPLEMENTATION is the signal to the compiler that
it must look for a definition module. If this word is omitted, no search
for a definition module is performed. .

What the compiler actually looks for is a symbol table file. This file has
the extension .SYM or .1MS and a file name taken from the first eight
characters of the module name. It does not read the source code of the
definition module. It also looks for a relocatable binary file, which will
have the extension .REL, .SMR or . LMR depending upon which version
of the compiler you are using. It needs this so that it can append the
code generated for the implementation module to the code generated
for the definition module, The compiler also looks in the libraries
SYMFILES.LBR and MODULA2 . LBRif it cannot find the . SYMor .REL files.

You can replace the implementation module associated with any given
definition module. Provided that the new implementation works, any
module which imports the module will not be able to tell the difference.

However, if you change (and re-compile) a definition module, you must
also recompile the implementation module. You must also recompile
all modules which import the module you have just changed. If you fail
to doso, the linker will giveyou an error message (X recompiled since
Y) and yourlinked program may not work. This is discussed more fully
in the user guide in the sections on the linker.

A module starts with one of the above headers and ends with an END
followed by a repetition of the module name, and a period. For example:

MODULE Example;
(*lots of code*)
END Example.

The module construct allows you to divide a program into logically
related parts. Each part is written as a separate module. This reduces
the amount of code that must be recompiled whenever you make a
change to your program. It also allows several people to work on a
program at once, since they can each work on a different module.

Page 18 FTL Modula-2 Language Reference

4.1 IMPORT and EXPORT

Because your program is written as separate modules, rather than as
one great mass of code, as would be the case in Pascal, when you
compile a module, you have to be able to tell the compiler what
resources you want to use from other modules. This is achieved with
the IMPORT statement.

The IMPORT statement is used at the beginning of a module to import
identifiers from outside the module. In a module, the only identifiers
which are automatically available are the standard identifiers, as listed
in section 3.2. Any other identifier must be imported.

The IMPORT statement takes one of the forms:

FROM module-identifier IMPORT identifiex;, R
or

IMPORT module-identifier,module~identifier,...;

The module-identifier is the name of a module which contains
resources that you want to use. In the first form, following the IMPCRT
reserved word, you give a list of the identifiers for the resources that you
want to access. These resources can be procedures, variables, types or
constants. Any identifier that has been declared in the definition
module of the named module can be accessed.

For example:
FROM Terminal IMPORT WriteString,WritelLn;

Terminal is the name of a module which is supplied with the compiler.
WriteString and WriteLn are two procedures contained in that
module. The FROM statement announces that you intend to use these
procedures in the module you are writing. Because of this statement,
when the compiler sees WriteLn, it knows that the procedure WriteLn
from Terminal is the one to use.

You may reference the imported identifiers just as if they were declared
in the current module.

Language Reference FTL Modula-2 Page 19

This means, for example, that you cannot declare the identifiers again,
as they would then be doubly declared. Neither may you import them
a second time, for the same reason.

When you import from a module, only the identifiers named are
imported from the module. Terminal, for example containsother
identifiers as well as WriteLnand WriteStringbutthese havenotbeen
mentioned in the FROM Terminal IMPORT statement and are therefore
not accessible in our module.

There is one exception is this: when you import an identifier which is
an enumeration type identifier, all the constants associated with that
identifier are also imported implicitly. For example, the module
ScreenlO from the Editor Toolkit contains an enumeration Edits
which contains a list of all the possible screen operations that can be
performed by ScreenIO. Importing the identifier Edits makes all the
identifiers for the various screen operations available as well. We shall
return to this point in the section on enumeration types.

The second form of import took the form:
IMPORT identifier,...:

In this form, each identifier is the name of a module to be imported.
Every identifier in each named module is imported, but it is qualified
by the name of the module. To reference them, you must precede each
reference by the name of the module from which the identifier has been
imported. For example:

IMPORT Terminal;
(*import from standard module Terminal*)
BEGIN
Terminal.WriteString(' hi there!');
Terminal.Writeln;

Contrast this with the way we access these procedures after using the
first form of the IMPORT statement:

Page 20 FTL Modula-2 Language Reference

FROM Terminal IMPORT WriteString,WritelLn;
BEGIN

WriteString(' hi there!');

Writeln;

In the preceding example, WriteString had to be qualified by Termi-
nal.

When an identifier is imported in this qualified manner, it will not clash
with any other identifier. As a result, if an identifier is available in two
modules and you want to use both of them in a certain module, youcan
import one (or both) using qualified import and this will avoid the
doubly declared identifier problem.

In this compiler, when you compile a definition module, a file with the
extension .SYM or .LMs is created. This file contains all the symbols
defined in the definition module in a form which can be quickly loaded
by the compiler. When you import from another definition module, the
compiler expects to find an appropriate . SYMor . LMS file. For example:

IMPORT Conversions;

requires that the compiler can find a file CONVERSI.SYM or
CONVERSI.LMS depending on the version of the compiler that you have.
Note that only the first eight characters of the module name are used
in the file name and that they are converted to upper case. If you use
$ or _ in a module name, these characters will be ignored.

4.1.1 Nested Modules

Modules can be nested inside other modules. This isolates the identi-
fiers inside the module from code outside the module. In addition, it
prevents code inside the nested module from accessing identifiers from
outside the module (other than the standard identifiers which are
always available) unless you explicitly import them.

Ifyou are new to Modula-2, it is probably best to ignore nested modules
for the time being.

In a nested module, you can only import identifiers from the surround-
ing module. For example:

Language Reference FIL Modula-2 Page 21

PROCEDURE Fred;

VAR i:INTEGER;
MODULE InFred;
IMPORT 1i;

i is the variable local to Fred.

The FrROM form of the import statement cannot be used, because the
separately compiled definition modules are not visible from a nested
module.

Note that, if we import a module using the second form (e.g. IMPORT
Terminal), the identifier of the module is defined in the importing
module, and hence cannot be used for another purpose. It can also be
imported into a nested module:

MODULE Outer;

IMPORT Terminal;
MODULE Inner;
IMPCRT Terminal

.o

We can import Terminal into the inner scope because it is a known
identifier in the outer scope the fact that it is a module identifier is
irrelevant. :

Also, we can import identifiers which have themselves been imported.
For example:

MODULE Outer;

FROM Terminal IMPORT WriteString;
MODULE Inner;
IMPORT WriteString;

Modules can be nested inside other modules. They can also be nested
inside procedures. The nested module is part of the declarations of the
surrounding object, so it must precede the executable code for that
surrounding module or procedure.

Page 22 FTL Moduia-2 Language Reference

4.1.2 EXPORT

The EXPORT statement is only used in modules which are nested inside
other modules. This is a change from earlier versions of Modula-2 in
which the EXPORT statement was also used in definition modules. Since
the clarifications and modifications introduced by Niklaus Wirth, all
identifiers are automatically exported from a definition module.

If a module contains an EXPORT statement, it must immediately follow
any IMPORT statements, or the module header if there are no IMPORT
statements.

The statement consists of the keyword EXPORT followed by a list of
identifiers that are to be exported:

MODULE Inner;
IMPCRT WriteString;
EXPORT Procl,Proc2;

The keyword EXPORT may be followed by the keyword QUALIFIED:

MODULE Inner;
EXPORT QUALIFIED Proci,Proc2;

In this case, to use any of the exported identifiers in the surrounding
module, you must qualify the identifier with the name of the module
from which it has been imported. For example:

Inner.Procl

If the QUALIFIED keyword is not used, the identifier is given without the
qualifying module name and, once again, you must ensure that the
identifier does not conflict with any other identifier in the scope to
which you are exporting.

There may be several IMPORT statements in any module, but they must
be grouped together at the beginning of the module. If there is an
EXPCRT statement, it must immediately follow the IMPORT statements.

Language Reference FTL Modula-2 Page 23

4.1.3 Some Advanced Rules

In this compiler, if an identifier is imported twice in a single IMPORT
statement, no error will be produced. This is because the compiler
marks the symbols to be imported and then enters them into the
symbol table after they have all been marked.

However, importing an identifier twice in different import statements
will produce an error.

If we use the first form {FROM Terminal IMPORT ...), then only the

identifiers after the IMPORT are defined; Terminal could be used for
something else, though it would be poor style to do so.

4.2 CONST Declarations

-Constant declarations are introduced by the keyword CONST. The
keyword is followed by one or more constant declarations.

» Constants' ean be defined to be numeric values (Real, integer or

cardh‘fd} stnngs and elements of enumerations.

For exatnple:

CONST pi=3.141592653589793; (*etc*)
twopi=2.0*pi;
ProgName=' Areas of Ellipses';
cases=100;
smallversion=cases<50;
(*this is a BOOLEAN¥*)

Notice that we can use expressions (eg 2.0*pi) provided that the
expression can be evaluated by the compiler. For example, an expres-
sion line SIN (pi/2.0) requires the use of a SINroutine which can only
_ be called when the program is run. This prevents the use of this
expression in a constant.

As well as simple constants such as those above, the compiler can
create constants using information from type declarations.

Page 24 FTL Modula-2 Ltanguage Refarence

TYPE Context=(weak, firm,strong);
ContextArray=ARRAY[0..cases-1] OF Context;
ContextSet=SET OF Context;

CONST assigncontext=firm;
ArraySize=TSIZE (ContextArray);
ParamContext=ContextSet {firm, strong};

(Type declarations are described in the next section)
A constant declaration associates a value with an identifier. This
identifier is sometimes called a manifest constant, since the declara-
tion makes the constant easy to find and to change.
You should use constant declarations for any value which could
conceivably change. It is also useful to name dimensionless constants,

like pi above, even though they never change.

On the other hand, you should avoid naming constants just for the
sake of naming them; you should avoid infelicities like:

CONST two=2;

4.3 TYPE Declarations

Type declarations allow you to construct new types from simpler types
and to equate type identifiers. They are introduced by the keyword
TYPE. The keyword is followed by one or more type declarations.

A type declaration is a means of specifying a set of values which
variables of the type can take. If you are only familiar with simple
languages like BASIC or FORTRAN, or with languages like COBOL
which confuse types and variables, then it is important that you make
sure you understand the difference between a variable and a type.

A type declaration does not allocate any memory into which values can
be placed when the program is run. Only a variable will do this. This
means that the following is wrong:

Language Reference FTL Modula-2 Page 25

TYPE InnerPlanet=(Mercury,Venus,Mars,Earth);

InnerPlanet:=Venus;

As there is no memory associated with the type InnerPlanet, you
cannot assign a value to it. InnerPlanet is an enumeration type, as
described below. Before you can use a type in a program, you must
have a variable of the type. You manipulate the data by using the
variable's identifier. You can have any number of variables of a given
type. Each such variable is called an instance of the type.

A type is rather like a design, let us say for for a kitchen kettle. You
cannot actually boil water in the design. Before you can do that, you
have to use the design to build a kettle this is an instance of the design
and then you can make your cup of coffee {you will probably be ready
for one).

Modula-2 provides a number of constructs for creating types
composed of simpler types and restricting types to subranges of other
types. These simpler types are either types you have already declared
{perhaps in another module) or else they are from a set of predefined
types which are built into the compiler.

4.3.1 The Predefined Types

Modula-2 contains a numbef of predefined types. Each such type has
an identifier.

The types INTEGER and CARDINAL take whole numbers as their values.
Integers are signed values, while cardinals are un-signed.

In this compiler, an integer value must be between -32768 and 32767
(inclusive). A cardinal value must be between zero and 65536
(inclusive).

So, for example, -10 is an integer value, 23 can be either integer or
cardinal, while 40000 is cardinal, since it is too large to be an integer.
4.3 is neither integer or cardinal since it contains a fractional value.

You can assign an integer to a cardinal (and vice versa) but you cannot
directly compare an integer to a cardinal.

Page 26 FIL Modula-2 Language Reference

Because the types are so similar, it is very easy to forget whether a given
variable should be INTEGER or CARDINAL. A good rule to follow is to make
all variables CARDINAL unless it is possible for them to have negative
values.

The type CHAR takes as it's values any ASCII character. There are 256
such values although only the first 128 are usually used. The
characters in the second 128 tend to vary from computer to computer.

The type BOOLEAN takes the values FALSE and TRUE. FALSE and TRUE are
standard identifiers representing constant values. FALSE is less than
TRUE. This means that you can perform tests like:

IF a<=b THEN

where a and b are BOOLEAN variables. This returns TRUE if a is FALSE or
if b is TRUE.

The type REAL takes as its values a set of rational numbers. (The term
Real numberis a misnomer which was first perpetrated by FORTRAN).
The exact format of these values is described in the user guide. For
most purposes, it will suffice to know that, in FTL Modula-2, a real
value has about 16 significant digits, and that the largest real value
which can be represented is about 1E152 while the smallest positive
real which can be represented is about 1E-152.

Many Modula-2 compilers will have ranges of values and precisions
that are substantially less than these.

There is also a type BYTE, which only takes one byte of storage, and
takes values from O through 255. This type is not a standard type. It
must be imported from sYSTEM, which is described in full later.

The MSDOS and 68000 compilers contain the additional types
LONGCARD and LONGINT which are 32 bit cardinals and integers. In these
versions, you can have long literals which, such as 100000. This is too
large to be a CARDINAL but it is a LONGCARD or even a LONGINT.

Language Reference FTL Modula-2 Page 27

4.3.2 Type Equivalence

The simplest form of type declaration is to declare that a new type is
the same as an existing type.
For example:

TYPE LabelNo=REAL;

Whenever LabelNo is used, it is exactly the same as using the
predefined type REAL.

This is sometimes useful when you may want to change the type later.

For example, you may have some code that could conceivably use
either reals or integers.

4.3.3 Enumerations

An enumerations is a list of possible values. Each value is represented
by an identifier.

For example:

TYPE InnerPlanet=(Mercury,Venus,Earth,Mars);

The identifiers in the brackets are declared as constants. They have
values which represent their position in the list. Their type is the type
being declared, in this case InnerPlanet.

These constants are ordered. Mercury is less than Venus, which is less
than Earth, etc. So if we have two variable of type InnerPlanet, we can
compare their values.

VAR a,b:InnerPlanet;

IF a<b THEN

which is true if the value of a occurs before the value of b in the
enumeration. The constants are not compatible with variables of type

INTEGER, CARDINAL or any other enumeration type. The following is
wrong:

Page 28 FTL Modula-2 Language Reference

VAR c:CARDINAL;
a,b:InnerPlanet;

ci:=ay;

The compiler will diagnose an error. Even though, internally in the
program, Mercury is represented by zero, Venus by one, and so on, they
are not compatible with CARDINAL.

This is a feature of Pascal and its derivatives which marks a major
advance in programming reliability over earlier languages like PL/I. It
is called strong typing. It increases the reliability of your programs
since more errors are detected when the program is compiled instead
of being (possibly) detected when the program is tested.

Recall that, when an enumeration type identifier is imported into a
module, all the identifiers in the enumeration are imported implicitly.
This means, for example, that if a module contains this statement:

FROM Planets IMPORT InnerPlanet;

then not only InnerPlannet but also Mercury, Venus, Earth and Mars
are imported.

You can use the enumeration constants to define other constants:
CONST ThirdPlanet=Earth;

Which results in Thirdplanet being identical in both value and type
to Earth.

4.3.4 Subrange Types

A subrange allows you to specify that a new type only contains values
that are a subrange of another type.

TYPE EarthLikePlanets=[Venus..Mars];
UpperCase=['A'..'2'];

The type EarthLike has been limited to the values Venus, Earth and
Mars. UpperCase has been limited to the uppercase characters.

Language Reference FTL Modula-2 Page 29

In general, a variable of the type may take on any value between the
lower bound and the upper bound (inclusive). Subranges of REAL are
not permitted.

The lower bound must be given first. This means that the declaration
EarthLikePlanets=[Mars..Venus]

would give an error; the low bound may equal the upper bound, but it
must not exceed it.

Each enumeration type has an underlying base type. The enumeration
is a restricted range of its base type. For example, the base type of
EarthLikePlanets is InnerPlanets while that of UpperCase is CHAR.
The same amount of storage is required for a variable of the subrange
as is required for a variable of the base type.

Because EarthLikePlanets is derived from InnerPlanets (Inner-
Planets is the base type), variables of the two types can be used
together in comparisons and assignment statements.

We can also declare subranges of the predeclared types INTEGER and
CARDINAL. For example: '

SmallInts=[-10..10}1;
SmallPositives={0..10];

The first of these must clearly have base type INTEGER, since it can take
negative values. The base type of the second could be either INTEGER
or CARDINAL.

This compiler differs from the standard slightly in this area. In the
standard language, as the statement stands above, SmallPositives
has base type CARDINAL. However, in this compiler, it is of a type
compatible with both INTEGER and CARDINAL. There is actually a
hidden type which is used for constants which is used as the base type
of any subrange whose bounds are compatible with both INTEGER and
CARDINAL.

Page 30 FTL Modula-2 Language Reference

If this were not the case, then the following would produce an error:

VAR i:INTEGER;
s:SmallPositives;

IF i<s THEN ...

Since the base type of s (CARDINAL) cannot be directly compared with
a variable of type INTEGER.

You can force a subrange to have one type or the other as its underlying
(or base) type. For example, we could make it INTEGER by preceding the
right hand side with INTEGER like this:

SmallPositive=INTEGER({0..10];

In this compiler, there is also a type BYTE. If you want toreference BYTE,
you must import it from the module SYSTEM (SYSTEM is described in full
later). We can use BYTE to qualify a subrange.

SmallPackedPositive=BYTE[(0..10];

Now the base type of SmallPackedPositive is BYTE. BYTE is declared
as:

BYTE=[0..255];

However, if you declared it like this in your program, it would require
two bytes of storage for each variable. The version of BYTE in SYSTEM
only uses one byte, as will variables of type SmallPackedPositive
when they are given the explicit base type BYTE.

4.3.5 Set Types

A set is a data type whose values are any combination of an enumera-
tion or subrange data type. For example:

TYPE NumberSet=SET OF BYTE;
CHARSET=SET OF CHAR;
SetOfPlanets=SET OF InnerPlanets;

Language Reference FTL Modula-2 Page 31

The first set (NumberSet) would declare a set which could contain
elements between 0 and 255. The values of the second set (CHARSET) are
collections of characters. For example:

CONST AlphaNumeric = CHARSET{'A'..'Z','a'..'z','0'..'9'};

This defines AlphaNumeric to be a CHARSET containing the alphabetic
characters (both upper and lower case) and the numeric characters.

The final set (SetOfPlanets) takes collections of planets as its ele-
ments. For example:

CONST EarthLike=SetOfPlanets{Venus,Earth,Mars};

In a set, a value is either in the set, or not in the set. The compiler
actually represents a set as a list of bits. Each possible element has a
bit which is 1 if the element is present and O if it is not present.
Some of the values of NumberSet are

NumberSet { } (the empty set),

NumberSet {0},

NumberSet {0,1} and

NumberSet {5,7,234}.

There is a predeclared set type BITSET. This is declared to be
BITSET=SET OF [0..15];

Normally, a set construct is preceded by the identifier for the set type
to which the construct is to belong. If this identifier is omitted, the
construct defaults to type BITSET:

VAR t:CHARSET;

t :=CHARSET{'C', 'A', 'B'};

VAR s:BITSET;

s:={0,1,2};
(*The same as s:=BITSET{0,1,2}:;%*)

Page 32 FTL Modula-2 Language Reference

In Modula-2, the lower bound of the set is normally required to be zero.
This compiler allows any lower bound. So, in this compiler, you can
declare:

OffSet=SET OF [1024..1056];

and variables of this set type will only require 5 bytes each.

This compiler allows at most 1024 elements in any set. This is rather
more than most compilers allow. In fact, this compiler allows you to
have a SET OF CHAR. Actually, the only reason why the limit of 1024

elements exists is because you cannot use any literal that contains
more than 128 bytes.

4.3.6 Array Types

An array is a type in which values are lists of values of another type,
each value being associated with an identifying value. For example:

Diameters=ARRAY InnerPlanet OF REAL;

The array Diameters has four elements. In each element, we will
(presumably) store the diameter of the associated planet:

VAR Diameter:Diameters;
(*we store values in a variable, the type merely
describes the possible values?*)

Diameter [Venus) :=12.63e6; (*metres*)

Note, once again, that we must declare a variable of the type to store
values in we cannot store values directly in the type.

The array type differs from the set type because each element in an
array has an associated value and is always present. In a set, it is
simply present or absent.

The index type must be a subrange or an enumeration. An explicit
subrange can be given:

Language Reference FTL Modula-2 Page 33

Vector=ARRAY[1..10] OF REAL;
Note that the brackets of the subrange must be included.

You can also use the types CHAR and BOOLEAN as the index types of
arrays: .

KeyChar=ARRAY CHAR OF CARDINAL;
BoolArr=ARRAY BOOLEAN OF CARDINAL;

We can have more than one index in an array:
Matrix=ARRAY[1..10],([1..10] OF REAL;

It would be an error to write this declaration as:
Matrix=ARRAY[1..10,1..10] OF REAL;

This is allowed in Pascal, but not in Modula-2. Also, you must use the

symbol . .. Some Pascal compilers allow you to use a colon (:) instead
of ... This is not permitted in Modula-2.

4.3.7 Record Types

In an array, all the elements have the same type. The record construct
allows us to create a type composed of different types of data.

Unlike an array, in which the individual elements are identified by
members of a subrange or an enumeration, in a record, each element
is given its own identifier. For example:

Months=(Jan, Feb,Mar, Apr,May, Jun, Jul, Aug, Sep, Oct,Nov, Dec) ;
(*an enumeration type*)

Date=RECORD
Day:[0..31];
Month:Months;
Year :CARDINAL;
END;

Page 34 FTL Modula-2 Language Reference

The value of this record are dates. Suppose we have a variable of type
Date:
VAR BeethovensBirthday:Date;

We reference the individual elements of the variable as follows:

BeethovensBirthday.Day:=16;
BeethovensBirthday.Month:=Dec;
BeethovensBirthday.Year:=1770;

The WITH statement, described later, overcomes the tedium of
specifying BeethovensBirthday three times.

This construct would allow us to write:

WITH BeethovensBirthday DO
Day:=16;
Month:=Dec;
Year:=1770;
END (*WITH¥*);

Once we have declare a record type, we can use it to create arrays and
in other record types.

TYPE BirthdayArray=ARRAY[1..1000] OF Date;
VAR BirthDays:BirthdayArray;

. s

Birthdays{10].Year:=1983;

Sometimes, we want to use any of several variants of a record
depending upon circumstances. For example, we may receive our
dates in either the form given above, or as a Julian date:

Language Reference FTL Modula-2 Page 35

Datetype= (Normal, Julian);
Date=RECORD
Year :CARDINAL;
CASE class:Datetype OF
Normal: Day:0..31;
Month:Months|
Julian: JulianDay:[1..366]
END (*CASE*);
END (*Date*);

At any time in any given variable, only one of these variants can be
active. Which one it is is determined by the value of the variable class.
For example:

VAR d:Date;

d.class:=Julian;
d.JulianDay:=254;

Note that we assigned a selecting value to the discriminant (class)
before assigning to any field in the variant part. Some compilers may
check that when you reference a variable in the variant part, that it is
in the currently active variant. Our compiler is not yet that clever
{actually, we do not know of any Modula-2 compiler that is. Some
Pascal compilers are capable of checking this).

Whichever variantis active, the variable Year is available. Because only
one variant is active at any one time, the compiler conserves space by
using the same memory for every variant. The total memory required
for the variant part is therefore equal to the memory used by the largest
variant.

You can use more than one variant in a record description and you may
nest variants within other variants. Pascal programmers will note that
there is a separate END for the variant. (In Pascal, you can only have one
variant part and it must be last.)

Page 36 FTL Modula-2 Language Reference

4.3.8 Pointer Types

A pointer type is a type whose values are the addresses of other values.
Pointers are particularly useful in processing structures which vary,
either because they grow as the program proceeds, or because they
depend upon the input data (or both). Such data structures are called
Dynamic data structures.

For example, suppose we are reading arithmetic expressions from the
terminal and we wish to represent these expressions by a tree. On this
tree 2* (3+4) will look like:

2 +
3 4
More complicated expressions will produce more complicated trees.
The size and shape of the tree is not known until we read the data.

The declarations to handle this structure contain two parts. Firstly, we
declare a pointer to the (yet to be declared) node.

PNode=PCINTER TO Node;

This is the only situation in which you can reference an identifier before
it is declared.

Next, we declare a record type for Node. Each instance of Node is going
to represent one operator. For each node, we need to record the
operator used and pointers to its operands.

Node=RECORD
CASE Terminal :BOOLEAN OF

FALSE:
Operator :CHAR;
LeftOperand:PNode;
RightOperand:PNode |

TRUE :
Value: INTEGER;
END; (*CASE*)

END;

Language Reference FTL Modula-2 Page 37

If we declare a variable of type PNode:

VAR - BaseNode : PNode;

The compiler reserves space, not for the entire tree, but for a pointer
to the base of the tree. To actually generate the base of the tree, we must
use the procedure NEW.

NEW (BaseNode) ;
This allocates storage for an instance of the type Node and returns a
pointer to it in BaseNode. We can now reference the elements of the
record as:

BaseNode".Operator:='*"';

Notice that BaseNcde~ serves the same role here as did
BeethovensBirthday in a previous example. The extra symbol ~ is
used because, whereas BeethovensBirthday is a record, BaseNode is
a pointer which points to a record.
To make this clearer, suppose we have another variable of type PNode:
VAR ThisNode:PNode;

ThisNode:=RaseNode;

The assignment assigns the pointer contained in BaseNode to
ThisNode. As a result, they both now point to the same object.

However, if we had written:

ThisNode” :=BaseNode”;
Then the contents of the value pointed to by BaseNode would be written
into the area pointed to by ThisNode. They would now still point to
different areas of memory, (assuming they were not equal to start with)

but those areas would contain the same value.

If we had another variable which has as its type a pointer to some other
object:

Page 38 FTL Modula-2 Language Reference

VAR AnotherVariable:POINTER TO Date;
then the statements:

AnotherVariable:=ThisNode:;
AnotherVariable” :=ThisNode";

are both illegal, since the pointers do not point to the same type.
Finally, there is a constant NIL which can be assigned to any pointer.
It is used to denote that the pointer is not pointing to any object. It is
compatible with all pointer types.

Of course, pointers are not restricted to pointing to record types; they
can point to any type at all. For example, it could be useful to use a

character pointer:

pCHAR=POINTER TO CHAR;

4.3.9 Procedure Types

A variable with a procedure type takes as its values (the addresses of)
procedures. A procedure type is a first class type; you can use them as
freely as you would use any other type. For example, you can have
arrays of them, or pointers to them.

A procedure type describes precisely a type of procedure there is not

just one type for all procedures. These types are described in detail in
section 4.6.2, after the description of procedures.

4.3.10 Private Types

In a definition module, you can declare a type without giving a
definition.

For example:

DEFINITION MODULE MakeEdit;
TYPE EditFile;

Language Reference FTL Modula-2 Page 39

This allows other modules to use the type, but not to perform any
operations with it other than assignment and allocation of space. The
type is called private (or sometimes, opaque) because external modules
are unable to access the internal structure of the type.

The rest of the definition of the type is given in the implementation
module.

Most compilers require that the private type be no larger than a pointer.
In practice, this means that you often have to allocate objects on the
heap which you would prefer to allocate statically.

This compiler removes this restriction: any type can be a private type,
there is no limitation on size.

When you compile the definition module, the compiler assumes that
the size of the type will be equal to that of a pointer. If, when the
implementation module is compiled, the size is discovered to be
different, the symbol file, which retains the exported information, is
updated.

This update only takes place if the size has changed. You will receive
themessage *** SYM file rewritten **+*attheend ofthecompilation
if this was necessary. You must recompile all modules which import
this module after receiving this message, just as if the definition
module had been recompiled.

There are two restrictions on this facility: If you use the private type in
the definition of another type in the definition part, then the type must
be equal in size to a pointer, and if you use the private type to define
another type in the implementation module, you must fully define the
private type first, or else ensure that its size is the same as a pointer.

That is, you cannot use the type until you give its actual size by
declaring it in full.

Remember that, if you use this feature, your programs will not be
portable.

Pointers, Integers and Cardinals all use two bytes in the CP/M-80 and
small memory MSDOS version of this compiler.

Page 40 FTL Modula-2 Language Reference

Pointers are 4 bytes in the 68000 and large memory MSDOS versions
of the compiler. Integers and cardinals are still two bytes in those
compilers.

4.4 Type Compatibility

Modula-2 is a strongly typed language. This means that in many
contexts, the type of an expression must be of a particular type or types.

This contrasts with some other languages which, given a dubious
expression, will try to find a valid interpretation for it no matter how
outlandish it may be. With a strongly typed language, you sometimes
have to write a little more code to make clear what you want to do but
the advantage is that the compiler can detect coding blunders much
more reliably.

In Modula-2 there are two classes of compatibility: Strong
compatibility, and assignment compatibility. Strong compatibility is
usually referred to just as compatibility.

Two types are (strongly) compatible if any of the following is true.

i) If they are the same type, or equivalent types. For example,
if T has been declared as T=S Then T is compatible with s.

But, if T and S merely have the same structure:
T=ARRAY{1..10] OF CHAR; S=ARRAY[1..10} OF CHAR;
Then they are not compatible.

ii) If both types are subranges of the same type, or one is a
subrange of the other.

In addition, when both types are subranges, this compiler
requires that the subranges overlap.

For example, If we have the declarations a:[1..10];
b:[3..20];, then aand b are compatible, both with each other
and with variables of type INTEGER or CARDINAL.

Language Reference FTL Modula-2 Page 41

it)

iv)

V)

vi)

However, the variables declared as c:["A".."2"];
d: ["a".."z"]; arenot compatible, even though they share the
base type CHAR, because their ranges do not overlap.

If the first operand is of the formal type ARRAY OF sometype and
the second operand is an array of the same type. The form
ARRAY OF sometype can only be used in a procedure header. It
is often called an open array parameter. It is discussed in detail
in the section on procedures.

If one operand is a string literal of length one and the other is
of type CHAR.

Depending on value, integer literals can be compatible with
either INTEGER, CARDINAL, or both. For example, 7 and 30000
are compatible with both these types, -9 is only compatible
with INTEGER while 50000 is only compatible with CARDINAL
because it is too big to be an integer value.

For procedure and function types, structural equivalence is
always used. This is described more fully later (See 4.6.2).

Two types are assignment compatible if they are compatible. In
addition, two operands are assignment compatible in the following
situations:

i)

ii)

i)

If each operand is of type INTEGER, CARDINAL or BYTE (or a
subrange of these). In the case of subranges, the ranges must
overlap. Hence, a variable of type BYTE is assignment
compatible with one of type INTEGER.

If the second operand is a string literal and the first operand is
an array of CHAR with as least as many elements as there are
characters in the string. If there are fewer characters in the
string than elements in the array, a null character (the
character 0C) is appended to the string. Any remaining
elements in the array are undefined. If the formal parameter is
of type ARRAY OF CHAR, no null character is appended (since it
is always the correct length).

If the left hand side (or the formal parameter) is of type ADDRESS
and the right hand side is a pointer.

Page 42 FTL Modula-2 Language Reference

iv) You can assign from a cardinal or integer to a real but not the
other way around. Similarly, you can assign a short integer or
cardinal to a long integer or cardinal but not the other way
around. (Note that the Z80 compiler does not have longs
because of memory constraints.)

v) There are several type imported from SYSTEM that relax the type
checking rules. These are WORD, ADDRESS and BYTE. ARRAY OF
BYTE also relaxes the type checking rules. See the section on the
standard module sYSTEMfor details. In function and procedure
calls, Modula-2 requires strict compatibility for variable
parameters and assignment compatibility for value
parameters. By strict compatibility, we mean that the types
must be identical (not merely assignment compatible).
However, this does not apply to the types from SYSTEM.

For example:

VAR w:WORD;
i : INTEGER;
c:CARDINAL;
r:REAL;

(*These are OK*)
i:=c;c:=i;
wi=iz;i:=w;
Ci=W;W:=C;
r:=i;r:=c;

(*These are not OK¥*)
i:=r;ii=c;

IF i=c THEN ...

IF w=i THEN ...

4.5 Variable Declarations

The variable declarations are introduced by the keyword VAR. The
keyword may be followed by one or more variable declarations.

For example:

VAR i, j,k:INTEGER;
c:CARDINAL;

Language Reference FTL Modula-2 Page 43

The identifiers to the left of the colon are the variables being declared.
The identifier to the right is the type to be given to the variables.

You can use a type construct in place of the type identifier on the right
hand side.

VAR a,b:ARRAY[1..10] OF CHAR;
c:ARRAY[1..10] OF CHAR;

However, this is usually not advised since, while a and b are compatible
in the above declarations {a:=b; is acceptable), neither is compatible
with c. These variables have as their type an anonymous type, but they
are different anonymous types. Hence the statement a:=c; will give a
compilation error. Note that, in any case, a[2]:=c[3]; would be
accepted, since the array elements are both of type CHAR.

When you declare a variable, the memory for it is allocated in one of two
ways, depending upon where in a module the declaration occurs. If a
variable is declared at the outermost level of a module, the variable is
allocated statically, even if the module is nested inside another module.

If the variable is declared in a procedure, then the variable is allocated
dynamically. If you have a module nested inside a procedure, then the
global variables of that module are allocated dynamically, and so would
be the global variables of a module nested inside that module. In other
words, once you are inside a procedure, all variables are dynamic.

If the variable is at the outermost level of the main module, or is in a
module nested inside that module (but not inside a procedure), the
variable is allocated statically.

Static variables have memory allocated to them by the linker. The one
piece of memory is always allocated to the variable so that if you place
a value in the variable, it will retain that value until it is given a new
value.

Dynamic variables are allocated memory when their scope (the
procedure in which they are declared) is entered. When that scope is
exited, the memory is freed. As a result, the next time you enter the
procedure, the variable may not retain its value from the preceding call,
since it may not be allocated the same area of memory, or the given area
may have been used by another dynamic variable in between calls.

Page 44 FIL Modula-2 Language Reference

If a variable must retain its value from one call of a module to another,
then it must be a static variable, so it must be declared at the level of
the main module or of a module nested in the main module.

On the other hand, if a variable is only temporary, then it should be
dynamic since not all dynamic variables are allocated memory at any
one time and so memory is conserved.

In addition, recursive procedures, which are procedures which may
call themselves, need dynamic variables since more than one copy of
a variable may be needed at any one time, since the procedure may be
activated several times simultaneously.

Consider the following example (PNode was declared a few pages ago):

PROCEDURE WalkTree (p:PNode);
REGIN
IF p<>NIL THEN
WalkTree(p”.LeftOperand);
WalkTree(p”~.RightOperand) ;
END
END WalkTree;

This procedure is recursive because it call itself. If the variable p was
the same for the recursive calls as for the outermost call, then by the
time you returned from walking the left subtree, p would be NIL and
you would never walk the right subtree.

There is one other way in which you can affect the allocation of a
variable: If a variable is to be statically allocated (i.e is global to a
module), you can give an explicit address for the variable. For example:

TopOfTPA[6] : CARDINAL;

TopO£TPA is a variable which will be allocated at absolute address 6 in
memory. (In CP/M, this is the address field of the jump instruction into
the Basic Disk Operating System (BDOS)). The explicit address has no
affect on any other variable in the declaration list. The constant inside
the brackets may be a constant, an identifier, or a constant expression.
Note that, once you start giving variable explicit addresses, it' up toyou
to know what you are doing. For example, changing TopOfTPA without
indulging in some other smart programming would cause your system
to crash.

Language Reference FTL Modula-2 Page 45

The usefulness and meaning of this absolute address construct
depends upon the version of the compiler you are using and also the
machine you are running on. See the user guide for more information
concerning your particular machine.

4.6 Procedure Definitions

The final form of declaration is the procedure declaration.

A procedure declaration is introduced by the keyword PROCEDURE.
Unlike the other declarations, the keyword PROCEDURE is required at
the beginning of each declaration. For example:

PROCEDURE Example (k :CARDINAL):;

VAR 1:CARDINAL;

BEGIN
FOR i:=1 TO k DO Write(chs[i]) END;
END Example;

PROCEDURE AnotherExample;

BEGIN
WriteString(' Another Example'j;
END ZAnotherExample;

Note that the name of the procedure is repeated at the end of the
declaration. ’

The declaration consists of three parts:

i) The header (in this case the first line, but it may of course spill
over several lines since the ends of lines have no significance to
Modula-2).

i) Declarations (in this case, the VAR declaration, but CONST, TYPE,

MCDULE and PROCEDURE declarations may also appear).
ii) The body of the procedure, which contains the executable code.

In addition to the variable declared in the declarations, we can declare
variables in the header line. k is an example of such a variable.

Page 46 FTL Modula-2 Language Reference

These variables in the ‘header are formal parameters. When the
procedure is called, actual values must be given for each formal
parameter. These actual values become the initial values of the formal
variables. So that, the statement:

Example (2) ;
causes the example procedure to be executed with k equal to 2.

During the execution of the procedure, the values of these formal
variables can be changed, just as if they were ordinary variables.

In the example above, k has been passed by value. This means that a
copy was made of the value of the actual parameter when the procedure
was called. As a result, changing the value of k does not change the
value of the original actual value (the constant 2 in the example).

If we want any change in a formal variable to also change the value of
the associated actual parameter, we precede the formal declaration
with the VAR keyword:

PROCEDURE ExampleZ (VAR i, j:INTEGER;k:REAL);
In this case, i and j are passed by reference. That is, the address of the
actual parameter is passed to the procedure so that the actual variable

can be updated whenever the formal variable is changed.

In this example, k is still passed by value: we would have to repeat the
VAR keyword before the k to make it a reference parameter.

PROCEDURE Example3 (VAR i, j:INTEGER;VAR k:REAL);

When a formal parameter is a reference parameter, the associated
actual parameter must be a variable (that is, something that could
appear on the left hand side of an assignment statement).

For example, the statement:

Example2(i,2,3.0);

is illegal because a value cannot be used on the left hand side of an
assignment.

Language Reference FTL Moduia-2 Page 47

The compiler will diagnose an error when it finds the constant 3
associated with the reference parameter j, since you cannot make an
assignment to a constant.

The definitions we have given so far are called proper procedures. They
are called with the procedure call statement. Procedures may also
return a value as a result of the call. This allows them to be used in
expressions. For example:

PROCEDURE SIN(x:REAL) :REAL;
BEGIN

END SIN;
Note that, unlike Pascal, there is no FUNCTION keyword.
The type returned by the procedure is given after a semi-colon after the

parameter list. In the case of an empty parameter list, just the
parentheses are given:

PROCEDURE RANDOM () :REAL;

whereas with a proper procedure, the parentheses may be omitted. The
reason for this will become apparent in a following section.

To call a function, the function name is given followed by the actual
parameter values in parentheses. For example:

a:=Radius*SIN (Angle);
b :=RANDOM() ;

Note again the presence of the parentheses in the empty parameter list
case. The function's returned value is given in a RETURN statement.

FUNCTION RANDOM() ;

BEGIN
Seed:=3276*Seed MOD 2783;
RETURN FLOAT (Seed) /2783.0
END RANDOM;

Page 48 FTL Modula-2 Language Reference

The return statement is followed by an expression which evaluates to
give the value returned by the function. The RETURN statement need not
be the last statement in the function, but executing a RETURN statement
causes the function to return immediately.

A function should never return by 'falling out the bottom’, since this
implies that no result has been returned.

4.6.1 Open Array Parameters

There is a special form of type declaration which is available only in the
formal parameter list of a procedure. This is the open array. The form
of the declaration is:

PROCEDURE WriteString(string:ARRAY OF CHAR);
In this case, the parameter can be any array of characters.

Within the procedure, the arrays always have a low bound of 0 and an
upper bound of one less than the number of elements in the array,
irrespective of the actual bounds of the actual parameter.

For example, if the variable a passed as a parameter to WriteString
had type ARRAY {10..20] OF CHAR, then the first element of the array
(2710]) would be accessed in the procedure as string(0]. The last
element would be stringi10].

The inbuilt function HIGH will always return the upper bound of such
an array:

FOR i:=0 TO HIGH(string) DO
Write(string[i]):
END (*FOR¥*)

You can also use the SIZE function to determine the size of the
parameter (in bytes).

Open array parameters can be passed by either value or reference. A
reference parameter produces more efficient code, but value
parameters are to be preferred for arrays of characters as you can then
use a string literal as a parameter.

Language Reference FTL Moduia-2 Page 49

Of course, you can have open arrays of any type not just of characters.
In this compiler, there are no restrictions on the use of open arrays
parameters.

There is one special open array type ARRAY CF BYTE. Recall that BYTE
is a type that you must import from SYSTEM. An ARRAY OF BYTEmatches
any type at all. This allows you to write procedures that manipulate
blocks of data (good for Input-Output routines). The parameter is
passed as if it was an array you can use both HIGH and SIZE.

4.6.2 Procedure Variables

A procedure type takes as values the addresses of procedures. The
types and numbers of the parameters for the procedure must be
declared. Two procedure types are compatible if their parameter lists
are compatible. This is called structural equivalencebecause the entire
structure of the declaration is examined to determine compatibility.

Open array parameters may be used within a procedure type
declaration. Some examples:

TYPE procex1=PROCEDURE (INTEGER):; .
procex2=PROCEDURE (VAR INTEGER;VAR INTEGER; REAL);
procran=PROCEDURE () :REAL;
procstr=PROCEDURE (ARRAY CF CHAR);

Notice that the right hand side looks like the header line of the
procedure with the identifiers (and the colons) left out. Because these
are omitted, in the second example, we must repeat VAR INTEGER for
the second parameter.

Suppose we have a variable of one of these types:

VAR pr:procran;
then we can do the following:

pr:=RANDOM; (*make pr point to procedure RANDOM*)
a:=pr(); (*call the procedure pointed to by pr*)

Where RANDOM is the function declared in section 4.6. There are several
things to note about this example.

Page 50 FTL Modula-2 Language Reference

First, the parentheses are omitted from the reference to RANDOM. If they
were included, the reference would be to the value returned by the
function, not to the function itself.

Second, the function RANDOM has a type determined by its declaration.
As aresult, the assignment is allowed (pr and RANDOM are assignment
compatible). If we tried to assign SIN to pr, we would get an error
because the parameter lists differ.

Third, the call to prin a:=pr () is written just as if pr were a procedure
rather than a procedure variable. This statement has exactly the same
effect as a:=RANDOM ().

Of course, you can use procedure types in other types. For example:

dispatch:ARRAY CHAR OF PROC;
(*PROC is the predeclared id*)

Read (ch) ;dispatch(ch]:
This calls a procedure depending upon the character read.

You can also use procedure variables as formal parameters and then
pass a procedure name as the actual parameter:

PRCCEDURE ex3 (p:PROC) ;
ex3 (AnotherExample) ;

PROC is a standard identifier which is predefined to be a procedure type
for parameterless proper procedures.

There are some restrictions in the use of procedure variables. Only
procedures which occur at the outermost level of a module can be
assigned as values to a procedure variable. This restriction is not
enforced by this compiler, so you must be careful to avoid the following:

Language Reference FTL Modula-2 Page 51

VAR Trouble:PROC;
PROCEDURE A;
VAR 1i:INTEGER;
PROCEDURE B;
BEGIN
i:=2;
END B;
BEGIN (*body of A*)
Trouble:=B; (*assign procedure*)
END A;

A; (*call to A which defines Trouble*)
Trouble; (*Ocps*)

In this example, we are calling a procedure which is not at the
outermost level, referencing it through Trouble. The trouble is, when
we do call it, 2 is not active, so the variable i does not exist on the stack
(even if it did. the display might not be pointing to it). As a result, the
call will overwrite the stack more or less at random.

The display is an area of memory which is set aside for pointers to the
activation segments of procedures. When a procedure is called, an
activation segment is set up for the procedure. A pointer is needed so
that procedures nested inside this procedure can access this
procedure’s variables. The display is used for this purpose.

The second restriction is that you can not use any of the standard
procedures, such as MIN, SIZE etc, as parameters to procedure
variables, nor can you assign them to procedure variables.

Procedure variables give you the opportunity to write very powerful
constructs. It also gives you the opportunity to write programs that no-
one can understand and which never work! Use them sparingly. See
the module KEYBOARD (which is supplied as part of the Editor Toolkit)
for an example of their use.

Page 52 FIL Modula-2 Language Reference

4.6.3 FORWARD Declarations

Because this is a one pass compiler, you sometimes need to declare a
procedure before you define it. This occurs if two procedures are
mutually recursive (each procedure calls the other). Without the
FORWARD declaration, it would be necessary to place the procedures in
separate modules.

To forwardly declare a procedure, use the form:

PROCEDURE ForwardExample (i, j:INTEGER) ; FORWARD;

The keyword FORWARD takes the place of the rest of the procedure
definition. When you are ready to define the procedure, the procedure
header is repeated in full (unlike in Pascal, where only the name is
given). The compiler will check that the declarations agree.

Recall that the definition module is a prefix to the implementation

module. A procedure declared in the definition module need never be
forward declared in the implementation module.

4.7 The Statement Part

The last section of a procedure or module is the statement part.

The statement part is introduced by the keyword BEGIN and is
terminated by the keyword END. The END must be followed by the name
of the procedure or module which it terminates. In the case of a
procedure or nested module, that name is followed in turn by a semi-
colon. In the case of an outer module, the name is followed by a period.

Definition modules cannot have statement parts. In implementation
modules, the statement part is optional. If the statement part is
omitted, only the terminating END (and the identifier and the period or
semi-colon) are given the initial BEGIN should also be omitted. In the
implementation module, you cannot omit the statement part
associated with a procedure or function (except if you are using
FORWARD).

Language Reference FTL Modula-2 Page 53

The statement part of a module is executed when any program
containing the module is loaded. If a module imports another module,
then the statement part for the imported module will be executed
before the statement part of the importing module. This ensures that
any initialization is performed before you call any procedures in a
module. '

If two modules import each other, the order is undefined, but in this
case the loader will issue a diagnostic giving the order actually used.If
a module is nested inside another module, its main program part is
executed just before the main program part of the surrounding
module. If it is nested inside a procedure, it is executed upon entry to
the procedure and it is executed every time the procedure is called.

Section 6 describes the statement forms which may be used in the
statement part. Example:

MODULE Example;
FRCM Terminal IMPCRT WriteString,Writeln;
VAR 1i:INTEGER;
BEGIN
i:=0;
ENC Example.

When the program is run, the main program part of Terminal will be
executed before the main program part of Example, because it is
imported by Example.

Page 54 FTIL Modula-2 Language Reference

5 Expressions

Expressions are used in a variety of ways to produce values which are
then used by the statements in which the expressions occur.

An expression is built up by combining several classes of element;
entire variables (also called designators), function calls, constants and
operators. More complicated expressions can be created by adding
more elements to a simpler expression. That is, a complex expression
is built up from simpler expressions.

5.1 Entire Variables

An entire variable is an identifier, possibly followed by symbols and
identifiers to further define the value to be used. An entire variable is
sometimes called a designator.

Like expressions, entire variables can be built up from simpler entire
variables. Here are some examples of entire variables:

i) A simple identifier. For example:
Diameters
BeethovensBirthday
ThisNode
ii) An array identifier followed by an array element expression in

brackets: Diameters[PlanetNo]

iii) A record identifier followed by a period and the name of a field
within a record: BeethovensBirthday.Day

iv) A pointer variable followed by an up arrow: ThisNode”

These are the basic constructs. An entire variable can be built up by
repeatedly applying any or all of these constructs to an entire variable.

A~ [2].rather”.fanciful [example]

This entire variable is built up by repeatedly adding more constructs
to the simple A at the left hand end.

Language Reference FTL Modula-2 Page 55

An entire variable can be used in two ways; It can represent either the
value which it has been given or it can represent the address into which
anewvalueis tobe placed. Which isrequired depends upon the context
of any given instance.

If it appears on the left hand side of an assignment statement, or as the

actual parameter of a formal parameter preceded by VAR, then the
address is used, otherwise the value is used.

52 Constants

Constants are just numeric and string constants, as described in the
section on lexical items, and identifiers which have been declared to
have constant values in CONST statements. For example:

2 'A String' 27c pi
The compiler folds constants, so you can quite happily write pi/2.0
without worrying about doing an unnecessary division at run time. The

compiler will calculate pi /2.0 when it compiles the program. However,
do not write pi/2 as type conversions are not folded.

5.3 Function Calls

We have already seen an example of a function call. It consists of the
name of the function followed by a parameter list. If the function has
no parameters, an empty parameter list must be given. The
parentheses are compulsory. For example:

SIN(PI/2.0)
RANDOCM ()

A number of standard functions are supplied with Modula-2. These
should not be confused with functions which are supplied in standard
modules, since they do not need to be imported to be accessible.

The standard functions are:
ABS (x) Returns the absolute value of an integer or real

parameter. The returned type is the same as the
parameter type.

Page 56 FTL Modula-2 Language Reference

CAP (ch)

CHR (%)

FLOAT (x)

HIGH (x)

MIN (x)

MAX (%)

CDD (%)

ORD (x)

Returns the character ch, converted to upper case if it is
lower case alphabetic. Characters with the top bit set
(that is, with ordinal values greater than 127), are never
changed.

Returns the character with collating sequence value x. x
must be an integer or a cardinal. If the value is out of
range, the value returned uses only the bottom eight bits
of the value.

Converts a cardinal number to a real number.

Returns the upper bound of array x. x can be any array
variable.

Returns the minimum value that can be taken by a
variable with type x. For example, MIN(INTEGER) is
-32768, MIN(CARDINAL) is 0. This function can be used
with INTEGER, CARDINAL, CHAR and BOOLEAN as well as any
subrange enumeration.

Returns the maximum value a variable with the given
type can take. It can be used with the same types as MIN.

Returns TRUE if x is odd. x must be a cardinal or an integer
value. It cannot be real.

The function ORD in this compiler works somewhat
differently to the way it is described in Wirth's book.
Rather than implement the letter of Wirth's book, we have
implemented the function as it is implemented in the
PDP-11 compiler, and in a way which is compatible with

Pascal and is generally more useful.

According to the book, ORD returns a cardinal
corresponding to the ordinal value of the value of the
parameter in its set. Thus, if i is an integer variable
containing the value 0, ORD (i) ought to be 32768. This
compiler will return 0, which is compatible with the PDP-
11 compiler.

Language Reference FTL Modula-2 Page 57

SIZE (x)

TSIZE (x)

TRUNC (x)

VAL (t, x)

Also, the type of ORD will be compatible with both INTEGER
and CARDINAL if the type of the parameter can only take
values within therange 0 through 32767. If the low bound
is less than 0, it will be compatible with INTEGER,
otherwise, if the high bound exceeds 32767, it will be
compatible with CARDINAL. This definition of ORD is much
more useful than that in Wirth's book.

Returns the size {in bytes of memory) of the variable given
as a parameter. In Revision 2 of Wirth's book, this
function had to be imported from SYSTEM. This compiler
allows you to use it as a standard function, or to import
it.

Returns the size {in bytes of memory) of a type identifier
given as a parameter. This function must be imported
from sYSTEM. Note that you use SIZE for variables, TSIZE
for types.

Converts a real number to a cardinal. It is truncated, not
rounded. Do not use for integers as a negative value
cannot be truncated.

Returns the value from type t which has ordinal value x.
x must be a cardinal.

In addition, you can convert from one type to another by using the
name of the required type as a function. For example, if t is a variable

of type:

VAR t:PNode;

Then we could write:

t :=PNode (CARDINAL (t) +SIZE(t"));

(or, to achieve the same thing)

t :=PNode (CARDINAL (t) +TSIZE (Node)) ;

Which would make t point to the next Node in memory.

Page 58

FTL Modula-2 Language Reference

Of course, it is the programmers responsibility to ensure that such a
use is valid: Once you use type breaking like this, the compiler will not
detect typing errors (unless you don't get the type breaking right!).

Note the use of the pointer symbol () in the first example. This is not
an error: if this was omitted, the size returned would be the size of t,
which is 2 or 4 (depending on the version of the compiler you're
running). What we want, of course, is the size of the object pointed to
by t.

You can also use this type breaking (at least in this compiler) for array
types. For example:

PROCEDURE Open (fn:ARRAY OF CHAR);
BEGIN
Lookup (a,FileName (fn), reply)
END;

The procedure Lookup (from module Files, say) needs an array of fixed
length, rather than an open array, as the second parameter. Breaking
the type like this allows the procedure to be called with an open array
actual parameter.

With type breaking, the onus is on you to know what you are doing.

5.4 The Set Builder

There is a special construct for creating sets. A set builder construct
consists of a list of values and ranges inside braces. ({ and }}. The order
of the elements in the list on no way changes the value of the set being
built. The elements may be constants, or they may be expressions, and
the two may be freely intermixed.

{2,3,4} {4,3,2} (these are the same set)

If a range of values between two values is required, the subrange
notation can be used:

{2..4} (which is the same as {2,3,4})

The smaller value of the subrange must be given first. Ranges and
simple constants may be freely intermixed:

Language Reference FTL Modula-2 Page 59

{2,3,7..10} {2,1,7..3}

The types of all elements used in a set builder must be compatible with
the element type of the set.

The preceding examples are all of type BITSET because no explicit type

was given as part of the set builder (See 4.3.5). To make the set a
different type, precede the opening brace with the identifier for the

type:

CharSet{'a'..'Z','a'..'z'}

5.5 Operators

The above constructs can be combined together with operators. The
operators impose constraints on the types of the objects which can be
used as their operands. In some cases, the meaning of the operator
depends upon the type of its operands.

Each operator has a precedence which determines the order of
evaluation of operators. Unless parentheses are used to override the
order, operators with highest precedence are performed first.

For example, in the expression 2*3+4, multiplication has a higher
precedence than addition, sothe result of this expression is 10, not 14.

There follows a table of all the operators ordered by decreasing
precedence.

Page 60 FTL Modula-2 Language Reference

Operator

Use .

Highest precedence

NOT (~)

Boolean complement. ~ is a pseudonym

Next in precedence'

*

DIV
MOD
AND (&)

Integer, Real and Cardinal multiply; Set
intersection

Real division; S9et symmetric difference

Integer and Cardinal division

Integer and Cardinal modulus

Boolean and; & is a pseudonym

Next in precedence

Integer, Real and Cardinal add; may be unary or
binary; Set union

Integer, Real and Cardinal subtract; may be unary
or binary ; Set difference '

Boolean or

Next in precedence

<> (#)

Test for equality

Test for inequality. # is a pseudonym
less than

less than or equal to

greater than

greater than or equal to

set membership

5.5.1 Arithmetic Operators

The arithmetic operators are +,-,*,/,DIV and MOD. All except / can be

used for integer

or cardinal operands and perform the usual

operations. / can only be applied to real values.

Language Reference

FTL Modula-2 Page 61

DIV returns an integer or cardinal result. It returns the whole value
result of a division. For example, 7 DIV 2 gives 3, -7 DIV 2 gives -3,
-7 DIV -2 gives 3. MOD returns the remainder of a division by a positive
value: 15 MOD 6 gives 3.

5.5.2 Boolean Operators

The boolean operators are AND, OR and NOT. AND returns true if both its
operands are true. OR returns true if at least one of its operands is true.
NOT is a unary operator which returns the complement of its operand.

Note that AND and OR are at a higher level of precedence than the
relational tests, such as a test for equality. This means that an
expressionsuchas: a=b OR a=c will give an error, because the compiler
will attempt to compileitas ((a=b) OR a)=cwhich would only be avalid

expression if a, b and ¢ were all boolean variables. To avoid this, you
must write the expression as (a=b) OR (a=c).

5.5.3 Set Operators

The set operators are +,~,*, / and IN.

+ (Set Union) Returns a set containing all the elements of its
operands. A+3={x|{x IN A) OR (x IN B})}

{2,3,51+1{1,3,6}={%,2, 3,5,6}

- (Set Difference) Returns the elements of its left operand with
any elements which also occur in its right operand removed.
a-B={x{(x IN A} AND (NOT (x IN B}))}

{2,3,5}-{1,3,6}=(1,5}

* (Set intersection) Returns a set whose elements are those
contained in both its operands. A*B={x|(x IN A) AND (x IN B)}

{2,3,51*{1,3,6}={3}

Page 62 FTL Modula-2 Language Reference

/ Returns a set whose elements are those contained in one
operand set or the other, but not both. A/B=A+B-A*B

{21315}/{11316}':{1:21516}

IN Returns true if its left operand is an element of the set which
is its right operand. For example:

2 IN {2,3,5} is TRUE

6 IN {2,3,5} is FALSE

5.5.4 Relational Operators

The relational operators can all be applied to INTEGER, CARDINAL.
BOOLEAN, CHAR and REAL operands, to subranges and tc enumerations.
This compiler also allows them to be applied to arrays of characters.
When arrays of characters are compared, the comparison stops at the
end of the shorter string or at the first zero byte in the string. (Recall
that a zero byte terminates a string). Hence, the following comparison
return TRUE:

-

VAR ©:ARRAY[1..10} OF CHAR;
t:='ABC';
IF t='ABC' THEN ...

In addition, =and <> can be applied to pointers and sets. <=and => can
also be applied to sets.

When applied to sets, <= requires that every element in its left operand
be an element in its right operand. That is, that the left set is a subset

of the right set (they may, of course be equal). >= is the same with the
left and right operands reversed. For example:

{2,3,51<={2,3,5,6}

since every element of {2, 3,5} is also an element of {2, 3,5, 6}.

Language Reference FTL Modula-2 Page 63

Note that it is not possible to directly compare pointers other than for
equality or inequality. If you really want to compare pointers in this
way, coerce the pointers to cardinals:

CARDINAL (Pcinterl)<CARDINAL (Pointer?2)

Of course, this usage is not portable. For example, on the MSDOS large
memory model compiler, the pointer will contain both an address and
a segment register and simple comparisons are impossible since there
are many different pointer values for any given address.

Page 64 FTL Modula-2 Language Reference

6 Statements

Statements are the constructs which actually do the work of your
program. Consecutive statements must be separated by semi-colons.
When a statement is followed by a reserved word which belongs to a
surrounding statement, the semi-colon is optional. Modula-2 is much
more lenient on the use of semi-colons than either C or Pascal.
However, in C, the semi-colon is a statement terminator, rather than
a separator between statements.

Furthermore, you cannot use a semi-colon at the end of a compound
statement in C. C programmers may similarly be tempted to leave out
the semi-colon after the end of a structured statement in Modula-2.
Doing so may produce an error (depending on what follows).

Modula-2 will never complain that you have too many semi- colons,
only too few. For example, in Pascal, the following statement would be
wrong because of an extra semi-colon (after a:=c}):

IF a=b THEN a:=c; ELSE a:=d
In C, this statement would be erroneous:
IF (a==b) a=c ELSE a=d

Because a semi-colon has been omitted (after a=c). In Modula-2 both
the equivalent statements are legal and produce the same result:

IF a=b THEN a:=c; ELSE a:=d END
IF a=b THEN a:=c ELSE a:=d END

Unlike Pascal, Modula-2 does not require that you use BEGIN. . .END
pairs around structured statements. In fact, such usage is not allowed
Rather, each structured statement (such as IF and WHILE) is
terminated by an END.

Because it is the statements of a program which actually do the work,
many people think that the statement forms are the most important
part of a language.

Language Reference FIL Modula-2 Page 65

They are mistaken: computing is about manipulating data. If you can
get your data structures right, everything else will follow. The code will
merely be a reflection of those structures.

A badly designed data structure is far more damaging than a swag of
GOTO's: structured programming is data structuring. As you read the
following descriptions of statement types, consider the types of data
structure that each is most suited to.

6.1 Procedure Calls

Procedure calls have already been discussed in the section on
procedure declarations (Section 4.6). See that section for examples.

A procedure call consists of the name of the procedure followed by a list
of parameters in parentheses. The number and types of the actual
parameters must agree with the number and types of the formal
parameters. If no parameters are required, the parentheses should be
omitted.

A procedure variable may be used in place of the procedure name. It
may be any entire variable (Section 5.1). '

6.1.1 The RETURN Statement

The return statement can be used to return from a procedure or a
function. If it is used to return from a function, it must be followed by
an expression of the type returned by the function. The value of this
expression is the result value of the function.

For example:

PROCEDURE Ex1;
BEGIN
IF i>10 THEN RETURN END;

END Ex1:

Page 66 FTL Modula-2 tanguage Reference

PROCEDURE Ex2 () : INTEGER;

BEGIN

IF i>10 THEN RETURN 10
ELSE RETURN i END
END Ex2;

Note that a function must always return by a return statement: it
should never return by 'falling out the bottom'. If it does so, the
returned value will be undefined.

6.1.2

Standard Procedures

There are several standard procedures in Modula-2. The standard
procedures should not be confused with the standard functions: The
procedures cannot be used in an expression.

These are:

DEC (%, n)

INC(x,n)

INCL (x,n)

EXCL (%, n)

subtract n from x. x may be any arithmetic type. n must
be an integer or cardinal. The second parameter may be
omitted (together with the preceding comma), in which
case a decrement by one is performed.

Like DEC, but for incrementing.

Adds the value n to the set x. n must be of the element type
for the set. n can be an arbitrary expression. x must be
an entire variable. (INCL is an abbreviation of include).

Removes an element from a set.

Note that EXCL(x,n) is equivalent to x:=x-{n}, and
INCL(x,n) is equivalent to x:=x+{n}. These two
procedures are a hang-over from the original definition of
Modula-2 which only allowed constants in set
constructs, so they could be regarded as archaic.
However, these procedures are more efficient than the
corresponding assignment statements, and they are a
standard part of the language. (EXCL is an abbreviation of
exclude).

Language Reference FTL Modula-2 Page 67

HALT Unconditionally terminates program execution. This
procedure does absolutely no end-of-run processing, it
simply aborts to the operating system.

NEW (p) Allocates storage for a variable of the type pointed to by
pointer variable p, and places the pointer to that storage
in p.

DISPOSE (p) Releases the storage for the variable pointed to by p and
) sets p to NIL.

NEW and DISPOSE are peculiar in that they are really short-hand forms
for other procedures. NEW is expanded to:

ALLOCATE (p, SIZE(p"))

While DISPOSE is expanded to:

DEALLOCATE (p, SIZE(p™))

What is more, these routines (ALLOCATE and DEALLOCATE) must be
imported into the module in which NEw and DISPOSE are used. They can
be found in the standard module STORAGE but you are, of course, free
to replace these implementations with your own. Generally, this would

be done by writing a new module with a different name (for example,
MyStorage) and then importing ALLOCATE and DEALLOCATE from there.

6.2 Assignment Statements

Assignment statements contain a left hand side and a right hand side
separated by a becomes symbol (:=).

i:=2; pi=q;p":=q~;al2}:=3;
The left hand side must be an entire variable. The right hand side can
be an arbitrary expression, but the two variables must be assignment

compatible. Because the left hand side must be an entire variable,
expressions like:

INTEGER (c) :=-9;

Page 68 FTL Modula-2 Language Reference

are illegal, even though the INTEGER function simply changes the type.

Be sure you understand the difference between the assignment p:=q
and the assignment p~ :=q*, where p and q are pointers variables (see
4.3.8). The first assignment statement p:=q assigns only the pointer
contained in g to the variable p. The second form assigns the area
pointed to by g to the area pointed to by p. In the second case, the value
of p remains unchanged.

Note that you can assign any compatible objects, not just elementary
typed objects:

VAR a,b:ARRAY[1..20] OF CHAR;

b:='Hello Salesman';a:=b;
Because Hello Salesmanis only 14 characterslong, and the character
array it is being assigned to is longer than this, a null character (0c the
smallest valued character) is appended to the end of the string. The

remaining 5 characters of b (after the string and the null character)
remain undefined.

6.3 Conditional Statements

The conditional statements allow one of several sets of statements
(some of which may be empty) to be selected depending upon some
condition.

The conditional statements are the IF statement and the CASE
statement.

6.3.1 The IF Statement

IF <boolean expression> THEN
statement;..
ELSIF <boolean expression> THEN
statement; .
(*possibly more ELSIFs*)
ELSE
statement; ..
END (*IF*);

Language Reference FIL Modula-2 Page 69

The IF statement performs the first of a series of alternatives for which

- the boolean expressionis true. If none of the expressions are true, then
the ELSE part is executed. If the else part is omitted and none of the
alternatives are true, nothing is executed.

Each part may contain any number of statements (including zero) and
each part (except the IF part) may be omitted. For example:

IF i<j THEN i:=j END;
IF j<k THEN

i:=3j;
ELSE

i:=k;

END

It is a good idea to always include the semi-colon before an ELSE, since
when another statement is added:

It is easy to overlook the absence of a (now required) semi-colon on the
preceding line, as is the case with this example.

We can use any number of ELSIF parts in an IF statement. For

example:

IF ch='A' THEN
i:=1

ELSIF ch='C' THEN
i:=2

ELSIF ch='E' THEN
i:=4

ELSE
WriteString (' bad character');
Writeln;
END;

However, whenever you find yourself writing a string of ELSIFs, ask
yourself if the same result could not be better achieved with a CASE
statement.

Page 70 FTL Modula-2 Language Reference

The last example would be far better encoded as a CASE statement. It
would be clearer and would even run a little fastcr.

6.3.2 The CASE Statement

A case statement contains a selecting expression which determines
which of several variants are to be executed. Each of the variants is
labeled with one or more constant values. The variant labeled with the
value produced by evaluating the selecting expression is the one
executed.

An optional ELSE part can be included which will be executed whenever
the required value is not found in the list of constant labels. If the else
part is omitted and the selecting expression has a value which is not
to be found in any of the variants, then the statement is by-passed.

The selecting expression must have type INTEGER, CARDINAL, CHAR (or
a subrange of these), BOOLEAN, or must be of an enumeration type. It
cannot be REAL.

For example:

CASE ch OF
' ':skipblanks|
'‘a'..'z'",'A'..'2"':getalpha; |
'0'..'9':getnumber;
IF ch IN CHARSET({'X','x'} THEN
value:=hexvalue
END
|
ELSE WriteString(' bad character ');
Write(ch);
Writeln;
END (*CASE*):;

Note that we can denote all the values in a given range with the ..
notation, so that the alternative with the labels '0'..'9’ will be
executed whenever ch is numeric.

Note also that each alternative is terminated with a bar (|). unlike
in Pascal where only a single (possibly compound) statement can be
present.

Language Reference FTL Modula-2 Page 71

The semi-colon before the bar is entirely optional, as it was before
the ELSE in the IF statement. Also, the bar before the ELSE is
optional. We always put one in since it makes the code easier to
read and modify.

6.4 Looping Statements

The looping statements are the WHILE, REPEAT, FOR and LOOP
statements.

6.4.1 The WHILE Statement

WHILE <boolean expression> DO
statement;
statement;...

END (*WHILE*)

The statements in the while statement are repeated until the boolean
expression becomes false. If the boolean expression is false the first
time it is evaluated, the statements are never executed. For example,
the following code looks through an array for a particular value:

1:=0;

WHILE (i<=HIGH(a)) AND (a[i]<>3j) DO
INC (1) '
END;

Note the use of the short circuit evaluation of the WHILE condition. The
array is accessed only if the variable i is in bounds.

6.4.2 The REPEAT Statement

REPEAT
statement;
statement;...
UNTIL <boolean expression>;

The statements are repeated until the boolean expression becomes
TRUE. The statements are always executed at least once.

Page 72 FTL Modula-2 Language Reference

REPEAT statements should be used with caution, since it is easy to
overlook some condition which causes the statements to be executed
when they should not be. Before using a REPEAT statement, consider
if it can be conveniently replaced by a WHILE statement. For example,
the following code skips until a numeric character is found. It will
always read at least one character, and it makes no use of the value of
chwhen the statement was entered. Therefore, it may cause you tolose
characters.

REPEAT
Read (ch) ;
UNTIL ch IN CharSet{'0'..'9'};

To produce the same effect with a WHILE statement, you would have to
perform an extra Read in front of the loop:

Read(ch);

WHILE NOT (ch IN CharSet{'0'..'9'}) DO
Read (ch) ;
END;

Also, in the WHILE statement, the condition is the complement of the
condition in the REPEAT statement, because a WHILE statement keeps
looping while the condition is TRUE while a REPEAT statement loops until
the condition is TRUE. The WHILE form may look more complicated but
it has the advantage of allowing you to read text in which some items
are optional.

6.4.3 The FOR Statement

FOR identifier:=expression
TO expression
BY expression DO
statement;...
END;

The FOR statement causes the enclosed statements to be repeated while
the identifier takes on values between the values of the first and the
second expressions in the header. The types of the expressions giving
the range must be compatible with the type of the control loop variable.

Language Reference FTL Moduia-2 Page 73

The BY keyword and its associated expression may be omitted, in which
case the identifier is incremented by one on each pass through the loop.

If included, the expression following the BY must be a constant
expression. It gives the increment to be added to the identifier after
each iteration. It may be negative. ’

For example:

FOR i:=1 TO 10 DO
afil:=0
END;

FOR i:=9 TO 1 BY -1 DO
alij:=ali+l]
END;

As well as using INTEGER or CARDINAL ranges, ranges from
enumerations can be used. For example:

FOR c:=Venus TO Mars DO ... END
FOR b:=FALSE TO TRUE DC ... END

The expressions denoting the range are evaluated at the beginning of
the execution of the statement. They are not re-calculated at the start
of each iteration. Hence the statement:

3:=10;
FOR i:=1 TO j DO DEC(3j) END;

Loops 10 times, and j ends up with the value 0. Of course, doing this
sort of thing is not recommended.

The identifier should not be altered within the statements under the
control of the FOR statement. Nor should it be altered in any procedure
called by those statements. However, this compiler will not detect such
a modification, but such modification will not affect the number of
times the loop is executed and, at the beginning of the next iteration,
the variable will be set back to the value it would have had if the illegal
modification had not taken place. As a result, the statement:

Page 74 FTL Modula-2 Language Reference

FOR i:=1 TO 10 DO
WriteCard(i, 6):
i:=0;

END;

Will print the values 1 to 10 and no more. Note that this fragment is not
valid Modula-2, but that this compiler will not currently diagnose the
error.

In standard Modula-2, the control variable (the variable before the
becomes (: =)) symbol cannot be a component of a structured variable,
a formal parameter, or an imported variable. This compiler will not
detect such usage. The code will still execute correctly in these cases.

In the Z80 version of the compiler flag, there is a linker flag /F which
changes the code generated for FOR loops. Using the flag allows large
iteration counts (>32767) to be used at the expense of executjon speed.
See the Z80 User Guide for details.

6.4.4 The LOOP Statement
(and the EXIT Statement)

The loop statement is a generalized form of the WHILE and REPEAT
statements in which the exit condition can be placed anywhere in the
loop. As with the REPEAT statement, you should only use it when really
necessary.

In particular, watch out for LOOP statements in which the only EXIT is
in an IF statement at the beginning of the loop. These should probably
be recoded as WHILE statements. The code will work, but it is inelegant.

LOOP
statement;
statement; .
END;

The statements are repeatedly executed until an EXIT statement is
executed. The EXIT statement causes the innermost LOOP to be exited
immediately.

Language Reference FTL Modula-2 Page 75

LOOP
IF id<l1”.id THEN
1:=1".lower
ELSIF id<1”~.id THEN
l:=1".upper
ELSE
EXIT
END (*IF*);
END (*LOOP*) ;

The EXIT statement can only be used with a LOOP statement. It cannot
be used with WHILE, FOR and REPEAT statements. If you use an exit
statement within such a statement, the nearest surrounding LOOP will
be exited and if none exists, an error will be produced. There is no way
of exiting more than one level of LOOP statement from a single EXIT
statement. In practice, you will rarely need it. On those few occasions,
you can introduce a boolean variable which is set in the inner loop to
signify that the outer loop should also exit:

ForceExit :=FALSE;

LOOP
LOOP
IF a=b THEN
ForceExit :=TRUE;
EXIT;
END;
END;

IF ForcekExit THEN EXIT END;

END;
A slightly naughty but sometimes useful way of getting out of an inner
loop is to use a RETURN statement. This exits the entire procedure

immediately.

In this compiler, there are no restrictions on using EXIT statements
within other structured statements. For example:

Page 76 FTL Modula-2 Language Reference

j:=0;
LOOP .
FOR i:=1 TO 10 DC
IF j>50 THEN EXIT END;
jr=g+i*i;
END;
END;

This entire construct terminates in the sixth iteration of the FOR loop.
This example is a good example of how not to use the LOOP statement,
since we are using the LOOP statement to simulate a GOTO statement
(Since we never actually loop at all we always exit in the first time
through).

This particular example could be much better written as:

j:=0;

i:=1;

WHILE (i<10) AND (j<=50) DO
Je=3+i*i;
INC(i)
END;

Replacing a FOR loop with a WHILE loop often produces cleaner code. If
your first language was an old-fashioned BASIC, or even FORTRAN,
you will probably find that you tend to use FOR loops excessively. If your
first language was FORTRAN, you will also tend to use variables like
i and j excessively, too!

6.4.5 The WITH Statement

The WITH statement gives you a way of accessing the elements of record
variables without having to repeatedly give the name of the record

variable.

WITH entire variable,... DO
statement;
statement; ...

END;

Language Reference FIL Modula-2 Page 77

The entire variables are record variables whose elements are to be
referenced. If there is a clash of identifiers, the innermost identifier
(which is that of the last WITH statement) is used. Similarly, if any field
identifier is the same as another identifier in the program, the field
identifier is visible within the WITH statement, not the other variable.
For example: '

TYPE ExampleType=RECORD

ch:CHAR;
END;
VAR ch:CHAR;
r:ExampleType:’
p:POINTER TO ExampleType;
BEGIN
ch:=' ';(*this is the VAR ch*)
WITH r DO
ch:='a'; (*this is r.ch*)
NEW(p) ;
WITH p~ DO
ch:='c' (*this is p~.ch¥*)
END;
END;
END;

Be careful when using WITH statements with recursive types, such as
trees. Ifyou are working with multiple levels of the tree simultaneously,
it is easy to get a variable from the wrong level:

TYPE PTree=POINTER TO Tree;
Tree=RECORD
Left,Right:PTree;
ch:CHAR;
END;

WITH Express”™ DO
IF ch='*" THEN
WITH Left” DO

Left:=NewExp; (*Error*)

Page 78 FTL Modula-2 Language Reference

We wanted to evaluate the left subexpression of an expression, and
then replace the left subexpression by its evaluated version. But the
code at Error actually replaces the left subexpression of the left
subexpression with the evaluated expression!

If the entire variable in the WITH statement is a pointer (eg WITH
Express” DO), and you change the value of the pointer within the WITH
statement, the fields referenced in the remainder of the WITH statement
are the same as before the assignment. However, you should not rely
on this fact, as other compilers may work differently (particularly if
they don't take advantage of the WITH statement to produce improved
code).

The ability to place more than one entire variable in a WITH statement
is an extension provided by this compiler. In the standard, only one
entire variable is permitted, so using the multiple form may resuit in
your programs being non-portable.

WITH a,b DO ... END;

is exactly equivalent to

WITH a DO WITH b DO ... END END;

It even generates the same code.

Language Reference " FTL Modula-2 Page 79

Page 80 FTL Modula-2 Language Reference

7 Syntax

The following pages contain a consolidated syntax for Modula-2. We
have avoided including BNF in the preceding sections of the manual
since it tends to frighten the beginning programmer, and because it is
more use if gathered together in one place.

The Extended Backus Naur Form popularized by the description of
Pascal is used. In this form, each production takes the form.

Left hand side = right hand side.

This means that the left hand side can be replaced by the right hand
side as a step in generating a program.

To see if a program is a valid Modula 2 program, we start with the
distinguished symbol program and keep replacing left hand sides by
right hand sides until no more identifiers can be replaced. Ifa program
is a valid Modula 2 program, replacing the left hand sides in a suitable
fashion will produce your program.

At any intermediate point, we have a string of intermixed terminal and
non-terminal symbols. The terminal symbols are those that cannot be
replaced while the non-terminals are the symbols that have appeared
on the left hand side of a production. ,

Fortunately, it doesn't matter which non-terminal in a string we chose
to replace next (this is called the Church-Rosser Property), but it does
matter what we replace it with, since any non-terminal will usually be
associated with a number of alternative right hand sides.

A program which, given a grammar and a program, can choose the
appropriate substitutions is called a parser. A good book to read to
learn more about parsers and language processing generally is the
'New Dragon Book' (Compilers: Principles, Techniques and Tools, Aho,
Sethi and Ullman, Addison-Wesley Publishing Company, 1986).

This isn't quite the whole story, since the syntax only specifies certain
parts of the language. For example, it does not specify that the number
of parameters in a procedure call must agree in type and number with
the formal parameter list.

Language Reference FTIL Modula-2 Page 81

These latter requirements are usually referred to as the (static)
semantics of the language. They can be specified by several extended
methods based on BNF, but the results are difficult to comprehend.

To get used to using BNF, first try expanding out some simple
constructs for simple statements. For example, you can try expanding
Statement out to an if statement. Here are a few steps in one such
derivation:

Statement
->IF Statement
->IF expression THEN Statements END
~>IF Simpleexp relation Simpleexp
- THEN Statements END
->IF term relation Simpleexp
THEN Statements END

At each step, we have replaced one non-terminal (as it happens, we
have always replaced the left-most non-terminal, which is how the
compiler does it).

In the right hand side, some conventions are used to save space and
to make the syntax more readable.

Braces ({ and }) are used around a part of the right hand side which
may be repeated zero or more times.

Brackets ([and }) are used around parts which may be omitted.

A bar (1) is used between alternative right hand sides. It may also be
used inside brackets or braces to separate various possible choices.

Keywords (eg MODULE) are always in upper case. Lower case, or mixed
case is used for symbols which are left hand sides of some production
(that is, non-terminals). Symbols in quotes are actual marks that
appear in a Modula-2 program.

So, here is the syntax (presented in width first order):

Page 82 FTL Modula-2 Language Reference

1 program = ProgramModule | DefinitionModule
2 ProgramModule = [[IMPLEMENTATION] MODULE ident ";'{import}
block ident "'
3 DefinitionModule = DEFINITION MODULE ident *;' {import}
{definition} END ident '’
4 import = IMPORT ident {',' ident} *;' |
FROM ident IMPORT ident {'," ident]
5 block = {declarations} [BEGIN Statements END]
6 definitions = CONST {ConstantDeclaration';} |
TYPE {ident ['=' typel};'} |
VAR {VarDeclaration "'} |
ProcedureHeading ;'
7 declarations = CONST{ConstantDeclaration’;’}!
TYPE {ident '=' type ";'} |
VAR {VarDeclaration "'} |
ProcedureDeclaration ;' |
ModuleDeclaration ;'
8 Statements = Statement {';' Statement}
9 ConstantDeclaration = ident'="ConstExpression
10 type = SimpleType | ArrayType | RecordType |
SetType | PointerType | ProcedureType
11 VarDeclaration = identlist ;' type
12 ProcedureHeading = PROCEDURE ident[FormalParameters]
13 ProcedureDeclaration=ProcedureHeading ';'block ident!
ProcedureHeading ';' FORWARD
14 ModuleDeclaration = MODULE ident ';'{Locallmport}
fexport]block ident
15 Statement = [assignment | ProcedureCall | IfStatement |
CaseStatement | WhileStatement |
RepeatStatement | LoopStatement |
ForStatement | WithStat |
EXIT | RETURN [expression]
16 ConstExpression = SimpleConstExp [relation SimpleConstExp]
17 SimpleType = qualident | enumeration | SubrangeType
18 Arraytype = ARRAY SimpleType{'," SimpleType] OF type
19 RecordType = RECORD FieldSequenceList END
20 SetType = SET OF SimpleType
21 PointerType = POINTER TO type
22 ProcedureType = PROCEDURE [FormalTypeList]
23 identlist = identspec {',' identspec]
24 FormalParameters = '(' [FPSection {';' FPSection}] ')’ [':' qualident]
25 Locallmport = IMPORT ident {',' ident} "’

Language Reference FTIL Modula-2 Page 83

26 export = EXPORT ident {," ident} '}’
27 block = BEGIN Statements END
28 assignment = designator :=' expression
29 ProcedureCall = designator{ActualParameters]
30 IfStatement = IF expression THEN Statements
{ELSIF expression THEN Statements}
[ELSE statements] ’
END
31 CaseStatement = CASE expression OF case
{'l' case}
[l
[ELSE Statements]
END
32 WhileStatement = WHILE expression DO Statements END
33 RepeatStatement = REPEAT Statements UNTIL expression
34 LoopStatement = LOOP Statements END
35 ForStatement = FOR assignment TO expression
[BY ConstExpression] DO
Statements
END
36 WithStat = WITH designator{','designator} DO Statements END
37 expression = Simpleexp {relation Simpleexp]
38 SimpleConstExp = ['+'|'-'] ConstTerm {AddOp ConstTerm}
39 relation = '<'I'<="1'="I"'>="1">'] '<>"I'#'| IN
40 qualident = ident {'." ident]
41 enumeration = '(' ident {',' ident } '}’
42 SubrangeType = [ConstExpression '.." ConstExpression']’
43 FieldSequencelList = FieldList{';' FieldList}
44 FormalTypelList = '(' [FormalTypes] }' [":' qualident]
45 identspec = ident ['[' ConstExpression]
46 FPSection = [VAR] ident {,' ident } :'FormalType
47 designator = qualident {'." ident |
'Texpression {',' expression|]'| 'A'}
48 ActualParameters = '(' expression {',' expression} ')’
49 case = [CaseLabels ;' Statements]
50 Simpleexp = ['+'!'-'] term {AddOp term}
51 ConstTerm = ConstFactor {MulOp ConstFactor}
52 AddOp="+1""1 OR
53 FieldList = [ident {'," ident } .’ type|
CASE [ident] ":' qualident OF variant {'|' variant}
['I'] [ELSE FieldSequenceList] END]

Page 84 FTL Modula-2 Language Reference

54 FormalTypes = [VAR | FormalType {';' { VAR] Formaltype]
55 FormalType = [ARRAY OF] qualident

56 CaseLabels = CaseLabel {',' CaseLabel }

57 term = factor { MulOp factor }

58 ConstFactor = qualident | number | string | set |

‘(' ConstExpression ')’ | NOT ConstFactor.

59 MulOp="*1"'/"I DIV | MOD | AND | '&

60 variant = [CaseLabels':'FieldSequenceList]

61 CaseLabel = ConstExpression ['.." Constexpression]

62 factor = number | string | set | designator [ActualParameters} |

‘(' expression ')’ | NOT factor

63 set = [qualident] '{' [element {',’ element}] '}'
64 element = expression {'..' expression]

Notes on the productions

The syntax given above describes the language as implemented by this
compiler. It differs from the syntax in Wirth's book because of this, and
because some changes have been made by Wirth himself since the book

{Revision 2) was published.

3 A definition module no longer contains an export list. instead,
all defined identifiers are exported.

6 The definition of a type is optional in a definition module. It is
possible to simply declare it. This results in an private - (or
opaque} type.

12 Note that the (and) are not optional in a function declaration.

13 The alternative form FORWARD which is required because this is
a one pass compiler.

14 The import statement for a module nested inside another
module is limited to importing identifiers from the surrounding
scope: you cannot import directly from global objects. We
believe that this definition is what was intended by Wirth.

15 The entire right hand side is optional, so the null statement is

acceptable.

Language Reference FTL Modula-2 Page 85

18

35

36

40

The correct form of declaration for a multiple dimensioned
array is (for example) .

ARRAY {1..10],([1..8] OF ...

and that if an identifier is used instead of an explicit range, the
brackets are omitted (unlike Pascal). Note also that it is
possible to give a complete enumeration as an index typel

This compiler allows any designator to be the control variable
in a FOR loop, so this production has been modified

appropriately.

This compiler allows an extended form of the WITH statement
similar to that of Pascal.

All the identifiers in a qualified identifier except the last one
must be module identifiers.

Page 86 FTL Modula-2 Language Reference

8 Extensions and
Restrictions

Here is a (we hope) complete list of the extensions and restrictions in
this compiler. They are given together because what we consider an
extension may be considered by someone else to be a restriction!

You should also check the distribution disks for a README .NOW file
which may give further extensions and restrictions, or which may
remove some existing ones.

You should also look at the section in your user guide which gives the
physical (size) limits of the particular compiler you are using.

i) A declaration of a pointer to a type which has not yet been
declared and which has the same name as a type in a
surrounding scope, will not be correctly resolved. The pointer
will point to instances of the type in the surrounding scope. For
example:

TYPE Fred=INTEGER;
PROCEDURE a;
VAR a:Fred;
TYPE Fred=CARDINAL;

a will be an INTEGER when it should be a CARDINAL. This is
because of the one pass nature of the compiler.

i) The priority number cannot be used on the module heading. In
standard Modula-2, using a priority number makes a module
a monitor. (Actually, its a degenerate form of monitor since it
inhibits interrupts rather than enabling a scheduler). Only one
process may be in a monitor at a single time. However, on a
single processor machine, the concept of a monitor is not
required. If a module does have a priority number, it will be
ignored, and a warning message priority numbers not
implemented will be given.

Language Reference " FTIL Modula-2 Page 87

fii)

iv)

V)

vi)

vii)

viii)

ix)

Sets may have up to 1024 elements and the bottom element
does not have to be 0. Hence, sets of CHAR can be used.

The type of a subrange is compatible with both INTEGER and
CARDINAL provided that both its bounds are compatible with
these types. .

Variables may be given initial values statically by following the
type with an equals (=) and the required value. The individual
elements of an array may be initialized by enclosing the
elements brackets. ([and]).

Int:ARRAY[1..5] OF INTEGER=[0,2,4,3,2};
Chars:ARRAY[1..10] OF CHAR='Hi There !';
TChars:ARRAY([1..3] OF CHAR=['T', 'H','E'];

This facility is only mentioned here because it is not fully
implemented. In particular, no type checking is performed, so
you can say:

Int : INTEGER=FALSE;

and also, no checking is performed to ensure that the list is the
same length as the elements to be initialized.

Full constant expression folding is provided. You can use SIZE
and TSIZE in eonstants. Constant expressions using reals are
permitted. This isn't really an extension, but we suspect that
some compilers will skimp in this area.

Hexadecimal character constants can be defined by following
the hexadecimal value with x {e.g. Cax is the character line
Jfeed). In standard Modula-2, only the octal notation {e.g 12¢) is
available.

String literals are compatible with all ARRAY [m..n] OF CHAR
types even though the low bound is not zero. Some compilers
require that the low bound be zero. At this time, we regard this
as arestriction in those compilers rather than an extension in
this one.

Private types are not limited to two bytes. However, see Section
4.3.10 for details.

Page 88 FTL Modula-2 Language Reference

x) Processes share a display, which limits the places in which
context exchanges can be performed. See the description of
Processesin the user guide for details. This restriction has been
removed from some versions of the compiler.

xi) Comparison of strings is supported. The ASCII collating
sequence is used. The string is compared up to a zero byte (that
is, the comparison routine obeys the zero byte terminator
convention). If the shorter of two strings matches the leading
substring of the longer substring, it is less than the longer
substring.

Language Reference FTL Modula-2 Page 89

Page 90 FTL Modula-2 Language Reference

9 Compiler Error Messages

The error messages are to be found in the file ERRMSG.DAT. Most of the
messages are self explanatory. For others, some explanation can be
found in the list below. In some cases, the explanation describes some
of the more obscure cases in which the error can occur.

A good rule to remember when attempting to interpret errors is that an
error is never caused by anything to the right of the pointer which
indicates where the error has occurred. For example, if you get the
message DO expected and you can see the relevant DO to the right of the
pointer, it means that something under or to the left of the pointer has
caused the compiler to look for the DO too soon. For example, in a FOR
statement, you may have mis-spelled BY.

You will notice that some messages have more than one number (for
example, 2 and 5) while some error numbers correspond to no error
message. This is not an error in the documentation. This error message
file started out as an error message file for a Pascal compiler and the
one file still serves both compilers.

1 undefined identifier

Check that the identifier is spelled correctly. Recall that case is
important.

2 doubly defined identifier

There are two (possibly contradictory) definitions of one identifier. Even
if the definitions are identical, it is still an error.

3 This symbol cannot start a statement - elided

This error occurs when the compiler is trying to identify the type of
statement it has just reached. The symbol is not one that can start a
statement. Check that you really are at the start of a statement it may
be that some preceding text is wrong.

Two common causes of this error are:

Language Reference FTL Modula-2 Page 91

(1) You have omitted an END from a statement and the compiler has just
- found the identifier at the end of your procedure or module. However,
if the procedure is a proper procedure with parameters you will get
error 14 (too few arguments) in this situation.

{2} You have tried to use BEGIN and END for a compound statement, as
in Pascal. Recall that Modula-2 only uses BEGIN for the beginning of the
statement parts of procedures and main programs.

4 procedure name expected

5 doubly defined identifier

Identical to error message 2. Having multiple copies of some error
messages was useful during debugging.

6 ; expected
7 procedure declared forward twice
8 terminating period omitted

If this message occurs before the genuine end of your program, you
may have too many ENDs.

10 wrong type of module

Caused by trying to compile a definition module with the ordinary
module compiler, or vice versa. It will also occur if the word MODULE is
missing or mis-spelled. Compiling your documentation is a good way
to get this message!

11 , missing between parameters or VAR misspelled (or wrong
case)

The compiler has found a symbol in a formal parameter list which it
cannot process. A common cause of this is mis-spelling VAR (such as
spelling it VAr).

12 too many actual arguments
A procedure or function has been called with more arguments than the

procedure requires.
. Page 92 FTL Modula-2 Language Reference

13 type mismatch

The types of a formal parameter and an actual parameter, are
incompatible. See section 4.4 of this manual for details on type
compatibility. This message can also occur on the header of a FOR loop
if either of the bounds for the range are not compatible with the control
variable.

14 too few arguments

There are fewer arguments in a parameter list than in the procedure
definition.

This error can occur if you are missing an END from a structured
statement and the compiler is attempting to treat the terminating
identifier, which repeats the name of the procedure, as a procedure
call.

15) expected

This error occurs if the compiler cannot continue while processing an
expression. You may have too many opening parentheses, or it is
possible that part of the expression is completely missing.

18 type conflict
The operands of an operator in an expression are not compatible, or an

element in a set construct is not compatible with the type of the set, or
the two sides of an assignment statement are not compatible.

21 } expected

A set construct is missing a closing }. Of course, this may mean that
there is something in the set construct that should not be there.

22 pointer required

A dereference symbol (*} has been used with an expression that is not
a pointer.

Language Reference FTL Modula-2 Page 93

24 not array type

You have tried to subscript a variable which is not an érray.

25]} expected

The compiler expected to find the] at the end of an array subscript.
26 no such subfield

You have tried to reference a subfield in a record which does not exist.
27 not a record

The variable in which you have tried to reference a subfield is not a
record.

28 arithmetic operand expected

A non-arithmetic operand has been used in an arithmetic expression.
Some types, such as WORD, are not arithmetic types. For example, if you
want to compare two variables of type WORD you can do
CARDINAL (a) <CARDINAL (b) or INTEGER (a) <INTEGER (b) to give eithera
signed or unsigned comparison.

29 boclean expression expected

30 set type required

32 type conflict on operand

You can only take the negative of an INTEGER, CARDINAL or REAL
operand.

33) expected

A closing bracket is expected at the end of a sub-expression, or at the
end of a standard function.

Page 94 FTL Modula-2 Language Reference

34 identifier bad

The compiler has found an identifier at the start of a statement, but the
identifier cannot start a statement. For example, trying to use a type
transfer on the left hand side of an assignment {INTEGER (1) :=2) would
cause this problem. It can also be caused by losing an END, so that a
PROCEDURE or a BEGIN becomes part of the current procedure.

35 cannot parse expression

The compiler has found an element in an expression which cannot
possibly be part of an expression. For example, if you had an
expression like (2*), you would get this error on the second
parenthesis), because the compiler is looking for an operand.

36 invalid operands for MOD or DIV

The MOD and DIV functions require that the operands are INTEGER or
CARDINAL. You have probably tried to use them with REAL operands.

38 types do not match

You have tried to compare expressions of differing types, or you have
attempted to test for a value in a set of when the value has a type
different from the elements of the set.

39 invalid pointer comparison

You can only compare pointers for equality and in-equality. If you really
want to use other relations, type transfer them to CARDINAL first.

40 invalid operand type

This can occur when you attempt to compare operands which cannot
be compared. For example, records cannot be compared.

41 OF expected
42 constant value or identifier expected

The compiler is looking for a constant and has found a variable.

Language Reference FTL Modula-2 Page 95

A constant can be either a literal or it can be a constant identifier.
Functions like SIZE and HIGH can also be used.

A constant identifier is an identifier which has been declared as a
constant, or an element from an enumeration, such as red declz_:tred as
part of colour=(red, green, blue).

43 : expected
44 END expected
46 record type required

This may occur in a WITH statement. Avariable in the list is not a record
variable. You may have omitted a pointer () after a pointer variable.

47 DO expected

The Do at the end of the header for a FOR statement or a WHILE statement
is missing. If the DO exists but it has not yet been reached, there is
something wrong with the expression being pointed to.

48 found = but assuming := was intended
49 found : but assuming := was intended

These last two errors are warnings only the compilation will continue
correctly.

50 := expected

This message can occur if you use a variable as a procedure name in
a procedure call.

51 size error

The left hand side of an assignment is of differing size to the right hand
side. You should get another error message first. If you get this error
by itself, please let us know. The types of the left hand side and right
hand side do not match.

Page 96 FTL Modula-2 Language Reference

52 THEN expected
53 TO expected
54 UNTIL missing or END misplaced

You have closed a structured statement surrounding a REPEAT
statement before the UNTIL for the REPEAT statement has been found.

57 identifier expected
58 = expected

59 identifier expected
60 OF expected

61 ; expected

63 incompatible types

The type of the high bound in a subrange is not the same as the type
of the low bound.

64 high bound <low bound

The high bound of a subrange must not be smaller than the low bound.
It can be equal.

65 identifier should be a type identifier
66 OF expected

67 [expected

68] expected

72

expected

Language Reference FTL Modula-2 Page 97

73 : inserted

The compiler, while processing variable declarations, has found two
consecutive identifiers and is trying to recover. There should, of course,
be either a comma or a colon between the identifiers.

77 : found but assuming = was intended

You have used a colon when an equals was expected. For example TYPE
a:RECORD instead of TYPE a=RECORD.

76 initializaticn error

You have tried to use the initial value extension of FTL Modula-2 (e.g.
VAR i:INTEGER=2) when the variable is not statically allocated.

78 type identifier expected
81 end of file reached before program complete

This commonly is the result of failing to terminate a comment. Recall
that comments nest in Modula 2. Make sure that you have at least one
more character after the terminating full stop (usually a carriage
return), since the lexical analyzer, upon finding a period, looks for a
second period in case the symbol is ...

82 output disk full

Either there is no more space on the output disk, or else you have run
out of directory entries. Delete your .B2K files and try again. If you still
get the message, you will have to re-organize your disks. If you are
using the T, R or U compiler flags (see the user guide for descriptions
of these flags) then the code file produced by the compiler is rather
larger than the default.

85 Parameter list conflicts with earlier definition

This error is produced when the definition for a procedure which has
been declared in the definition module, or declared as forward, is found
and its parameters conflict with those of the original declaration. The
parameters are not checked until the complete header has been
examined, so you will have to examine the entire declaration.

Page 98 FTL Modula-2 Language Reference

If the parameter lists appear to be identical, it is possible that one of
the types used in the header was imported from another module, and
that modules definition module has been recompiled between the
compilation of the current modules definition module and its
implementation module.

86 (expected

This error can occur if you use a type name in place of a variable name.
This is easy to do if your type is called Class (say) and the variable is
called class.

87 type of parameter inappropriate for standard function
88 procedure declared but never defined

Either you have declared a procedure in the definition module but it
has never been defined in the implementation module, or you have
declares a procedure to be FORWARD and then you have forgotten to
define it.

90 import file not found

You have attempted to import from a module, but the .syMor .1MS file
for the module could not be found. The name of the .syMor .1LMS file
is the same as the name of the module, with all characters converted
to upper case and any characters after the eighth removed.

Ifthe . syMor . 1LMS file is on one of your disks, check thatyour responses
to SETSEARC were correct.

91 IMPORT expected

You have omitted, or mis-spelled the word IMPORT following FROM
module-name.

92 name not exported

You are attempting to import an identifier which does not appear in the
referenced definition module. Check your spelling and that you have
got the right module.

Language Reference FTL Modula-2 Page 99

93 export not allowed from implementation module

You can only export from a nested module. EXPORT statements are not
required in definition modules either. The definition module compiler
will skip any such statements, giving a warning message (error 145).

95 FROM only allowed in outermost module

You cannot use the FROM module-name IMPORT ... form of the IMPORT
statement in a nested module. Actually, if you import a full module
(IMPORT Terminal) then it makes sense that you should be able to say
FROM Terminal IMPORT WriteStringinanested module. However, this
is not implemented yet see your README . NOW file if you want to make
sure.

96 ; inserted

The compiler is attempting to recover at the end of a statement.
97 END missing from IF statement

98 END missing from WITH statement

Actually, the last two errors will rarely occur, because something else
usually goes wrong first. Also, if an END is missing from a statement,
the statement is terminated by an END which should have belonged to
a surrounding statement. This works its way out until you hit a hard
error, such as trying to use the identifier at the end of a procedure as
a statement, which often results in error 14, or trying to treat the
following PROCEDURE or BEGIN as a statement, which causes error 3, or
hitting the end of a case variant, which also causes error 3.

99 EXIT statement is not within a loop

An EXIT can only be used with a LOOP statement. If you thought the
EXIT was in a loop, check your ENDs.

100 LOOP statement nested more than 10 deep

You have hit a compiler limit. You will have to remove some of your
inner LOOPs into another procedure. Ten deep loops is rather a lot.
Should the code be re-structured?

Page 100 FTL Modula-2 Language Reference

101 END missing from-LOOP statement
See the comments for error 97/98.
102 Terminating id not same as module id

Make sure that the error pointer is really pointing to the end of the
program you may have too many ENDs again.

103 END missing from RECORD

See the comments for error 97/98.

104 TO missing after pointer

The declaration should be POINTER TO something.
105 END missing from mcdule

See the comments for error 97.

106 not a definiticn mcdule

Caused by trying to compile an implementation module with the
definition module compiler.

108 END missing from case statement

See the comments for error 97.

109 Definition module could not be found

When you compile an implementation module, (that is, one which
starts with IMPLEMENTATION), the compiler looks for the symbol file for
the corresponding definition module. See also, error 90.

110 REL file could not be found

The code generated by the implementation module is appended to the
end of the code generated by the definition module. In order for the

compiler to do this, the .REL file must be on the disk to which you are
sending the .REL file for this compilation.

Language Reference FTL Modula-2 Page 101

111 RETURN not in procedure

You cannot use a RETURN statement in a main program‘part. Perhaps
you wanted to use HALT.

112 END missing from FOR statement

113 END missing from WHILE statement

See the comments for error 97.

114 Body of procedure missing

The compiler has found a symbol near the beginning of a procedure
which it cannot handle. This message should probably read BEGIN
expected, since it belongs to the same class of error.

115 Ident missing at end cof procedure

You must repeat the procedure identifier at the end of the procedure,
so that the compiler can check the block structure.

116 Formal type not allowed here

A formal type is an open array. They can only occur in parameter lists.
Evidently, the compiler does not believe this one is in a parameter list.

118 Character constant expected

Character constants are strings of length one, or constants using the
special notations 0dx, 07c. (the quotes are not part of the construct)

119 types not assignment compatible

Either on an assignment statement, or when passing a parameter by
value. Review the rules on assignment compatibility.

120 Attempted divide by zero when folding constant expression

Page 102 FTL Modula-2 Language Reference

121 Negative of CARDINAL constant not allowed

Because it would then have to be INTEGER. You could always use
-INTEGER(2) for example.

122 Type of open array actual parameter is wrong

The element type of the actual parameter must match the element type
of the formal parameter.

123 Open array not allowed as function result

You cannot declare a procedure as PROCEDURE Thing () :ARRAY OF
CHAR. The result must be of a known size.

124 BY expression must be integer or cardinal constant
125 BY expression must be a constant

You cannot use an expression for the BY expression in an IF. You can
use an integer or cardinal constant with an enumeration range.

126 This expression cannot be reduced to a constant value

You have used an expression in a constant declaration, but the
compiler cannot reduce the expression to a constant. For example, the
declaration CONST SIN45=SIN (PI/4) would give this error, because the
compiler cannot perform SIN functions this can only be done at run
time.

127 Empty parameter list [()] assumed

Recall that a parameterless function declaration must have the
brackets with nothing inside them.

128 At most 10 sets of static variables can be used in a module

This is a compiler limit. You have more than 10 VAR statements in a
module. The compiler merges adjacent sets of VAR statements. You only
get a new set of static variables if a procedure intrudes between too VAR
declarations. To overcome this problem, put some of your declarations
in the same section of code.

Language Reference FTL Modula-2 Page 103

129 Constant in set construct out of set bounds
130 Constant too large - must not exceed low bound+1023

This is a compiler limit you cannot have more than 128 bytes in a set
constant, so the maximum element is 1023 greater than the low bound

of the set.

131 function required

You have tried to use a (proper) procedure as a function.

132 variable is not a procedure variable

You have tried to call a procedure using a variable which is not a
procedure variable. This can be caused by using round brackets ((and
)) instead of square brackets ([and }) for a subscript.

133 function should not be called as a procedure

134 type section header, PROCEDURE BEGIN or END expected

The compiler expected the start of a major section of code, but the
symbol it found was not the start of such a section.

135 octal constant bad
You have used a non-octal digit in an octal constant. For example, 08c.

136 invalid base type for set type

You can only have sets of subranges, enumerations (including
BOOLEAN) and CHAR {or subranges thereof).

137 more than 8 open array value parameters in a procedure

This is a compiler limit. Pass some of them by VAR or reduce the number
of parameters. We would have severe doubts about any procedure
which had eight parameters in total, never mind eight value open array
parameters.

Page 104 FIL Modula-2 Language Reference

138 constant identifier used when variable identifier
required

You cannot assign to a constant.

139 string too long

The maximum length for a string in this compiler is 128 characters.
140 string not closed before end of line

The closing quote must be on the same line. Strings cannot span lines.
141 Variable is not pointer

You have tried to dereference (using ~) a variable which is not a pointer.
142 Character value invalid '

You have used the 07c or 0£x construct with a value which is invalid.
A common cause of this error is forgetting that the value must be in

octal or hex. For example, the constant 255x would cause this error you
should have written Gf£x.

144 Priority numbers not suppcrted

This is a warning. The module will compile correctly, but the priority
number is ignored.

145 Export in definition module is old Modula-2 - export
igncred

The modified definition of Modula-2 states that all identifiers in a
definition module are exported. This is a warning message. The
compiler will skip the statement and continue.

146 out of memory - use /S or reduce imported modules
The moduleis too large. Try to reduce the number of imported modules.

If you are using the Z80 version, try using the /S compiler flag to free
up an extra 1500 bytes for the symbol tables.

Language Reference FTIL Modula-2 Page 105

If you are importing a large module from which you only use a few
identifiers, try importing those identifiers in the definition module of
the module which is giving trouble instead of the implementation
module; it saves space. Unfortunately, it also makes this modules
definition module larger, which can cause a module which imports this
module to give out of memory. ’

147 Constant out of range

This error is only detected when you compile using the /R flag. It occurs
when you use a constant that is not in the range required by an
associated type. For example, using an array subscript which is out of
bounds, or assigning a constant to a subrange when the constant is not
in the subrange, will cause this error.

51 Version numbers inconsistent

When you import a symbol file during compilation, the symbol file will
usually contain references to other symbol files. If you then import
another of these symbol files - either explicitly or implicitly because it
is referenced by yet another module {eg many definition modules
reference SYSTEM so you can end up importing SYSTEM implicitly a
number of times), there is the possibility that things have been
recompiled at different times and that two references to a given symbol
file are two different recompilations of the definition module.

152 Relocatable file bad or missing

This message will appear when you attempt to compile an
implementation module for which the relocatable file is either missing
or it is shorter than it should be. (this means that the file has been
clobbered or the compiler found an old version or some-such.) When
you compiler a definition module, the compiler saves, as part of the
symbol table file, the number of bytes written to the relocatable file. The
implementation module compiler starts writing to the relocatable file
at this point.

Page 106 FTL Modula-2 Language Reference

Inaddition to the above etror messages, you may get the error message:

no source file

The file to be compiled was not found. In some versions(eg CP/M 80),
you must include the extension with the file name. For example, m2
fred.modrather than justm2 fred. The latter would compile from a file

with no extension.

Language Reference FTL Modula-2 Page 107

Page 108 FTL Moduia-2 Language Reference

10 Linker Error Messages

The linker can produce a number of error messages. In addition to
those below, there are some which contain a question mark followed
by some numbers. These should never appear. If they do appear,
recompile the module which was being linked at the ttme and try again.
If the problem persists, send a copy of the module to us for
examination.

ocutput disk full

There is no more space for the executable file on your output disk.
fill over

This message should never appear. It is caused by the address patching
table becoming full, but this table is always flushed when it becomes
full. If this message occurs, we want to know about it.

too many labels

There is a limit of two hundred labels in any procedure or main program
part. In addition, one label is used for each procedure, so that slightly
less than 200 labels will be available to any given procedure. To
overcome the problem, divide the procedure into several procedures.
This will always be possible, since you can place some of the code in
a procedure nested within the current procedure, which will allow it to
access all of the current procedures variables (though it will not be able
to do a RETURN for the current procedure).

literal number too large

There is a limit of 200 string, real and set literals in a module. As well
as the obvious literals, every set constructor produces a set literal. To
overcome this problem, you will have to divide your module into several
modules. Note that an imported literal is not included in the number
of literals for this purpose.

Language Reference FTL Modula-2 Page 109

literal pool overflow

There is too much literal text in a procedure. At the start of a module,
1200 bytes of literal space is available. At the start of any procedure,
at least 600 bytes of space will be available, since if the table is more
than half full at the beginning of a procedure, it is flushed. To overcome
the problem, split the offending procedure into several.

too many imported modules
There is a limit of 50 imported modules for any module.
bad code file - abandoned

The code file for the current module was bad. Recompile the module.
This can occur if an out of memory error occurred during compilation.
It can also occur if the compiler has failed to detect an error. If this
occurs please tell us about it. It is possible that the linker will not detect
that a code file is bad. In this case, the errors mentioned above with
question marks in them may occur, or the linker may loop. However,
these occurrences are rare.

extra com file

Your command line syntax is wrong. There can only be one name to the
left of the equals sign. Perhaps you have entered more than one equals
sign.

<name> not found

The module’s relocatable file (.REL/ . SMR/ . LMR) could not be found. If
the file does exist, check that you have set your search list correctly
with SETSEARC.

circular refs - arbitrarily selecting <name>

There is a set of modules which produce a circular set of imports. For
example, Aimports B which imports C which imports A. This is detected
by the linker when it is trying to determine an order for the execution
of main program parts. One of the modules will be selected, and its
name given.

Page 110 FTL Modula-2 Language Reference

<name> recompiled singe <second name>

The first name is the name of a module imported by the second module.
The definition module of the first module has been recompiled since the
second module. This is a warning error only, the produced executable
file may still work. However, it is quite possible that it will not. As a
result of this error, the resulting program may mysteriously return to
the operating system, it may call wrong procedures, or it may simply
disappear, requiring a re-boot.

In other words, ignore the error at your own risk.
implementation module not compiled

The given module (the one being linked) has had its definition module
recompiled without the implementation module being compiled since.

errors in compilation

The compilation produced errors. You must fix the errors and
recompile before the module can be linked.

Language Reference FTL Modula-2 Page 111

Page 112 FTL Moduia-2 Language Reference

11 Compiler Limits

There are a number of limits on the use of the compiler. Provided these
limits are not exceeded, quite large modules can be compiled. This is
unlike some compilers, which use up some memory for every line
compiled so that at most two or three hundred lines of code can be
compiled. As these limits may change from time to time, check the
README . NOW file for any alterations.

You cannot nest procedures, modules and WITH statements more than
ten levels deep. This figure is inclusive not ten for each.

You cannot have more than 1200 bytes of literal text in a procedure,
and should limit yourself to 600 bytes in a procedure. 600 bytes works
out at about 10 long WriteString statements. There is a literal text
buffer in the linker which is used to reduce the amount of memory used
for literals. For example, if two literals are the same, then the same
mermory is used for both of them. This buffer is flushed whenever it is
more than half full at the end of a procedure.

You cannot have more than 200 labels in a procedure. In fact the limit
is a bit less than 200, because each procedure uses up one label for its
entry point, and because a few labels are used by the code generator.
All labels used in a procedure {except the one associated with the
procedure's entry point) become available again at the end of the
procedure. Labels are required as follows:

WHILE 1
IF 2 plus 1 for each ELSIF
FOR 2
CASE 1 plus 1 per alternative
REPEAT 1
LOOP 1

Only one label is used up per procedure as any labels used inside the
procedure are made available again. That is, all the local labels only
exist for the duration of the procedure.

Language Reference FTL Modula-2 Page 113

You must not import more than 50 modules into any one module. You
will be hard pressed to import 50 modules before you get out of
memory.

Page 114 FIL Moduia-2 Language Reference

12 A Comparison of
Modula-2 and Pascal

This section describes many of the differences between Modula-2 and
Pascal. This section is intended for the program who is experienced in
Pascal and who wants a quick introduction to Modula-2.

Some subtle differences in the languages are not mentioned. If you are
interested in such differences, see H.A. Muller's article 'Differences
between Modula 2 and Pascal' (SigPlan Notices Vol 19 No 10, Oct. 84,
pp32-39).

12.1 Lexical Differences

The lexical level of a programming language refers to the marks that
you make on a piece of paper (or a terminal screen) to represent the
prograrm. At the lexical level, we are concerned with questions such as
what are the key words, what characters are allowed in identifiers, and
SO on.

Moduia-2 requires keywords to be entirely upper case. Case is
significant in identifiers. In Pascal, case is ignored. In this Modula-2
compiier, up to 32 characters of an identifier are significant. In many
Pascal compilers, only the first eight characters of an identifier are
retained.

This means that, in many Pascal compilers, it is possible to have
identifiers that look different, but are really the same since the first
eight characters are the same. With the 32 character limit used by this
compiler, this problem is far less likely to occur. On the other hand, in
Pascal, you can use upper or lower case for identifiers and key words,
and, in fact, it is considered good style to use primarily lower case.
Modula-2 is sensitive to case, so that Fred and fred are different
identifiers.

Pascal requires that character constants and strings be enclosed in
single quotes. It allows the use of two consecutive quotes in a string to
represent a single quote (so ' ' ' ' is a single quote character constant).
Modula 2 allows either single or double quotes but does not allow the
delimiting type of quote in the character string.

Language Reference FTL Modula-2 Page 115

For example, the single quote would be written as "' " in Modula-2.

This compiler, however, has an extension which makes this possible.
You must turn the extension on with a pseudo-comment (e.g. (*$a”*)).
See section 3.3 of Part I for details.

Modula-2 has a facility to allow character constants to be specified in
octal and, as an extension in this compiler, in hexadecimal. For
example, 0ax, 10c are both the line feed character.

Pascal allows comments tobeenclosedin (* and *) orin { and }. Pascal
comments cannot be nested. Modula 2 only permits the use of (* and
*) but allows comments to be nested. In Modula-2, { and } are used
for sets.

12.2 Declaration

Declaration parts can be in any order and may be repeated in Modula-
2. Pascal requires that the declarations be in the order CONST, TYPE,
VAR, and none of them can be repeated.

In Modula-2, a variant part in a record declaration requires a separate
END. In Pascal, the END for the record declaration also terminates the
variant part. Modula-2 allows multiple variant parts.

Modula-2 uses the syntax POINTER TO type to declare a pointer type.
Pascal uses “type.

In Modula-2, in an array declaration, the brackets ([and]) are part of
the subrange declaration, not part of the array declaration. They are
omitted if an identifier is used instead of an anonymous subrange and
must be repeated if multiple index types are declared. For example:

ARRAY COLOUR OF INTEGER;
ARRAY [1..10],([1..10] OF REAL;

In Pascal, the brackets are part of the declaration and multiple
dimensions are separated by commas within a single set of brackets.

Modula-2 permits constant expressions wherever a constant is
required. Pascal only permits a simple constant or constant identifier.

Page 116 FTL Modula-2 Language Reference

Modula-2 does not use the keyword FUNCTION. Instead, a function is
declared using the PROCEDURE keyword. In this case, the type is given
after the parameter list, just as it is in Pascal.

In formal parameter lists, Modula-2 permits an open array declaration.
An open array is an array with no index type, as in ARRAY OF INTEGER.
The index type is determined when the procedure is called. This allows
such procedures to be used with array variables of differing sizes.

12.3 Expressions

Pascal uses [and] around set constructs. Modula-2 uses { and }.In
Pascal, all sets are the same size. Modula-2 allows sets of various sizes,
since the type of a given set can always be determined from the set
constant.

In Pascal, a character string of length one is of type CHAR. In Modula-
2, it may be either CHAR or ARRAY [0..0] OF CHAR. This means that you
can use a string constant containing exactly one character as either a
character constant or a string constant.

Modula-2 allows a string of length zero. Pascal does not.

Modula-2 requires that parentheses be used in a parameterless
function call. Omitting the parentheses gives the address of the
function, not the value returned by a call of the function. Normally, this
will produce a type mismatch when the program is compiled. Pascal
requires that the parentheses be omitted.

There is no concept of a procedure variable in Pascal. In Modula-2, a

procedure variable is used to contain the address of a procedure or
function so that the procedure can be called indirectly.

124 Statements

All structured statements in Modula-2 may take more than one
statement in their range of control and are terminated by a keyword,
usually END. Pascal structured statements (except REPEAT) take only a
single statement in the range of control, though this may be made into
a compound statement with the use of BEGIN. . .END.

Language Reference FIL Modula-2 Page 117

Modula-2 does not permit the use of BEGIN and END to produce
compound statements. Nor is it necessary.

Modula-2 has an explicit RETURN statement which can be used to
return from a procedure and must be used to return from a function.
In the case of a function, the RETURN statement must include an
expression giving a returned value. In Pascal, functions and
procedures return by falling out the bottom of the procedure and the
returned value is denoted by assigning it to the function name in an
assignment statement. Modula-2 permits proper procedures
(procedures which do not return a result) to return by falling through
or by RETURN.

The Modula 2 IF statement allows multiple ELSIF parts. Pascal lacks
this construct.

The Modula 2 CASE statement permits an ELSE part. Pascal lacks this
construct. The case labels in Modula 2 may be subranges. Pascal
requires simple constants. In Modula-2, BEGIN and END are not used
in a case statement. Instead, the symbol | is used to terminate an
alternative.

Modula-2 lacks a GOTO statement. Instead, a more general form of LoOP
statement and a RETURN statement have been added. These two new
constructs cover most uses of labels and GOTCs in Pascal and are easier
to validate.

Modula-2 permits a step size in a FOR statement. Anegative step is used
instead of Pascal's DOWNTC option.

Pascal has a set of input-output facilities built in and allows automatic
parameter substitution from the command line. Modula-2 requires the
use of modules to perform 10 and the programmer must handle
parameter substitution.

Page 118 FTL Modula-2 Language Reference

12.5 Separate Compilation

Modula-2 supports separate compilation. Source code is divided into
modules. Each module can have two parts, a definition part and an
implementation part, or it may simply have the second of these parts.
The definition part declares all objects which are defined in the
implementation part and which can be accessed from outside the
module. Anything declared in the implementation part is not visible
outside the module. The definition part acts as a prefix to the
implementation part.

The IMPORT statement is used to import objects from one module into
another.

Language Reference FTL Modula-2 Page 119

Page 120 FTL Modula-2 Language Reference

13 Revisions and
Amendments

On November 21, 1983, a meeting was held with some implementors
of Modula-2. Numerous features and facilities were proposed for
addition or correction. The following were agreed upon.

This compiler implements the language as modified by this list. For this
reason, if you are converting programs from an old compiler, you will
notice some differences between what your old compiler accepts and
what this compiler accepts.

This list is not a complete list of the changes and clarifications. Only
changes that affect this compiler, and which may cause your existing
programs to fail to compile are noted.

i) The types of a formal VAR parameter and that of its
corresponding actual parameter must be identical, not merely
compatible, except for formal parameters of type ADDRESS,
which will accept any pointer as its actual parameter, and in the
case of WORD, whose compatible types are implementation
dependent.

i) The types of expressions used for the starting and limiting
values of a FOR loop must be compatible, not simply assignment
compatible, with the control variable.

iii}) The explicit export list in a definition module is discarded. All
objects in a definition module are exported. This compiler
ignores any explicit export list, giving a warning message.

iv) When the discriminant of a case selectorina recofd declaration
is omitted, the colon must be included. For example:

TYPE T=RECORD
CASE :BOOLEAN OF
TRUE:a:REAL|
FALSE:b: INTEGER|
END;

Language Reference FTL Modula-2 Page 121

Note also that, in case statements, an extra | is now permitted
between the last alterniative and the END or the ELSE. This is
demonstrated in the example above. This change extends to
CASE statements in the statement part as well.

v) The type PROCESS has been deleted. It is replaced by the type
ADDRESS. In this implementation, the optional procedure
NEWPROCESS and TRANSFER are to be found in the module
Processes rather than in SYSTEM.

vi) There are two new standard functions MIN and MAX. These
return the minimum and maximum values which the type
given as a parameter can take.

Page 122 FTL Modula-2 Language Reference

	pag 000 - 0
	pag 000 - 1
	pag 000 - 2
	pag 000 - 3
	pag 000 - 4
	pag 001
	pag 002
	pag 003
	pag 004
	pag 005
	pag 006
	pag 007
	pag 008
	pag 009
	pag 010
	pag 011
	pag 012
	pag 013
	pag 014
	pag 015
	pag 016
	pag 017
	pag 018
	pag 019
	pag 020
	pag 021
	pag 022
	pag 023
	pag 024
	pag 025
	pag 026
	pag 027
	pag 028
	pag 029
	pag 030
	pag 031
	pag 032
	pag 033
	pag 034
	pag 035
	pag 036
	pag 037
	pag 038
	pag 039
	pag 040
	pag 041
	pag 042
	pag 043
	pag 044
	pag 045
	pag 046
	pag 047
	pag 048
	pag 049
	pag 050
	pag 051
	pag 052
	pag 053
	pag 054
	pag 055
	pag 056
	pag 057
	pag 058
	pag 059
	pag 060
	pag 061
	pag 062
	pag 063
	pag 064
	pag 065
	pag 066
	pag 067
	pag 068
	pag 069
	pag 070
	pag 071
	pag 072
	pag 073
	pag 074
	pag 075
	pag 076
	pag 077
	pag 078
	pag 079
	pag 080
	pag 081
	pag 082
	pag 083
	pag 084
	pag 085
	pag 086
	pag 087
	pag 088
	pag 089
	pag 090
	pag 091
	pag 092
	pag 093
	pag 094
	pag 095
	pag 096
	pag 097
	pag 098
	pag 099
	pag 100
	pag 101
	pag 102
	pag 103
	pag 104
	pag 105
	pag 106
	pag 107
	pag 108
	pag 109
	pag 110
	pag 111
	pag 112
	pag 113
	pag 114
	pag 115
	pag 116
	pag 117
	pag 118
	pag 119
	pag 120
	pag 121
	pag 122

